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Abstract. This paper deals with the asymptotic analysis of Mohr-Coulomb and Drucker-Prager soft thin
layers bonded with elastic solids. In the first part, a mathematica analysis shows how to obtain an interface
law that replaces mechanically and geometrically the thin layer. This law is strongly non-linear and couples
microscopic and macroscopic scales. In the second part of the paper, the microscopic terms are quantified
numerically, and it is shown that they can be neglected.
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1. Introduction

The objective of this paper is to analyse soft thin layers in order to replace them by interface laws.
The aim of our work is to study non-linear soft materials; especialy, we focus on the case of non-
associated dastic-plastic materials of Mohr-Coulomb and Drucker-Prager kind. These materials are
described in the implicit standard materials framework based on the bipotential theory (Hjigj, de Saxcé,
Mroz 2002).

During the last two decades severa authors have devel oped asymptotic theories applied to thin layers
(Suquet 1988),(Ait Moussa 1989),(Klarbring 1991),(Licht, Michaille 1996), (Lebon, Ould Khaoua,
Licht 1998), (Bayada and Lhalouani 2001). The idea of thiswork isto replace athin layer bonded with
two substrata by an interface law which keeps in memory the mechanica and geometrical
characterigtics of the layer. The motivation of thisanayse isthe complexity of the numerical approach:

« the thickness of the layer is small regarding the substrata dimensions

* the stiffness of the layer is weak compared with the substrata rigidities.

Thetheory consistsin considering that the geometrical and mechanical parameters of the layer tend to
zero and to analyse the limit problem. In this limit problem, the layer vanishes geometrically and an
interface law replacesit. Using thistheory, simplified model s of interface are obtained which are easier
to compute by finite element software. On the one hand, this theory permits to justify empirical
interface laws that one can find in the literature and on the other hand, to find new interface laws. In
previous papers, different kinds of behaviour (elasticity, visco-elasticity, plasticity, ...) and kinematics
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(small perturbations, plates, finite deformations, ...) have been dealt with. Our contribution in thiswork
is concerned with non-associated elastic-plastic behaviours.

The paper is organised as follows: in the second section, the mechanical problem is presented,
notations are specified and the constitutive law of the thin layer is formulaed in the implicit standard
materials framework. The third section is devoted to the theoretical results. The mathematical
background is given and the matched asymptotic expansion method is applied to the problem with a
non-linear behaviour. The mathematical results are commented. In section 4, numerical examples are
presented in order to validate the theory and to quantify the terms obtained in section 3. In the last
section, we close by giving conclusions and perspectives.

2. The mechanical problem

2.1. Problem definition

We consider two eagtic bodies perfectly bonded with a third one which is very thin. For simplicity, we
work only intwo dimensions. The structure isdenoted Q with boundary dQ andisreferred to the loca frame

(O, Xq, X0). On apart of the sructure I; a surface load is applied. The structure is embedded in part .

We denote (Fig. 1):

O £ e _ O &

QF = X = (Xg, %) 0 Q/ x| > £ B = X = (X1, %) 0 Q/%)]) < 3
. 1 X2 [X| 2‘%] 0 2‘%]
0 a

Q= [p(z(xl,xz)DQ/ix2>§§ S = [p(z(xl,xz)DQ/ixpgé
a a

Q, = {X= (X, %) U Q/£x,> 0} S = {x= (X, X)) 0 Q/%,>0}

Q, = -Q+[|-Q— & thin layer thickness

Fig. 1 Geometry of the problem
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We consider the following hypotheses:

Plane problems Q¢ are deformable bodies
109u7 | ou S is the interface between the adhesive and the
, e = 1P I
Small strains, g;(u°) ZDc?xj + ox adherent
Additive decomposition of strains: B? isthe thin layer
e(u)=€e%(u®)+e’(u®), respectively elastic strain| S is the surface to which the adhesive tends
and plagtic strain. geometrically

The two bodies Q. (adherent) are supposed to be dastic and the joint B° (adhesive) to be elagtic-
plastic. In the next section, details of the behaviour of the thin layer are given.

Denoting by & the elagticity parameters, we have to solve the following problem:

Find (uf, o) such as:

o;,; =0 inQ, uf=0on /o
oin=Fon;

_ E\ &
= qj eq(u’) inQ

€

g7 1)

u

— £
+ behaviour law in Bf - =0and |on

[1s isthe jump on the boundary Si and n is the external normal unit.

2.2. Behaviour in the thin layer

In this section, we describe the behaviour of the material in the thin layer. We consider that it obeysa
non-associated elastic-plastic law. This kind of material is not in the family of generalized standard
materials (Nguyen 1973) but in the class of implicit standard materials described in terms of the bi-
potential theory (Hjigj, de Saxcé, Mroz 2002). In the case of generalized standard materials, we need to
define apotential and a pseudo-potential of dissipation. In the framework of implicit standard materials,
the behaviour is described introducing a bi-potential b and a bi-potential b, which depend on two
tensorial fields, the stresstensor @ and the e astic strain tensor €° (resp. the plastic-strain rate tensor eP).
The behaviour law is built from the derivation of these two bi-potentials:

_db e_db
T e €= oo 2
a:% ep:% 3

ge” og

In the case of a Drucker-Prager material, the bi-potential of dissipation is written:

bp(0, €) = ceb + (t98—tg) (s, — ) e + Xk (6" + Xxo(0) 4

where x, isthe indicator function of set A:
Xa(X) = 0, if x O A, xa(X) = + o otherwise

Sets K, and K, are defined by:
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Ko = {0 llsl<c-tg¢ s;} )
Ke = { €, e 2 tgo]ell} (6)
Sm = %tr(a), (hydrostatic pressure) @)
S= 0 - S,ld, (stress deviator tensor) (8
¢ = (e )

3
el = e"-¢elld (10)

lal = /gaijaij for any tensor a (Von Mises norm)

c is the cohesion, ¢ is the friction angle and 6 is the dilatance angle.
In the case of a Mohr-Coulomb material, the bi-potential of dissipation is written:

by(0, &) = ceh—tgd(ny— )] + xi.(&") + Xco(0) (11)

Sets K, and K, are defined by:
Ko = {0 |ty sc—tggng (12)
K. = {€", & >0 (13)

where t, and n, are respectively the shear and normal stresses associated to the stress tensor a. In
the following, the material will be supposed isotropic.

3. Theoretical results
3.1. Mathematical background

The idea of matched asymptotic expansions (Eckhaus 1979) is to find two expansions of the
displacement u® and the stress g in the powers of ¢, that is, an external onein the bodies and an internal
in the joint, and to connect these two expansions in order to obtain the same limit. We will obtain
relations in the internal expansions that we will express from values that intervene in the external
expansions.

3.1.1. External expansions
The external expansion is a classical expansion in powers of €:

UE (X1, Xo) = W0 (Xq, %) + Ut (Xp, Xp) + ..., (14)
m — l[ﬂ'm + @rﬂ] (15)

S = 505x * ox0
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e (U) (X, Xp) = €+ €+ ..., (16)
05 (X, Xp) = 0L+ €Ty + ..., (17)

3.1.2. Internal expansions
In the internal expansion, we proceed to a blow-up of the second variable. Lety, = x, /€. Theinterna

expansion gives.

Ue (Xg, X2) = VO (Xq, ¥o) + €VE (Xq, ¥o) + ooy (18)

el = d_vrln el = dvr2n+1 e = l[év?+dVT+1 (19)
11 dxl’ 22 dyz ’ 12 ZDdxl dyz Dy
el (U) (X, Y2) = €8 + e+ e+, (20)
Of(Xy, Y2) = €T + T4 + €T+, (21)
We use the convention
V=0,m<0,7"=0,m< -1 (22)

where mis the expansion order.

3.1.3. Continuity conditions

The third step of the method consists of the connection of the two expansions. We choose some
intermediate points defined by x,=+ { €', 0<t< 1, { 0]0,+ O[. When ¢ tends to zero, x, tends to 0*
and y,=X,/€ tends to (1. The principle of the method consists in assuming that the two expansions give
the same asymptotic limits, that is.

(i) V° (xq, £00) = U (%, 09), (23)
(i) T7% (%, £0) = 0, (24)
(iii) T° (%, 20) = 0° (x4, O%). (25)

3.2. Mathematical results

3.2.1. Equilibrium equations at order 2
We devel op the equation div g = 0. In this paragraph, we consider the equilibrium equations at order
—2; we obtain:

ot
—2 -9 26
Y, (26)
Thus, we get ) )
Tip (X, Y2) = Tip (X%, 20) =0 (27)
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The elasticity law in the bodies gives.
v’

_ _ e
Ti21(X11 Y2) = a12j2(?_yla T1i(x11 Ya) = al”ld_yL (28)
2 2
Thus, we have
av°
d—;k = 0and V'(xe, ¥5) = VO(x0), |y > 1/ 2 (29)
2

We have 17 = 0 in the bodies and, due to the matched conditions V2(Xy, ]y-[)=u’(X:, 0%).

3.2.2. Equilibrium equations at order 1

We have
dr?z
— =0 (30)
9y,
The connection conditions give
Ta(Xy £|Yol) = 00 (%, 0%) (31)
with y, = X,/€ tends to £[0 when ¢ tends to zero.
3.2.3. Elasticity of the thin layer
The asymptotic expansions give:
errr et = e () (€ )8 Hu(EEN H(E) ) (3D

where (e:j)e is the elagtic part of €.

Note that before the beginning of plastification, the plastic strain is equal to zero, so the strain is
reduced to the dastic strain.

We have supposed that the layer isthin and soft, that is, the thicknessis small (¢ 0) and the stiffness
coefficients are small (A - 0, u— 0). Aswe can seein the expansions, the identification of the different
orders depends on the relative behaviour of the Lamé coefficients A and u with respect to the thickness
&. In fact the limit contact law depends on the two ratios A /e and u /. We have nine possible relaive
variations of these two ratios corresponding to the behaviour of the coefficients (zero, a positive value,
infinity). In the following, we note f=1lim.o f/c. In particular, we denote by A =lim, o Me and
1 =lim,_ o p/e the limits associated to Lamé coefficients. In the following, only one case is presented,
that is the more representative case where the limits are positive values. All the other cases can be
deduced easily.

Before the beginning of plastification, the identification of the terms of order zero gives:

(X)) = == (33

N,

2

(%) = (A+20) (34)
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By integration of Eq. (33), Eqg. (34) and using the connection conditions Eq. (23), Eq. (25), we find
the elasto-static case which is nhow classical (Ait-Moussa 1989):
on =K [u] (35)
Matrix K is diagonal and its diagonal terms are equal to u and A + 2 respectively. [] is the jump on
boundary S

3.2.4. Elasto-plasticity
The most interesting case is when the plastic threshold is reached.
For a Mohr-Coulomb material this threshold

M0+ | <c—tgp(e Tt + not..) (36)
is replaced by
[t} < c—tge(n?) (37)

where t; is the shear stress part of Tand n, is the normal stress associated to 7.

For a Drucker-Prager materia this threshold
Hs_ls;l + SS+H <c —tgrl)(s_ls;ln + s?m+...) (38)
is replaced by
s?]| < c—tgg(shm) (39)

where s; is the deviatoric part of ' and s/, is the pressure associated to 7°.
We obtain from Eq. (32)

0
) = 2n5 28 - (e} (40)
0 0
%) = AE2 (e~ (&) D-2nGt + ()] (a1

where (€;")° is the plastic part of €}*. Using a notation similar to Eq. (35), we denote by

(W) = 2] (&), @)
-¥/2
and
1 = b )+ (e 2oy, @)

Considering that the elastic part (e7;)° isequal to zero, it seems convenient to suppose that ()" is
equal to zero too (that is the deformation efl is small), and thus
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[ = 7 (@), (49

Note that this hypothesis is confirmed numerically.
So, we obtain from Eq. (32)

01, = A([ug —[ui]) (45)
O = (A+2p)([u3] ~[u3]) (46)

and integrating Eq. (3)
« Drucker-Prager condition: [u”] = —kppsn, kpp >0 (47)
« Mohr-Coulomb condition: [u"] = —kyct, kyc>0 (48)

Vector t corresponds to the direction of the shear stress.

The limit problem is quite different in this non-linear case. The plagtic yield and the plastic law
depend on aloca problem. Local problem means that they do not depend on the stress vector but on all
the components of the stress tensor in the thin layer (Eq. (47), EQ. (48)). On the one hand the thin layer
vanishes from a geometrica point of view (¢ — 0) and on the other hand, in the limit problem, we have
astrong coupling between the interface law (EQ. (45), Eq. (46)) and aproblem in the thin layer because
the local stress tensor is a priori unknown in Eq. (47), EqQ. (48).

3.2.5. Local problem

In order to determine the threshold and the direction of diding, we have to solve the following elastic-
plastic problem (here Drucker-Prager model, results obtained for Mohr-Coulomb model are of the same
kind) in the rectangle domain S x [-1/2,1/2]:

000, -0
DDf?yz

Ep = e"+é

D e e

9 = Alew) 9 +2u(e;)) (49)
dsl <c-tggs,

%If Isl <c—tgps,, then ¢ =0

0
Of |s| = c—tgg¢s, then €” = —ks

Due to the fact that the solution does not depend on the thickness, we have to solve only a “one-
dimensional problem”. We observe that we obtain a* pseudo-penalized-Coulomb” law of friction. Note
that if the direction of flow is equa to (or approximated by) x;, we find the classical Coulomb law of
friction.
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4. Numerical results
4.1. Geometry of the examples

In this section, we present three numerical tests. Thefirst oneisalong square bar bonded with arigid
obstacle. Thewidth of the bar is equal to 100 mm and the thickness of the thinlayer isequal to 1 mm. A
load is applied on the left part of the structure. The second example is the same bar with aload applied
both on the left part and on the top of the structure. The load on the top istwice smaller than theload on
the left part. These examples are treated considering that the thin layer obeys Drucker-Prager
behaviour. Details on the mechanical characteristics are given in Fig. 2.

The third example is a dovetail assembly. Due to the symmetry of the problem, only a half of the
structureis considered. A thin layer is bonded between the two elastic parts of the assembly. The layer
is oblique with regards to the loads. The loads are applied at the bottom of the structure. The dimensionsand

L Thickness (mm) 1
™ Substrata 200
- Young modulus (Gpa)
a) :: Substrata 0.3
L Poisson ratio
o Thin layer 30
Young modulus (Gpa)
7 7777777777777777777777 Thln layer 0'3
Poisson ratio
Cohesion (Mpa) 1
- * ‘ * ‘ ‘ ‘ * Friction angle (°) 30
el Dilatance angle (°) 0
. F; (N/mm) a) (3.6E?)*step
] b) (3.6E%)*step
b) —m F> (N/mm) a)0
— b) (1.8E)*step
—— Finite element 8-node
quadrangle

I777777777777777777777777; //l

Fig. 2 The first two examples. a bar bonded with a plane (the dimensions are in mm)

Thickness (mm) 0.5
Substrata 240
Young modulus (Gpa)
Substrata 0.38
. Poisson ratio
T Thin layer 30
\ Young modulus (Gpa)
Thin layer 0.3
Poisson ratio
Cohesion (Mpa) 1
Friction angle (°) 30
Dilatance angle (°) 0
F; (N/mm) (0.8E?)*step
Finite element 6-node
triangle

Fig. 3 The third example: a dovetail assembly (the dimensions are in mm)



142 F. Lebon and S. Rondl-Idrissi

the mechanical characteristicsare given in Fig. 3. Asfor the previous examples, the material in thethin
layer obeys Drucker-Prager € asto-plasticity.

The set of these three examples is quite general and representative of the mechanical phenomena
induced by non-linearities and the small characteristics of the thin layer. In the following section,
numerical results obtained using these three examples are presented and commented.

4.2. Numerical synthesis

4.2.1. Elastic domain

The computations are done using ANSY S software (ANSY S 2002). In the first part of the numerical
synthesis, we observe the results in the elastic domain (Fig. 4). Fig. 4(a) corresponds to example 1 at
step 13, Fig. 4(b) corresponds to example 2 at step 15 and Fig. 4(c) to example 3 at step 30. In these
figures, we represent the tangentia stress/tangential displacement ratio. As expected from the theory,
thisratioiscloseto u /g, where u isthe second Lamé coefficient, u = E/2(1+v) (Eq. (35)). We observe
that examples 1 and 2 give the same value because the thin layers have the same mechanical
characterigtics. A similar result is obtained for the normal components. In this case thelimit is equd to
(I + 2u)/e, with A = Ev/(1-v ?). These results establish the validity of our theory in the elastic case;
note that due to boundary effects, this theory is not valid at the extremities.

a) Step 13 - Ratio tangential stress (Mpa)/tangential b) Step 15 - Ratio tangential stress (Mpa)/tangential
displacement (mm) along the thin layer displacement (mm) along the thin layer
1,20E+04 1206404
1,10E+04 11oe+04
1,00E+04 1.00€+04
5. 9,00E+03 5 9.00E+03
"R 8,00E403 TR 800e03
© 700403 O e
6,00E+03 6,00€+03
5,00E+03 5,00€403
4,00E+03 4006503
400 450 500 550 600 650 700 750 800 400 4850 500 650 600 660 700 750 800
Nodes Nodes

c) Step 30 -Ratio tangential stress (Mpa)/tangential
displacement (mm) along the thin layer
3,50E+04

3,00E+04 i

2,50E+04

o12/uy

2,00E+04 4f.

1,50E+04

1,00E+04 T T T T - T T T
4 54 104 154 204 254 304 354 404

Nodes

Fig. 4 Tangentia stress (MPa)/tangential displacement (mm) ratio in the elastic domain along the interface
substratum/thin layer @) example 1 at step 13 b) example 2 at step 15 ¢) example 3 at step 30
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a) Step 22 - Ratio normal stress (Mpa) /normal b) Step 24 - Ratio normal stress (Mpa) /normal
displacement (mm) along the thin layer displacement (mm) along the thin layer
4,00E404 4,00E+04
3,50E404 3,50E+04 —
3,00E+04 / i N\ oy J00E+04 1 ! N\

~
2 \ N
Q =
© 2.50E+04 \N2,50E+04 \
2,00E+04 \ b 2,00E+04
1,50E+04 \ 1,50E+04

w 1,00E+04 - r v r T T r
1008404 400 450 500 550 600 650 700 750 800
400 450 500 550 600 650 700 750 800

Nodes Nodes

C)  Step 50 - Ratio normal stress (Mpa) /normal
displacement (mm) along the thin layer

7,00E+04

6,00E+04 // N
5,00E+04
S /
2 4,008404 / \
o~
© 300E+04
2,00E+04
1,00E404

4 54 104 154 204 254 304 354 404
Nodes

Fig. 5 Normal stress (MPa) /normal displacement (mm) ratio in the elastic-plastic domain along the interface
substratum/thin layer a) example 1 at step 22 b) example 2 at step 24 ¢) example 3 at step 50

4.2.2. Elastic-plastic domain

We consider now the elagtic-plastic domain (Fig. 5). In the elastic part, we find the previous results
again. The first two examples give a stiffness density of 33000 N/mm?® and the last example gives
64800 N/ mm?, these values correspond to (A+2u)/e (Eq. (35)). In the plastic zones (Eq. (39)), we do
not find a constant value. In the next sections, we analyse more precisely these zones. Note in the third
exampl e that the points of discontinuity correspond to a normal displacement and a normal stress close
to zero together: the thin layer is not crushing or pulling out on these nodes.

4.2.3. Plastic yield

We have shown in the theoretical part, that in the limit problem it is necessary to solve a local
problem coupled with the global one. In the local problem (Eq. (49)), there are two significant
quantities, which intervene: the plastic yield and the plastic flow. The aim of this section is to quantify
the level of each terminthe plastic yield. In fact, we want to analyseif it is possibleto replace the “rea”
plastic yield in which al the terms of the stress tensor are considered, by a“simplified” one in which
only the terms of the stress vector on the surface are taken into account.

The real plastic yield is defined by:

sl < c—tg¢ s, (50)

The simplified plastic yield is defined by:
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a) Step 22- Plastic Yield along the thin layer b) Step24- Plastic Yield along the thin layer
2,2 2,6
Simplified Drucker-Prager 2,41
2 —_ I Simplified Drucker-Prager
« g 22
Sie 2 , \
' °
§16 \\:(\\\> 4‘¢¢’/, g 1,8 \\:\\\é\\.~____"¢”ﬁf”"‘=‘=:§>\
e 216 AN
k7 7]
o ee rPrager o I Real Drucker-Prager l
1,2
12
1
1 400 450 500 550 600 650 700 750 800
400 450 500 550 600 650 700 750 800 Nodes
Nodes
C) Step 50- Plastic Yield along the thin layer

2,4

| Simplified Drucker-Prager l

7y

TN

/D] O\
[ |

4 54 104 154 204 254 304 354 404
Nodes

g
n

Plastic Yield (Mpa)
n

©

o

Fig. 6 Plastic yields along the substratum/thin layer interface @) example 1 at step 22 b) example 2 at step 24
c) example 3 at step 50

||S(si mp)|| sC- tg ¢ Sm(si mp) (51)

We compare the real plastic yield with the smplified one which use only the terms corresponding to
the stress vector. In the last formula (Eg. (51)), the stress tensor is replaced by o nldgn, where Ogisthe
symmetrical tensorial product (Simp IS the deviatoric part of (o n): (g n) and Sysmp)=tr (Ssmp))- Fig. 6
shows the differences between the two plastic yields for the three examples (only the right hand side of
Eq. (50) and Eq. (51) arerepresented). We observe avery low difference for the three examples and that
this difference does not modify the initiation of the plastification. The gap is maximum in the dastic
zone but generally remains lower than 5%. In the plastic zones, this gap decreases to 4% for the first
two examples and to 2% for the last one. Fig. 7 shows the relative difference of the two yields for
example 3 aong the surface of the thin layer at step 50. As aconclusion of this study, we have shown
that our simplification is valid and that it is possible to work only with the stress vector for the
computation of the plastic yield.

4.2.4. Plastic strain

The aim of this section is to quantify the level of each component of the plastic strain (Eq. (3), Eg.
(47), Eq. (48)). Fig. 8 showsfor the three examplesthat the components of the plastic strain vector that
ise’ and el are preponderant. ef; is very small compared to the two other components of the tensor
(Eq. (43), Eq. (44)). As an example, in the case of the dovetail assembly, for the node 16 (at the
beginning of the interface) at step 50, e = —3.64x107, ef) = 8.09x107° and e;;= —2.92x10°°. ef} isless
than 1% of the value of e and close to 4% of e, and thus can be neglected. We show in Fig. 9 the
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Step 50- Relative difference betw een the

plastic yields

0,03

0.02
g 001 TN
é 0 o~ N\
5 .00 __%IDA_ISA_ZM_ZL_)DA_NA
o
S -002 \
© -003 /
& -o0s (/

-0,.05

Nodes

Fig. 7 Relative difference (referred to the rea plagtic yield) between the plastic yields (real and simplified)
along the substratum/thin layer interface (example 3 at step 50)

Evolution of the plastic strain components b) Evolution of the plastic strain components
a 4,00E-05 8,00E-05
Strain12 . -
E-( 7,00E-05 Strain12 -
3.50E-05 Node710 / Node650 /’/
3,00E-05 Strain22 / 6.00E-05 Strain12 7
Strain12 Node10| 7' = 500605 Nodes70
< 250E-05 s £
£ " Node650 s
© Strain12 / 5 400E-05
B 200805 Node780 - 7]
@ Strain22 Strain22 £ 300e05 Strain12
£ 150805 Node780 Node650 @ Node690
o 7 o 200E-05
o 10005 SN ex ERPas
X 1,00E-05
SR exe "X_—.*.} - 0,00E+00 B
- -+
Lxl . ' - . * ¥ —e
0,00E400 e i = 2 21 22 23
1 14 16 18 T ) ) -1.00E-05
-5,00E-06 |
Step Straint1 }/
C) Evolution of the plastic strain components

4,00E-04
Strain12
3,50E-04 Node16 / 4
Strain22
3,00E-04 Node16

4

25004 Strain22
Strain12 Node50
2,00E:04 Nodeg0
i Ld
150504 Strain22

1,00E-04

Plastic Strain

5,00E-05 -~

»
25 30 35 fl‘ﬂf f T f45 r5

Fig. 8 Evolution of the plastic strain components for various nodes of substratum/thin layer interface: a)
example 1, b) example 2, c) example 3

0,00E+00

-5,00E-05

differences of the Von Mises norm of the “red” plastic strain and the “simplified” one. In the smplified
version the plastic strain tensor e is replaced by e n 0. The gap for the third exampleis close to 1%.

4.3. Conclusion of the numerical synthesis

As aconclusion, the numerical results obtained in this paper show that the local problem introduced
in the theoretical study can be neglected, that isto say that the interface law can be written only in terms
of stress vector. We obtain a compliance law (regularized Coulomb law), well known in the literature
(Fig. 10).
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Step 50: Equivalent plastic strain along the thin layer

5,0E-04
4,5E-04
4,0E-04
3,5E-04
3,0E-04
2,5E-04
2,0E-04
1,5E-04
1,0E-04
5,0E-05 _/\
0,0E+00

0 100 200 300 400

Nodes

Fig. 9 Equivalent plastic strain along the substratum/thin layer interface: example 3 at step 50

Real plasticstrain

— Simplified plastic strain

Equivalent plastic strain

A
c.n

>
[u]

Fig. 10 The limit law: compliance law of contact

5. Conclusions

In this paper, we have analysed theoretically and numerically the asymptotic behaviour of asoft thin
layer obeying to a non-associated elastic-plastic law (Drucker-Prager or Mohr-Coulomb) bonded with
elagtic solids; the results obtained by these two models are of the same kind. Theoretically, we have
shown that when the mechanical and geometrical characteristics of the layer tend to zero, an interface
law is obtained. Thislaw couples alocal problem with a global one. The numerical study has permitted
to quantify the influence of theloca problem and has shown that thislocal problem can be neglected. A
classical law of compliance has been obtained. Numerical results obtained are representative of all non-
associated elastic-plastic models.

A perspective of thiswork is to introduce damage and cracks in the thin layer in order to obtain laws
which take into account the rupture between the layer and the substrata. These laws can be used to
model the gluing of mechanical structures, the fibber/matrix interface in composites, the mortar/brick
interface for masonries or the composite/structure interface in reinforcement techniques. Another
important point is the implementation of these laws in a finite element computational software.
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