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Abstract. The paper derives, validates and illustrates the application of GBT-based formulae to esti
distortional critical lengths and bifurcation stress resultants in cold-formed steel rack-section columns, b
and beam-columns with arbitrarily inclined mid-stiffeners and four support conditions. After a brief review
the Generalised Beam Theory (GBT) basics, the main concepts and procedures employed to obta
formulae are addressed. Then, the GBT-based estimates are compared with exact results and, when p
also with values yielded by formulae due to Lau and Hancock, Hancock and Teng et al. A few remarks on
novel aspects of the rack-section beam-column distortional buckling behaviour, unveiled by the GBT-b
approach, are also included.

Key words: distortional buckling; distortional buckling formulae; generalised beam theory (GBT); rac
section members; flexural end support conditions; warping end support conditions.

1. Introduction

A distortional buckling mode was first reported by Van der Maas (1954), in the context of thin-w
hat-section columns. He described it as “a distinct kind of ‘local’ buckling mode configura
characterised by the occurrence of simultaneous web flexural deformations and lateral movem
the flanges and stiffeners”. Nowadays, distortional buckling designates a specific type of bifurcatio
instability: the member axis remains undeformed and the in-plane cross-section deformations in
(i) moderate plate bending and (ii) fold line motions. The latter induce cross-section distortion and are
the “trademark” of this buckling phenomenon. Figs. 1(a)-(b) show the geometry and distortional bu
mode (DM) shapes of rack-section1 columns and beams.

Experimental analyses and numerical simulations performed in thin-walled members with single-
wall webs clearly showed that (i) relevant flexural deformations appear only in the web and (
compressed flange-stiffener assemblies remain practically undeformed - they just rotate about th
flange longitudinal edge (see Fig. 1(b)). Based on this evidence, Lau & Hancock (1987) unveil
similarity between (i) the thin-walled member distortional buckling behaviour and (ii) the flexu
torsional buckling behaviour of the (uniformly compressed) structural model depicted in Fig. 1)

†Research Assistant and Ph.D Candidate
‡Associate Professor
1Designation stemming from the frequent use of these cold-formed steel profiles in storage racks (Hancock 1
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 and (ii)
(“flange-stiffener strut” elastically supported along the web-flange edge). Subsequently, (i) Lau & Ha
(1987), for C, Z and rack-section columns, (ii) Hancock (1997), for C and Z-section beams, an
Bambach et al. (1998), for C and Z-section columns and beams with double-lip stiffeners, used
model to develop formulae to estimate distortional buckling stresses in columns and beams with pinned
and free-to-warp end sections. Some of these formulae are now routinely employed and a few have
already been included in the Australia/New Zealand cold-formed steel code (SAA 1996). Sinc
and Hancock’s approach breaks down for members with very slender webs, Schafer (1997) and
& Jiang (1998) proposed slight modifications, both for columns and beams. Recently, Tenget al.
(2003) extended the application of Lau & Hancock’s model to C and rack-section beam-co
(bending in the plane of symmetry only).

Very recently, the authors used Generalized Beam Theory (GBT) (Schardt 1989, 1994a) to deri
analytical distortional buckling formulae for C and Z-section cold-formed steel members (Silves
Camotim 2003)2. It seems fair to regard them as “superior” to the ones proposed by Lau & Han
(1987), Hancock (1997), Schafer (1997) and Teng et al. (2003), in the sense that they (i) consisten
yield equally or more accurate estimates and (ii) can be applied to a wider range of members (a
formulae apply only to members with pinned and free-to-warp end sections). However, sym
manipulation limitations preclude using the derivation technique previously employed to o
formulae for cross-sections with more than five walls, such as rack-sections (seven walls). In order
overcome this five-wall limitation, a slightly different technique was recently developed (Silvestre et al.
2002) and applied to rack-section columns and beams with pinned and free-to-warp or fixe
warping-prevented end sections. Since it requires the numerical solution of an auxiliary standard
eigenvalue problem, it was termed as “quasi-analytical”.

The objective of this work is to present the derivation, validate and illustrate the application of GBT
distortional buckling formulae for cold-formed steel rack-section columns (uniform compress
beams (pure bending) and beam-columns (combination of both) with arbitrarily inclined mid-stiff
(see Fig. 1(a)). Four support conditions are dealt with, namely members with (i) both end se
pinned and free-to-warp, (ii) both end sections fixed and warping-prevented, (iii) one end section
and warping-prevented and the other pinned and free-to-warp and (iv) one end section fixe
warping-prevented and the other “sliding” and warping-prevented. The formulae are still “quasi-anal
i.e., require the numerical solution of an auxiliary eigenvalue problem, which is analytically defined in
terms of the member cross-section dimensions. In order to (i) assess the accuracy and validity
illustrate the application and capabilities of the proposed distortional buckling formulae, numerical

Fig. 1 Rack-section (a) geometry, (b) column and beam DM configurations; (c) Lau & Hancock’s (c1) model
and (c2) column and beam web deformed configurations

2Note that Schardt himself exploited the use of GBT to derive distortional buckling formulae (Schardt 1994b).
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results are presented and discussed. The GBT-based estimates are compared with (i) exact re
for pinned and free-to-warp members only, also with (ii) values yielded by the formulae due to L
Hancock (1987), Hancock (1997) and Teng et al. (2003). The paper also includes a few remarks 
novel aspects of the distortional buckling behaviour of rack-section beam-columns, unveiled 
present GBT-based approach.

2. Brief GBT outline

The application of second order GBT (Schardt 1989, Davies et al. 1994, Silvestre & Camotim
2002a,b) leads to the system of equilibrium equations (one per deformation mode)

(1)

where (i) x is the axial coordinate, (ii) function φj (x) provides the longitudinal variation of the modej
amplitude, (iii) E and G are Young’s and shear moduli and (iv) (·), x=d(·)/dx. In each equation, (i)
the first three terms concern the member 1st order behaviour and (ii) the last one deals with the nd

order effects (interaction between cross-section normal stresses and out-plane deformation
tensor components Cij (warping constant), Dij (torsion constant), Bij (transverse bending stiffness
and Xkij (geometric stiffness related to stress resultant Wk), related to modes i and j, are given by

Wk = −ECikφk,xx (2)

where (i) t and K are the wall thickness and bending stiffness (K = Et3/12(1-v2)), (ii) s is the cross-
section mid-line coordinate, (iii) (·),s = d(·)/ds and (iv) u, v and w are warping, membrane and flexura
displacements along x, s and z (see Fig. 2).

A GBT stability analysis comprises a cross-section and a member analysis: while the former identifies the
cross-section deformation modes and evaluates the modal properties (Cij, Dij, Bij, Xkij), the latter
establishes and solves the member equilibrium equations and boundary conditions, on the basis of
cross-section geometry, material properties, length, support conditions and applied load.

ECij φj xxxx, GDijφj xx, Bij φj WkXkijφj xx,+ + 0=–

Cij t uiuj sd
b
∫= Dij

1
3
---t

3
wi s, wj s, sd

b
∫= Bij K wi ss, wj ss, sd

b
∫=

Kkij
t

Ckk

------- uk
b
∫ vivj wiwj+( )ds=

Fig. 2 Local coordinate system and displacement components
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2.1. Cross-section analysis

The performance of a GBT the cross-section analysis, for a cross-section with n walls and n+1 nodes
(n=7 for the a rack-section - see Fig. 3(a)), involves the following operations:

(i) Obtain displacement functions u(s), v(s) and w(s), by imposing unit warping displacements i
each node (uk = −1, k = 1…n+1 − see Fig. 3(b)), which leads to the identification of n+1 “warping
functions” uk(s), varying linearly between consecutive nodes.

(ii) Using Vlasov’s null shear strain assumption (γxs
M= 0) and the force method to obtain the cross-sect

deformed configurations due to the uk(s) - constant vk(s), linear uk(s) and cubic wk(s). Compatibility
between vk(s) and wk(s) is ensured.

(iii) Calculate matrices C and B (see Eqs. (2)), which are fully populated (i.e., Eqs. (1) are highly
coupled). Their components have no obvious physical meaning, even for trivial phenome

(iv) Diagonalise the above matrices, by solving the eigenvalue problem

(α = 1,..., n+1) (3)

operation which comprises several stages and constitutes a key GBT feature (Schardt 1989,
Silvestre & Camotim 2002a,b). One is led to n+1 eigenvectors of the form

uα = {u1 u2 ... ... un un+1}
T (4)

one per deformation mode (see Fig. 4(a)). The uα components are the axial (warping) displaceme
nodal values of mode α (see Fig. 4(b)).

(v) Calculate the axial (uk) and transverse (vk, wk) displacement nodal values associated with ea
deformation mode.

Since rack-sections have 8 nodes, they exhibit 8 orthogonal deformation modes: (i) the first four (1
extension; 2 and 3 - major and minor axis bending; 4 - torsion) are rigid-body motions, for which Bkk= 0
(wk,ss= 0 - see 2)), while (ii) the remaining four (modes 5 - 8), termed distortional modes, involve cross
section deformation with non-null transverse curvatures (wk,ss≠ 0), i.e., Bkk≠ 0.

B λαC–( )uα 0=

Fig. 3 Rack-section (a) discretisation and (b) elementary warping functions uk(s) (θ = 90o)
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2.2. Member (linear stability) analysis

After incorporating the (i) cross-section modal properties Cij, Bij, Dij, Xkij, (ii) material constants E, v,
G, (iii) quantities related to the applied loads (Wk) and (iv) member length and support conditions in
Eqs. (1), the n-dimension eigenvalue problem providing the member stability behaviour (expressed 
terms of deformation mode amplitudes φj(x)) is totally defined. A major advantage of the GB
approach is the possibility of performing “approximate (but accurate) stability analyses”: one s
only the “subsystem” of Eqs. (1) corresponding to a few selected deformation modes. This u
feature is essential to derive the distortional buckling formulae.

3. Derivation of distortional buckling formulae

The observation of Fig. 4(a) shows that the rack-section distortional deformation modes c
divided into two groups: (i) modes 5 and 6, involving the distortion of the compressed three
flange-stiffener assemblies (rotation about the web-flange edge and plate bending only in the w
(ii) modes 7 and 8, involving the distortion of only the compressed two-lip stiffeners (rotation abo
flange-stiffener and plate bending in the web and compressed flanges). Since it has been rec
that, in general, the latter group plays a negligible role in the distortional buckling behaviour of rack
section members (Bambach et al. 19983), this work addresses only DM combining deformation mod
5 and 6, from now on designated as follows: (i) mode 5 by S (web bends in single curvature) and (ii)
mode 6 by D (web bends in double curvature).

Modes S and D are associated with (i) mechanical properties CS, BS, DS and CD, BD, DD and,
depending on the applied load, also with (ii) one or more geometric stiffness properties XS, XD, XS

II, XD
II,

XSD
I . The amplitude functions φS (x) and φD (x) provide the cross-section displacement variation alo

the member length. If one is to derive fully analytical formulae, the above properties must be exp
in terms of the cross-section geometry (bw, bf, bs, bl, θ , t) and material constants (E, ν).

The derivation of the GBT-based distortional buckling formulae is presented in two stage
deriving the formulae in terms of the distortional properties (this section) and (ii) determining ana
expressions to calculate these properties (next section). First, one must recognise that the DM 

3These authors designated this type of DM as “flange-lip DM” and stated that it is never likely to be critic

Fig. 4 GBT deformation modes: (a) in-plane configurations (b) warping displacements
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any beam-column (bending about an arbitrary neutral axis) can always be closely approximated b
combination of modes S and D, shown in Fig. 5(a). Thus, even if the formulae are presented se
for columns, beams and beam-columns, the first two are to be regarded as special cases of the third
(note that the column DM shape involves only mode S - see Fig. 1(b)).

Because all GBT properties are evaluated w.r.t. the cross-section central principal axes, one s
defining a consistent notation. Since, for the most common rack-section dimensions, the major I-axis)
and minor (II-axis) axes are parallel to the flanges and web, respectively, one adopts the follo
convention: I-axis and II-axis always stand for the symmetry and non-symmetry axes, regardless of the
cross-section dimensions. Moreover, to avoid unnecessary repetitions, one denotes “members bending
about the I-axis (II-axis)” by I-axis (II-axis) members. Moreover, xG (see Fig. 5(b)) is the distance from
the cross-section centroid G to the web.

Denoting the beam-column (i) bifurcation stress parameter by λb and (ii) compressive load and
bending moment reference values by P and M, bifurcation occurs when the applied stress resulta
reach the values Pb = λbP and Mb = λbM (columns and beams are particular cases, for which M=0 and
P=0). Then, the GBT equation subsystem for modes S and D reads (see Eqs. (1))

(5)

where the mode S and D properties, further addressed in section 4., are evaluated by means of

(6)

E
CS 0

0 CD

φS xxxx,

φD xxxx, 
 
 

⋅ G
CS 0

0 CD

φS xx,

φD xx, 
 
 

⋅–
BS 0

0 BD

φS

φD 
 
 

++

+λb P
XS 0

0 XD

M αcos
0 XSD

I

XSD
I 0

Msinα XS
II 0

0 XD
II

+ +
 
 
 
  φS xx,

φD xx, 
 
 

0=

CS t uS
2 sd

b
∫= DS

1
3
---t3 wS s,

2 sd
b
∫= BS K wS ss,

2 sd
b
∫=

CD t uD
2 sd

b
∫= DD

1
3
---t3 wD s,

2 sd
b
∫= BD K wD ss,

2 sd
b
∫=

XS
t
A
--- vS

2 wS
2+( ) sd

b
∫= XD

t
A
--- vD

2 wD
2+( ) sd

b
∫=

XS
II t

I II

---- uII vS
2 wS

2+( ) sd
b

∫= XD
II t

I II

---- uII vD
2 wD

2+( ) sd
b
∫=

XSD
I t

I I

--- uI vSvD wSwD+( ) sd
b

∫=

Fig. 5 (a) GBT modes required to approximate an arbitrary beam-column DM shape (b) Bending abob1)
an arbitrary neutral axis, (b2) the I-axis and (b2) the II-axis
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Once the functions φS(x) and φD(x) are known, it is possible to obtain formulae to provide bifurcati
stress estimates. One writes φS(x) and φD(x) in the form

(7)

where (i) aS and aD are deformation mode amplitudes and (ii) φ (x) is a unit shape function
describing (exactly or approximately) their longitudinal variation. Introducing Eq. (7) in Eq. (5)
applying Galerkin’s method, one is led to the eigenvalue problem

(8)

with

(9)

(10)

where α is the angle between the applied bending moment vector and the cross-section I-axis (see
Fig. 5(b)). Moreover, parameters µB and µC are given by (note the change of variable y = πx / L).

(11)

and depend only on the characteristics of function φ (y), i.e., the member support conditions an
half-wave number n. Expressions for µB and µC are given in section 5., for four support conditions.

Solving Eqs. (8) (eigenvalue problem) analytically leads to the λb estimate (in terms of L)

(12)

where
   (13)

and the plus (minus) sign holds for η2<0 (>0). After knowing λb, one readily calculates the buckling
load Pb=λbP and moment components Mb

I=λb M cosα and Mb
II=λb M sinα. The eigenvector related

to λb provides the degrees of participation of modes S and D in the beam-column DM:

aD = 1 − aS (14)

The critical length Lcr, corresponding to the minimum λb (λb.min), is the relevant root of dλb/dL=0.
However, since function λb(L) is highly non linear (see Eq. (12)), the exact value of this root canno
determined analytically. However, it was found that expression

φS x( ) aSφ x( )= φD x( ) aDφ x( )=

KS λbPXS
*–   λbMcosαXSD

I
–

λbMcosαXSD
I

– KD λbPXD
*–

aS

aD 
 
  0

0 
 
 

=

KS ECS
π
L
--- 

 
2

µC GDS BS
L
π
--- 

 
2

µB+ += KD ECD
π
L
--- 

 
2

µC GDD BD
L
π
--- 

 
2

µB+ +=

XS
* PXS M sin αXS

II
+= XD

* PXD M sin αXD
II

+=

µB

φ2
dy

0

π

∫

φ,y
2
dy

0

π

∫
--------------= µC

φ,yy
2

dy
0

π

∫

φ,y
2
dy

0

π

∫
----------------=

λb

η1

2η2

--------
η1

2η2

-------- 
 

2 KSKD

η2

-------------–±=

η1 KSXD
* KDXS

*+= η2 XS
*  XD

* McosαXSD
I( )2

–=

aS
1

1
Mb

I XSD
I

KD PbXD
*–

------------------------–

--------------------------------=
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(15)

estimates Lcr quite accurately (errors seldom above 2%), provided that the normalisation condit

(16)

is used to determine P and M. Then, introducing Eq. (15) in Eq. (12), one readily obtains λb.min.
If P=1 and M=0, the above expressions yield column Lcr and Pb.min (=λb.min) estimates. Since Eqs. (8)

are uncoupled and only the first one (mode S) is relevant and Eqs. (12) and (15) become

 (17)

where KS.cr=KS(Lcr) (see Eq. (9)). They are much simpler than their beam-column counterparts.
If  P=0 and  M=1, on the other hand, one obtains beam Lcr and Mb.min (=λb.min) estimates. Although

the formulae apply to bending about an arbitrary neutral axis (Fig. 5(b1)), rack-section beams are
mostly subjected to uniaxial bending, a much simpler case. Then, one has:

(i) In I-axis beams (Fig. 5(b2) - α=0), Eqs. (12) and (15) become

(18)

where KS.cr=KS(Lcr) and KD.cr=KD(Lcr) (see Eq. (9)). The estimates yielded by these two express
can be directly compared with those provided by Hancock (1997).

(ii) In II-axis beams (Fig. 5(b3) - α = -π / 2), the DM shape is symmetric. Thus, Eqs. (8) are uncoupled
and only the first one matters (as in columns). Then, Eqs. (12) and (15) become

(19)

and their estimates can be directly compared with those provided by Teng et al. (2003).
Finally, since the tension flange of I-axis beams (case (ii) in Fig. 5(b2)) practically doesn’t move (see

Fig. 1(b2)), one anticipates very close aS and aD values (≈ 0.50 each). Since a beam applied stress
diagram varies between the I-axis and II-axis bending ones, one can say that the aD and aS values are
bounded by (i) 0 and ≈ 0.50 and (ii) 1 and ≈ 0.50, respectively. Moreover, since a beam-column stress
diagram varies between the column and a beam ones, one can also say that aD is either (i) 0 (II-axis
beam-columns) or (ii) bounded by 0 and ≈ 0.50aS (I-axis beam-columns).

4. Cross-section distortional properties

In order to derive expressions for the cross-section mechanical and geometrical properties, re
modes S and D, one must know the relevant cross-section displacements and transverse bending

Lcr π
E2CS

BS

------------
CS

BS

------P
CD

BD

------cos2α
CS

BS

------sin2α+ 
 M+8

µC

µB

------4=

P M 1=+

Lcr π ECS

BS

---------4
µC

µB

------4= Pb.min

KS.cr

XS

----------
2 ECSBS µCµB GDS+

XS

--------------------------------------------------------= =

Lcr π E2CSCD

BSBD

-------------------8
µC

µB

------4= Mb.min
KS.crKD.cr

XSD
I( )

2
----------------------=

Lcr π ECS

BS

---------4
µC

µB

------4= Mb.min

KS.cr

XS
II

----------
2 ECSBS µCµB GDS+

XS
II

--------------------------------------------------------= =
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moments. The expressions providing the warping (uα(s)), membrane (vα(s)) and flexural (wα(s))
displacements in an arbitrary wall (element) α (α = 1…7, sα ≤ s ≤ sα+1) read (see Fig. 6(a))

(20)

(21)

where (i) bα and K are the wall width and plate bending stiffness and (ii) the shape functions Ψi(ξ)
(ξ = (s - sα) / bα, bα = sα+1 - sα) are depicted in Fig. 6(b).

Eqs. (20)-(21) show that uα, vα and wα are linear, constant and cubic functions of s, fully defined by
(i) nodal (i1) warping displacements uα, uα+1 and (i2) transverse moments mα, mα+1, and (ii) wall chord
(centre-line) (ii1) membrane displacements vα and (ii2) flexural displacements wα and (ii3) rotations ϕϕϕϕα.
For modes S and D, these values are components of vectors (α = 1…7).

(22)

(23)

(24)

where the value of γ enables the distinction between modes S (γ = 1) and D (γ = -1). Fig. 7 provides the
physical meaning of the above modal vector components, for the cross-section discretisation
in Fig. 3(a). Since modes S and D exhibit either symmetric or anti-symmetric displacement and
moment diagrams, the unknowns in Eqs. (22)-(24) can be reduced accordingly.

Before determining the mode S and D mechanical properties, on must solve, numerically, the
auxiliary (standard) eigenvalue problem defined by Eq. (3)4, a procedure responsible for the formula
“quasi-analytical” character. However, one must point out that this eigenvalue problem is analytically
defined in annex (the explicit expressions provided make it possible to determine all matrix components)
solution involves the following steps:

uα s( ) 1
2
---uα Ψ1 Ψ2–( ) 1

2
---uα 1+ Ψ1 Ψ2+( )+= vα s( ) vαΨ1=

wα s( ) wαΨ1
1
2
---bαϕϕϕϕαΨ2

1
3K
-------bα

2 mαΨ3 mα 1+ Ψ4+( )–+=

u γ   u2   u3   u4   u4γ   u3γ   u2γ   1{ }T
= m 0   0   m3   m4   m4γ   m3γ   0   0{ }T

=

v vl   vs   vf   vw   v– fγ   v– sγ   v– lγ{ }T
= w wl   ws   wf   ww   wfγ   wsγ   wlγ{ }T

=

ϕϕϕϕ ϕl   ϕs   ϕf   ϕw   ϕ– fγ   ϕ– sγ   ϕ– lγ{ }T
=

4In 5 wall members, this is done analytically, thus leading to “fully analytical” formulae (Silvestre & Camotim 2003).

Fig. 6 Wall element α (a) deformed configuration wα(s) and (b) shape functions Ψi(ξ)
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s is
(I) Determine the geometrical and mechanical parameters

 (25)

(II) Using the components of F and , given in annex, determine matrices

 (26)

(III)Using the components of C, also given in annex, solve the 8th-order eigenvalue problem

(B − λC)u = 0 (27)

 which has four null eigenvalues (corresponding to rigid-body deformation modes).
(IV)Determine eigenvectors uS and uD, corresponding to the two smallest non-null eigenvalues

(0 < λS< λD), and write their components (nodal warping displacements) as in Eq. (221).
(V) Evaluate vectors mS and mD, by means of

ms = M  us       mD = M  uD (28)

 and write their components (nodal transverse bending moments) as in Eq. (222).
After having the uS, uD, mS, mD components, the evaluation of the modal mechanical propertie

fully analytical. The code MAPLE (WMS 2001) was used to derive expressions for vl, vs, vf, vw, ϕl, ϕs, ϕf,
ϕw, wl, ws, wf, ww, involving the (i) uS, uD, mS, mD components, (ii) cross-section dimensions bw, bf, bs,

αf

bf

bw

-----= αs

bs

bw

-----= αl

bl

bw

-----= K
Et3

12 1 v2–( )
-----------------------=

w··

M F 1– w··–= B w··TM–=

Fig. 7 Distributions/diagrams of u, m, ϕϕϕϕ and w for modes (a) S and (b) D
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bl, θ, t and (iii) material constants E, ν. The derivation comprises five steps:
(VI) Evaluate the wall chord membrane displacements vf.S, vw.S, vs.S, vl.S and vf.D, vw.D, vs.D, vl.D

(29)

(VII) Evaluate the wall chord rotations ϕf.S, ϕw.S, ϕs.S, ϕl.S and ϕf.D, ϕw.D, ϕs.D, ϕl.D

(30)

(VIII) Evaluate the wall chord flexural displacements wf.S, ww.S, ws.S, wl.S and wf.D, ww.D, ws.D, wl.D

(31)

(IX) Evaluate the cross-section modal mechanical properties CS, BS, DS and CD, BD, DD

(32)

(X)  Evaluate the cross-section geometric stiffness components

(33)

(X.1) For the individual modes S and D: XS, XD, XS
II  and XD

II

νw

u4 1 γ–( )
bw

--------------------= νf

u3 u4–
αf bw

---------------= νs

u2 u3–
αsbw

---------------= νl

γ u2–
αlbw
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(X.2) For the coupling between modes S and D: XSD
I

Table 1 shows the values of (i) the pre-buckling nodal axial displacements U1-U4 and (ii) the
associated cross-section C property, equal to A, II or III (cross-sectional area, major and minor mome
of inertia) for compression, major or minor axis bending. Recall that (i) the pre-buckling 
displacements are symmetric (U8=U1, U7=U2, U6=U3, U5=U4 - columns and II-axis beams: step X.1) or
anti-symmetric (U8=-U1, U7=-U2, U6=-U3, U5=-U4 - I-axis beams: step X.2) (see Fig. 8) and that (ii)
beam-column always concerns two (compression + uniaxial bending) or three (compression + 
bending) diagrams. Note also that the complexity of Eqs. (33) is largely due to their genera
columns, for instance, because one has U1=U2=U3=U 4=1, all (Ui-Uj) terms vanish and Eqs. (33
become much simpler.

X5 1260K2bw
2 αf

3ϕf
2 U4 U3+( ) αs

3ϕs
2 U3 U2+( ) αl

3ϕl
2 U2 U1+( ) ϕw

2 U4+ + +[ ]=

X6 84Kbw
2 15 1 γ+( ) wwm4U4 2α f

3wf m4 8U4 7U3+( )+ +[=

+2αf
3wf m3 7U4 8U3+( ) 2αs

3wsm3 8U3 7U2+( )+ ]

X1 15120K2 α f vf.Svf.D wf.Swf.D+( ) U4 U3+( )[ αs vs.Svs.D ws.Sws.D+( ) U3 U2+( )+ +=
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Table 1 Steps X: nodal pre-buckling axial displacements and cross-section C property

Step X U4 U3 U2 U1 C

X.1
XS, XD 1 1 1 1 A

XS
II, XD

II xG xG − αf bw U3−αs bw cosθ U2−αl bw III

X.2 XS D
I ½ bw ½ bw ½ bw−αs bw sinθ ½ bw−αs bw sinθ II
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Finally, Table 2 shows the geometric stiffness components. Note that columns and II-axis beams and
beam-columns need only mode S properties. In all other cases, both S and D properties are r

5. End support conditions

As mentioned earlier, four end support conditions are considered in this work: (i) pinned and fr
warp end sections (PFW), (ii) fixed and warping-prevented end sections (FWP), (iii) one FWP s
and the other PFW and (iv) one FWP end section and the other “sliding-fixed” and warping-prev
(SWP). The following trigonometric approximation functions φ (y), which (i) satisfy all end support
conditions and (ii) were successful used by Bradford & Azhari (1995), in the context of finite strip
linear stability analyses, have been adopted:

(i) PFW members (in this case, the φ (y) provide the exact solution of Eqs. (1))

(34)

(ii) FWP members

(35)

(iii) FWP-PFW

(36)

(iv) FWP-SWP members

(37)

Introducing Eqs. (34)-(37) in Eq. (11) and integrating w.r.t. y leads to (n is the half-wave number):

φ y( ) sin ny( )=

φ y( ) sin ny( )sin y( )=

φ y( ) sin n 1+( )y[ ] n 1+
n

-----------+ sin ny( )=

φ y( ) sin n
1
2
---– 

 y sin
1
2
---y 

 =

Fig. 8 Nodal pre-buckling axial displacements: (a) column (b) I-axis beam (c) II-axis beam

Table 2 Column, beam and beam-column geometric stiffness components

Columns
Beams Beam-columns

I-axis II-axis Any axis I-axis II-axis Any axis

XS XS  D
I XS

II XSD
I ,XS

II, XD
II XS,  XD,  XSD

I XS, XS
II XS, XD, XSD

I , XS
II, XD

II
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(i) PFW members

 (38)

(ii) FWP members

(39)

(iii) FWP-PFW members

(40)

(iv) FWP-SWP members

(41)

Finally, recall that the formulae due to Lau & Hancock (1987), Hancock (1997) and Teng et al. (2003)
apply to PFW members only. Moreover, Davies & Jiang (1998) also derived GBT-based express
similar to Eqs. (17) and incorporating Eq. (38), for PFW columns. However, since no expressions a
given for CS, DS, BS, XS, their “analytical character” seems quite debatable.

6. A few remarks

After inserting the mechanical properties, geometric stiffness components and end support parameters, the
formulae derived in section 3. provide distortional buckling stress resultant estimates (Pb and/or Mb) and
also bifurcation stress diagrams, defined by (compression is positive)

(42)

Knowing the distortional buckling stress resultant, one readily (i) calculates the participation factors
of modes S and D (aS and aD) and (ii) characterises the cross-section deformed configuration. Ind
multiplying aS and aD by the corresponding wall displacement fields (see Eqs. (20)-(21) and Fi
leads to the cross-section deformation related to the distortional buckling mode.

The derived GBT-based formulae also unveil several novel and useful aspects concerning distortiona
buckling of II-axis beam-columns (bending in the symmetry plane):

(i) Lcr is independent of the axial force/bending moment combination5. Indeed, if α = -π / 2 Eq. (15)
is identical to Eqs. (171) and (191) for any P - M combination. This result remains practically tru
also for exact Lcr values6.

(ii) The distortional buckling parameter λb (Eq. (12)), related to a given combination of axial loa
and bending moment, can be expressed exclusively in terms of the column buckling load Pb and

µB
1

n2
-----= µC n2=

µB
3 if  n 1=( )  or  2 if  n 2≥( )

n 1–( )2 n 1+( )2
+

--------------------------------------------------------------= µC
n 1–( )4 n 1+( )4+

n 1–( )2 n 1+( )2
+

-----------------------------------------=

µB
n 1+( )2 n2+

2n2 n 1+( )2
----------------------------= µC

1
2
--- n 1+( )2 n2+[ ]=

µB
3 if  n 1=( )  or  2 if  n 2≥( )

n 1–( )2 n2+
--------------------------------------------------------------= µC

2n4 4n–
3

6n2 4n– 1++

n 1–( )2 n2+
-------------------------------------------------------=

σb

Pb

A
-----

M b
I

I I

-------xII

M b
II

I II

-------xI+–=

5On the basis of a large number of finite strip analyses, Teng et al. (2003) reached a similar conclusion.
6A minor variation may occur if the exact DM configuration includes small contributions from other GBT modes
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beam buckling moment MII
b.  In fact, for α = -π / 2, Eq. (12) may be rewritten as

(43)

and corresponds to a linear variation between Pb and MII
b .

It is still worth noting that the GBT-based formulae incorporate genuine folded-plate theory, a feature
which (i) accounts for their accuracy and generality and (ii) makes it possible to clarify (overcome) th
assumptions (limitations) of the other distortional buckling formulae. Indeed:

(i) All formulae based on Lau and Hancock’s model involve estimating the elastic lateral restraint pr
by the web to the “flange-stiffener assembly” (kx - see Fig. 1(c1)). Since it is not possible to find exact kx

values, the two extreme cases kx = 0 and kx→∞ have been dealt with and the former was adopted. The
GBT-based formulae confirm that kx= 0 is a correct assumption, since it is shown that the web-flange
corner moves by (i1) ww.S (columns) and (i2) aSww.S+½aDbwϕw.D (I-axis beams) - see Fig. 7.

(ii) Numerical simulations provided evidence that, besides rigid-body motions, the compr
flanges may also experience non-negligible flexural deformations if the width ratio bf / bw is large
enough (Lau & Hancock 1987 and Teng et al. 2003). Thus, all the formulae based on Lau a
Hancock’s model need to include an adjustment factor a, determined a priori and accounting for
the flange flexural deformations. As shown in Fig. 7, the GBT-based formulae automa
incorporate this effect (flange components of mS and mD).

(iii) Bambach et al. (1998) showed, in the context of C-sections with return lips (similar to ra
sections), that accurate I-axis beam buckling stress estimates require the consideration of
stiffener stress gradient. In order to improve the formulae derived by Hancock (1997), assum
the stiffeners under uniform stress, they proposed the inclusion of an adjustment factor. In the
case of the GBT-based formulae, which already incorporate the effect the stress gradients
in every cross-section wall, this issue is automatically accounted for.

7. Application

First, for illustrative purposes, the application of the distortional buckling formulae to members with
PFW support conditions is described in great detail. All members have the same geometry and 
subjected to (i) uniform compression, (ii) uniaxial bending, (iii) biaxial bending and (iv) combina
of the above. Then, in order to show the versatility of the formulae, they are also applied to members
with FWP support conditions. In both cases, (i) all intermediate steps and values are reported 
estimates are compared with “exact” (numerical) results. Since there exist some qualitative differe
between the distortional buckling results presented for PFW members and members with other 
conditions (FWP, FWP-PFW or FWP-SWP), note that:

(i) All PFW member σb estimates are minimum values, i.e., (i1) concern members with lengths
L=nLcr, (Lcr yielded by Eq. (15)) and (i2) correspond to critical buckling modes with n half-
waves (n=1 if L=Lcr). This is illustrated in Fig. 9(a): the buckling curves for individual mode
with different n values exhibit equally-spaced identical minimum values σb.min. Moreover, the
“all mode curve” is just a superposition of the individual curve lower parts. This means tha
critical DM always coincides with an individual mode.

(ii) In FWP, FWP-PFW or FWP-SWP members, on the other hand, the individual mode c

Pλb

Pb

---------
Mλb

Mb
II

----------+ 1=
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exhibit equally-spaced but different minimum values σb.min.n (value decreasing with n), as
illustrated in Fig. 9(b) (FWP member). Moreover, the all mode curve lies below 
superposition of the individual curve lower parts, which means that the critical DM often
combines more than one individual mode. Thus, it makes no sense to talk about “the minimu
bifurcation stress value” and the formulae are used to estimate distortional bifurcation st
for a member (ii1) with a given length L and (ii2) buckling in mode with a given half-wave
number n (σb.n). The critical buckling stress estimate is then given by σb = min{σb.1; σb.2; σb.3;
σb.4;...} and tends to slightly overestimate the exact value. These concepts are illustrated 
9(b): the formulae yield σb=σb.3 (lowest white circle), which overestimates the exact va
(white square). This means that the critical DM includes participations of, at least, indiv
modes with 2 and 3 half-waves.

The rack-section geometry selected to illustrate the application of the formulae is given by bw=100
mm, bf = 40 mm, bs=20 mm, bl=20 mm, t=1.5 mm, θ = 45o and the material properties are E=200 GPa
and ν = 0.3. First, one performs the cross-section analysis, comprising the ten steps described in
4.. The values of the relevant quantities involved read (see Fig. 10):

(i) Geometrical and mechanical parameters (step I)

αf = 0.5 αs = 0.125 αl = 0.125 K = 61813 Nmm

(ii) Matrices M , B and C, defining the auxiliary eigenvalue problem (steps II-III)

× =

     B       C   u

4.11  1.71–   5.35  – 3.32  0.53–   0.34  0.08–   0.08–

1.19  1.49  1.02–   0.12–   0.34  0.09–

8.11  4.90–   1.28  1.32–

3.02  1.05–

sym. sym.

10
2– λ .–

10   5  0   0     0  0  0  0

20  5   0      0  0  0

        30  10   0  0  

            70   25   

sym. sym.

×

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               

 

u1
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u8 
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0

0

0

0
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Fig. 9 Distortional buckling curves for (a) PFW and (b) FWP members
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(iii) Nodal warping displacements, i.e., components of uS and uD (step IV)

uS = {1.0 -1.716 1.287 -0.208 -0.208 1.287 -1.716 1.0}(mm)

uD = {-1.0 1.110 -0.733 0.313 -0.313 0.733 -1.110 1.0}(mm)

(iv) Nodal transverse bending moments, i.e., components of mS and mD (step V)

mS = {0 0  -0.185  -6.084  -6.084  -0.185  0  0}(Nmm/mm2)
mD = {0 0  1.745  9.072  -9.072  -1.745  0  0}(Nmm/mm2)

(v) Modal displacements and rotations (steps VI-VIII)
Mode S (γ = 1)

νw.S= 0 ϕw.S= 0 ww.S= -0.0374 mm/mm
νf.S = 0.0374 mm/mm ϕf.S = -0.00624 rad/mm wf.S= 0.1249 mm/mm
νs.S= -0.1502 mm/mm ϕs.S= -0.00696 rad/mm ws.S= 0.2726 mm/mm
νl.S = 0.1358 mm/mm ϕl.S = -0.00697 rad/mm wl.S = 0.4178 mm/mm

Mode D (γ = -1)

νw.D = 0.0063 mm/mm ϕw.D = -0.00052 rad/mm ww.D = 0
νf.D = -0.0262 mm/mm ϕf.D = 0.00407 rad/mm wf.D = -0.0752 mm/mm
νs.D = 0.0922 mm/mm ϕs.D = 0.00561 rad/mm ws.D = -0.1853 mm/mm
νl.D = -0.1055 mm/mm ϕl.D = 0.00571 rad/mm wl.D = -0.2930 mm/mm

λS 4.83 104–  N mm6⁄×=

λD 14.11 104–  N mm6⁄×=

Fig. 10 Displacements and bending moments associated with (a) mode S and (b) mode D
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(vi)  Cross-section modal mechanical properties (step IX)

CS = 156.180 mm4 BS = 7.6349×10−2 N/mm2 DS = 8.8134×10−3 mm2

CD = 62.761 mm4 BD = 8.8694×10−2 N/mm2 DD = 4.6361×10−3 mm2

(vii) Cross-section geometric stiffness components (step X)

XS = 5.7443×10−2 XD = 2.4364×10−2

XSD
I = -8.8915×10−4 mm−1 XS

II = -2.5320×10−3 mm−1 XD
II = -1.3388×10−3 mm−1

A = 390 mm2 xG = 23.26 mm II = 613720 mm4 III = 235728 mm4

7.1. PFW members

The (i) Lcr, (ii) Pb.min and/or Mb.min and (iii) aS and aD estimates concerning PFW columns, beams a
beam-columns are presented next, together with the exact Lcr and Pb.min and/or Mb.min values (inside
square brackets), obtained from GBT analyses incorporating all deformation modes (global, distortional
and local-plate). Since the results are independent of n, n=1 is adopted for simplicity. Figs. 11(a1)-(a4)
show four applied stress diagrams (values in MPa), corresponding to the bifurcation of one c
two beams and one beam-column. Combining the modal S and D quantities, through aS and aD, one
obtains the buckling mode quantities, depicted (i) in Fig. 11(b), for the I-axis beam, and (ii) in Fig.
10(a), for the column, II-axis beam and beam-column (aS=1).

All the relevant distortional buckling results are:
(i) Column (Figs. 11(a1) and 10(a))

{ aS; aD} = {1;0}Lcr 447 mm[446]= Pb.min 65.5 kN[65.3]=

Fig. 11 (a) Bifurcation (a1) column (a2) I-axis beam (a3) II-axis beam (a4) II-axis beam-column stress distributions
and (b) I-axis beam DM quantities
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 and
(ii) I-axis beam (α = 0 - Figs. 11(a2) and 11(b))

Mb.min = 3530 kNmm[3465]

{ aS; aD} = {0.447;0.553}

(iii) II-axis beam (α = -π / 2 - Figs. 11(a3) and 10(a))

{ aS; aD} = {1;0}

(vi) II-axis beam-column (P=4 kN + M = 104.1 kNmm - Figs. 11(a1) and 10(a))

P = 0.037 N M = 0.963 Nmm
Lcr = 447 mm[440] λb.min = 824743

Pb.min= 30.5 kN[29.8] Mb.min = 794 kNmm[776] {aS; aD} = {1;0}

The observation of this set of results leads to the following remarks:
(i) The GBT-based formulae estimates are quite accurate in all cases.
(ii) Members subjected to uniform compression and/or II-axis bending:

(ii.1) The Lcr (exact and approximate) values are practically identical for the column, beam
beam-column, which confirms the independence of Lcr (see section 6.).

(ii.2) Knowing Pb.min=65.5 kN, Mb.min=1487 kNmm and P=0.037, M=0.963, Eq. (43) can be
readily used to determine the corresponding beam-column parameter λb,

(44)

This confirms that Pb.min and Mb.min provide all the data required to obtain any λb.

7.2. FWP members

For FWP members with length L=800 mm, determines first the n minimising the bifurcation stress
(i.e., the Lcr minimising KS.n and KD.n - see Fig. 9(b)). Then, one obtains estimates for (i) Pb and/or Mb

and (ii) aS and aD. The relevant values involved in these procedures are presented next (the minimising
n is underlined and the exact Pb and/or Mb is again inside square brackets):

(i) FWP members

n = 1 µC = 4 µB = 0.75 KS.1 = 6318 N KD.1 = 5445 N
n = 2 µC = 8.2 µB = 0.20 KS.2 = 5618 N <KS.1 KD.2 = 3094 N <KD.1

n = 3 µC = 13.6 µB = 0.10 KS.3 = 7724 N >KS.2 KD.3 = 3564 N >KD.2

(i.1) Column

Pb = 97.8 kN [98.9] {aS; aD} = {1;0}

(i.2) I-axis beam (α = 0)

Lcr 391 mm[391]=

Lcr 447 mm[430]= Pb.min 1487 kNmm[1403]=

0.037λb.min

65500
--------------------------

0.963λb.min

1487000
-------------------------- 1  =+   λb.min 824743=⇔
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Mb = 4689 kNmm [4701] {aS; aD} = {0.604;0.396}

(i.3) II-axis beam (α = -π / 2)

Mb = 2219 kNmm [2249] {aS; aD} = {1;0}

(i.4) I + II-axis beam-column (α = -π / 4, P = 4 kN + M = 104.1 kNmm)

  P = 0.037 N       M = 0.963 Nmm             λb = 1267343       
   Pb = 46.9 kN[47.5]  Mb = 1220 kNmm[1233]     {aS; aD} = {0.891;0.109}

8. Validation

In order to assess the accuracy and range of validity of the derived formulae, an extensive par
study was carried out. Its results, given in Tables 3-6 (PFW members) and 7-8 (FWP mem
concern columns, beams and beam-columns with several geometries (E=200 GPa and ν = 0.3). The
GBT-based estimates are compared with exact results σb.ex and, when possible, also with values yielde

Table 3 PFW columns (bl = 30 mm, t = 1 mm)

Dimensions (mm) Exact Lau & Hancock (1987) GBT-based

bw bf bs θ σb.ex σb.min σb.min/σb.ex σ b.min σb.min/σb.ex

60 40 10 90ο 137 140 1.02 137 1.00
90 116 118 1.02 115 0.99
60 40 15 90ο 179 179 1.00 181 1.01
90 150 151 1.01 151 1.01
60 60 10 90ο 97 99 1.02 98 1.01
90 86 85 0.99 86 1.00

120 76 74 0.97 75 0.99
60 60 15 90ο 130 129 0.99 132 1.02
90 114 111 0.97 115 1.01

120 100 97 0.97 100 1.00
60 40 10 45ο 82 90 1.10 82 1.00
90 72 77 1.07 70 0.97
60 40 15 45ο 99 108 1.09 99 1.00
90 86 93 1.08 85 0.99
60 60 10 45ο 60 62 1.03 60 1.00
90 55 52 0.95 54 0.98

120 49 46 0.94 48 0.98
60 60 15 45ο 74 79 1.07 75 1.01
90 66 68 1.03 66 1.00

120 60 59 0.98 60 1.00
100 21 58 90ο 128 40 0.31 137 1.07

Mean9 01.02 1.00
Sd.dev.9 00.05 0.01
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by the Lau & Hancock (1987), Hancock (1997) and Teng et al. formulae.
All the values displayed in Tables 3 (columns) and 4 (I-axis beams) correspond to the distortiona

bifurcation compressive stress (in MPa) acting on the flange-stiffener corner (node 6 in Fig. 3(a
analysis of these results shows that:

(i) The GBT-based estimates are consistently quite accurate. Indeed, the average and s
deviation of the σb.min / σb.ex values read 1.00 and 0.01 (columns) and 1.03 and 0.03 (I-axis
beams). Moreover, only in two cases does the error exceed 6%.

(ii) For θ = 90o, Lau and Hancock’s formulae yield column estimates as accurate as the GBT-bas
ones (both “evenly distributed” in the “close vicinity” of 1.07). However, note that, unlike the
GBT-based formulae, Lau and Hancock’s formulae are not valid in the case of high
slenderness. The last line in Table 3 illustrates this statement: since bw / bf ≈5, the web rotational
stiffness becomes negative and Lau and Hancock’s formulae “break down”, leading to σb.min /
σb.ex=0.31 (the GBT-based estimate is σb.min/σb.ex= 1.07).

(iii) For θ = 45o (sloping mid-stiffeners), on the other hand, Lau and Hancock’s column estimate

7All the cross-section dimensions considered here were taken from Lau (1988). These conclusions may no
valid for columns with different cross-sections, as happened for channel columns (Silvestre & Camotim 200

8For this cross-section geometry, one has bl=bs=5 mm.
9These values do not include the last line, which contains the “meaningless” σb.min /σb.ex=0.31 estimate.

Table 4 PFW I-axis beams (bl = 30 mm, t = 1 mm)

Dimensions (mm) Exact Hancock (1997) GBT-based

bw bf bs θ σb.ex σb.min σb.min/σb.ex σ b.min σb.min/σb.ex

60 40 10 90° 232 231 1.00 240 1.03
90 182 188 1.03 185 1.02
60 40 15 90° 379 357 0.94 411 1.08
90 271 278 1.03 283 1.04
60 60 10 90° 156 143 0.92 168 1.08
90 128 120 0.94 132 1.03

120 112 106 0.95 114 1.02
60 60 15 90° 258 221 0.86 270 1.05
90 193 175 0.91 204 1.06

120 164 151 0.92 169 1.03
60 40 10 45° 121 140 1.16 123 1.02
90 102 116 1.14 101 0.99
60 40 15 45° 167 182 1.09 174 1.04
90 133 140 1.05 134 1.01
60 60 10 45° 86 94 1.09 89 1.03
90 74 78 1.05 74 1.00

120 67 68 1.01 66 0.99
60 60 15 45° 121 128 1.06 128 1.06
90 98 104 1.06 101 1.03

120 87 91 1.05 88 1.01
Mean    1.01 1.03

Sd.dev.    0.08 0.03
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less accurate and more scattered than the GBT-based ones.
(iv) All GBT-based I-axis beam estimates are slightly unconservative (maximum error of 8% and

6%, for beams with orthogonal and inclined mid-stiffeners). Moreover, the estimates tend
less accurate for shorter webs and longer flanges and/or stiffeners. The exact results showed th
this tendency is due to the influence of the torsion mode.

(v) Hancock’s I-axis beam estimates10 are considerably less accurate and more scattered than
GBT-based ones. The errors reach 14% (safe side) and 16% (unsafe side).

Table 5 shows Mb.min values concerning II-axis beams with cross-section geometries taken from Te
et al. (2003) (all with θ = 90o). One notes that:

(i) Although both the GBT-based and Teng’s formulae yield accurate results, (i1) the GBT-based
predictions are a bit more on the unsafe side (averages of 1.04 and 1.02), while (i2) Teng’s
estimates are slightly more scattered (standard deviations of 0.02 and 0.01). Neverthele
must mention that the accuracy of Teng’s estimates is mostly due to an adjustment faa,
which must be determined for each cross-section geometry (if these formulae are to be u
design purposes, a pre-determined a value will be imperative).

(ii) The fact that Teng’s formulae requires (ii1) incrementation w.r.t. L (to find Lcr) and (ii2) iteration
w.r.t. the rotational stiffness kφ (kφ is Lcr-dependent) constitutes a major drawback for des
applications. Based on the newly unveiled “Lcr independence of the compression-bending combinati

10Results obtained using the factor proposed by Bambach et al. (1998) to account for the stiffener stress gradient.

Table 5 PFW II-axis beams (bl = 30 mm, θ = 90o)

Dimensions (mm) Exact Teng et al. (2003) GBT-based

bw bf bs t Mb.ex Mb.min Mb.min/ Mb.ex Mb.min Mb.min / Mb.ex

60 40 10 1.0 598 622 1.04 612 1.02
90 581 592 1.02 590 1.02

120 576 582 1.01 587 1.02
60 40 15 1.0 846 880 1.04 874 1.03
90 821 829 1.01 845 1.03

120 815 790 0.97 854 1.05
60 60 10 1.0 671 698 1.04 702 1.05
90 651 671 1.03 674 1.04

120 639 659 1.03 659 1.03
150 636 649 1.02 662 1.04
60 60 15 1.0 965 1004 1.04 1020 1.06
90 938 957 1.02 981 1.05

120 922 931 1.01 965 1.05
150 917 908 0.99 957 1.04
60 60 15 1.5 2265 2356 1.04 2384 1.05
90 2209 2253 1.02 2304 1.04

120 2178 2200 1.01 2245 1.03
150 2174 2174 1.00 2230 1.03

Mean 1.02 1.04
Sd.dev. 0.02 0.01
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(see section 6.), the authors found that Teng’s formulae can be used with the Lcr value yielded by
Lau & Hancock (1987) rack-section column formula, i.e.,

(45)

where Iwc is a geometrical property of the “flange-stiffener assembly”. By eliminating the increme
iterative procedure, with no loss of accuracy, the use of Eq. (45) makes Teng’s formulae
more appealing.

Table 6 deals with PFW beam-columns (i) having cross-section dimensions bw=120 mm, bf = 60,
bs=15, bl=30, t=1.5, θ = 90o and (ii) acted by an eccentric compressive load (I and II-axis eccentricities
eI and eII - see Fig. 5(b)). The tabulated results show that the GBT-based estimates (i) are quite a
in all cases and, for the II-axis beam-columns, (ii) match perfectly the high accuracy of Teng’s formu
(using Eq. (45) to obtain Lcr proved again to be very beneficial).

Finally, Tables 7 (columns) and 8 (I-axis beams) concern FWP members with several cross-sec
geometries and the GBT-based estimates are compared only with exact GBT values (no
distortional buckling formulae available). For validation purposes, all the columns selected hav
taken from Lau (1988), who analysed them using the spline finite strip method11. The estimates are
minimum values, obtained after applying the GBT-based formulae for n=1, 2, 3, ... (the minimising n
values are also indicated). One notes that:

(i) The GBT-based formulae continue to provide quite accurate estimates in all cases: (i1) the σb /

Lcr 4.80
Iwcbw

t3
------------ 

 0.25

=

11The GBT estimates and exact values were obtained after “replacing” the web-flange and flange-stiffener
by larger width values (corner radius values added to the width values). Although Lau assumed “fictitiouo-
inclined corner finite strips, the exact GBT values virtually coincide with the spline finite strip results.

Table 6 PFW beam-columns (bw=  120 mm, bf = 60, bs=  15, bl=30, t=1.5, θ = 90o)

I-axis beam-columns (eII) II-axis beam-columns (eI)

Exact GBT-based Exact Teng et al. (2003) GBT-based

e Pb.ex Pb.min Pb.min /Pb.ex Pb.ex Pb.min Pb.min /Pb.ex Pb.min Pb.min /Pb.ex

0 78.0 77.5 0.99 78.0 77.8 1.00 77.5 0.99
1 77.9 77.8 1.00 75.3 75.2 1.00 74.9 0.99
2 77.8 78.0 1.00 72.9 72.7 1.00 72.5 0.99
5 77.0 77.8 1.01 66.5 66.2 1.00 66.1 0.99
10 74.3 75.3 1.01 57.9 57.6 0.99 57.6 0.99
15 70.7 71.8 1.02 51.2 51.0 1.00 51.1 1.00
20 66.9 68.0 1.02 45.9 45.7 1.00 45.9 1.00
25 63.2 64.3 1.02 41.6 41.4 1.00 41.6 1.00
30 59.8 60.8 1.02 38.0 37.9 1.00 38.1 1.00
40 53.8 54.8 1.02 32.4 32.3 1.00 32.5 1.00
60 44.5 45.4 1.02 25.0 25.0 1.00 25.2 1.01
90 35.2 36.0 1.02 18.8 18.6 0.99 18.9 1.01
130 27.5 28.1 1.02 13.9 14.0 1.01 14.1 1.01
180 21.6 22.1 1.02 10.5 10.6 1.01 10.7 1.02

Mean 1.01 Mean 1.00 1.00
Sd.dev. 0.01 Sd.dev. 0.01 0.01
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σb.ex average and standard deviation read now 1.00 and 0.02 (columns) and 0.97 and 0.03I-axis
beams) and (i2) the error never exceeds 4% (columns) and 7% (I-axis beams).

(ii) Clearly, the less accurate I-axis beam estimates concern the shorter beam lengths (two or 
half-wave DM). Exact GBT analyses show that this is due to web and/or flange fle
deformation (local-plate) effects, which are not fully accounted for by the formulae.

9. Conclusions

GBT-based analytical formulae to estimate distortional critical lengths and buckling stress res
in rack-section cold-formed steel members were derived. Since the formulae incorporate folded-plate
theory concepts, they automatically account for cross-section (i) distortion and (ii) flexural deform
effects (partially). They apply to members with the following characteristics:

(i) Arbitrarily inclined mid-stiffeners.
(ii) Subjected to any combination of uniform compression and uni or biaxial bending.
(iii) Four end support conditions: (iii1) PFW, (iii2) FWP, (iii3) FWP-PFW and (iii4) FWP-SWP.
Following a very brief overview of the second-order GBT formulation, the paper described

discussed the various steps involved in deriving distortional buckling formulae for rack-section b
columns (columns and beams are special cases). These formulae are expressed in terms of 

Table 7 FWP columns

Dimensions (mm) Exact GBT-based

L bw bf bs bl t θ n σb.ex σb σb /σb.ex

800 79 35.3 16.2 26.8 1.652 90° 2 479 499 0.96
1300 3 410 409 1.00
1500 3 391 385 1.02
1700 4 385 379 1.02
1900 4 374 368 1.02
800 78.6 35.3 16.4 27.05 1.982 90° 2 570 581 0.98

1300 3 490 483 1.01
1500 4 487 481 1.01
1900 5 465 459 1.01
800 82.4 31.4 14.9 29.25 2.395 90° 2 672 660 1.02

1100 3 620 608 1.02
1500 4 587 576 1.02
1700 5 580 569 1.02
800 78.6 35.3 16.4 27.05 1.982 45° 2 292 299 0.98

1300 4 264 270 0.98
1500 4 260 264 0.98
800 82.4 31.4 14.9 29.25 2.395 45° 3 372 386 0.96

1100 4 345 356 0.97
1500 5 330 339 0.97

Mean 1.00
Sd.dev. 0.02
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section distortional mechanical and geometrical properties, (ii) two parameters depending only
end support conditions and (iii) the member length. A key issue was the determination of “qua
analytical” expressions to obtain the above distortional properties, which are written exclusiv
terms of (i) the cross-section dimensions and material properties and (ii) quantities yielded by the
numerical solution of an analytically defined auxiliary eigenvalue problem. It is worth noting that 
GBT-based distortional buckling formulae are particularly well suited for design purposes. Inde
they are easy to program (including the solution of the auxiliary eigenvalue problem) and (ii) the
requires no specific knowledge about distortional buckling.

The paper also included a few remarks concerning (i) qualitative comparisons between the d
formulae and other available distortional buckling formulae and also (ii) novel aspects related 
distortional buckling behaviour of rack-section beam-columns, which were unveiled by the GBT-
approach employed in this work.

The application of the GBT-based formulae was illustrated in considerable detail, as a
intermediate steps and values involved in the analysis of several columns, beams and beam-
were reported and physically interpreted. Finally, the accuracy and range of validity of the disto
buckling formulae were assessed by means of an extensive parametric study, in which the GBT
estimates were compared with (i) exact GBT results and, when possible (PFW members only), also
with (ii) values yielded by the distortional buckling formulae previously developed by Lau & Hanc
Hancock and Teng et al. Columns, beams and beam-columns with several cross-section dimen

Table 8 FWP I-axis beams

Dimensions (mm) Exact GBT-based

L bw bf bs bl t θ n σb.ex σb σb /σb.ex

1800 79 35.3 16.2 26.8 1.652 90° 2 707 750 0.94
1300 3 714 729 0.98
1500 4 712 719 0.99
1700 4 711 710 1.00
1900 5 710 708 1.00
1800 78.6 35.3 16.4 27.05 1.982 90° 2 893 941 0.95
1300 4 906 953 0.95
1500 4 884 907 0.97
1900 5 885 880 1.01
1800 82.4 31.4 14.9 29.25 2.395 90° 3 1090 1121 0.97
1100 3 1073 1115 0.96
1500 5 1045 1065 0.98
1700 5 1047 1040 1.01
1800 78.6 35.3 16.4 27.05 1.982 45° 3 413 433 0.95
1300 4 405 431 0.94
1500 5 402 424 0.95
1800 82.4 31.4 14.9 29.25 2.395 45° 3 500 536 0.93
1100 4 500 532 0.94
1500 6 501 527 0.95

Mean 0.97
Sd.dev. 0.03
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and shapes (orthogonal and sloping mid-stiffeners) were considered and it was possible to re
following main conclusions:

(i) The GBT-based formulae consistently yield accurate estimates in all the cases dea
(numerous applied stress diagrams and four support conditions). Indeed, the majority 
estimate errors fell inside the 2% range and only very few of them exceeded 5%.

(ii) Whenever the formulae due to Lau & Hancock, Hancock and Teng et al. were applicable (some PWF
members), the GBT-based formulae were shown to yield, at least, equally accurate estimates. M
note that none of the previous formulae is valid for (ii1) columns with very slender webs and (ii2) I-axis
beam-columns (all these cases are routinely covered by the derived distortional buckling formu
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Annex - Analytical definition of the auxiliary eigenvalue problem

To define the auxiliary eigenvalue problem (Eq. 27), one needs expressions for the non-null components
of matrices F,  and C. Noticing that F and C are symmetric, one has:
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