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Abstract. The low boundary of load carrying capacity of the elastic-plastic spatial grid structures dep
on numerous values and their variability assumed in designing process. Analysed influence all this valu
searching for optimal variant of the structure lead to too great problem even taking into consideration a
computational power we have in disposal. Therefore one can take only a few values which have gr
influence on the optimal choice. In optimal analysis of the elastic-plastic spatial grid structures the previo
proposed method with subsequent modification (Karczewski 1980), (Karczewski, Barszcz and Donten 1
(Karczewski and Donten 2001) as well as computer program which was worked out by Donten K. to m
possible practical utilisation this method was employed. The paper deal with evaluation of influe
dimensions of particular values for choice of optimal variant of the structure. One among this value
distribution of the struts in the structure.

Key words: spatial grid structures; plastic analysis; optimisation; decisive variable; objective fun
tion; distribution of the strut.

1. Introduction

Plastic analysis method employing in designing process must give exact modelling of real beh
of the structure as well as full safety during their further exploitation. After analysis used increm
method work out by Author, (Karczewski 1980) and presented in Proceeding of Asia-Pacific Confere
Shell and Spatial Structures which was held in Bejing in 1996 with subsequent modifications (Karc
Barszcz and Donten 1996), (Karczewski 1997), (Karczewski and Donten 2001).

An axially loaded strut with one end free to move collapses immediately at its ultimate load d
yielding or buckling. Preservation of its equilibrium is impossible without immediate unloading. Struts
which are a members of the spatial grid structures exhibit different behaviour. They interact w
whole structure even if buckled in compression or yielded in tension and, therefore their deform
are constrained through the displacements of their ends nodes. Although their stiffness vanishes
become negative they still are able to carry axial forces of magnitudes compatible with their deformatio
structure collapses if and only if a sufficient number elements has buckled or yielded. There mus
many of them that the remaining elastic substructure becomes a mechanism.

In above mentioned method analysis is performed by “step by step” way and their main assu
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consist in fictitious eliminating struts which start, during increasing of loading, in non-linear beha
and substituting their by pair selfequlibrating external forces, (Karczewski 1980), see Fig. 1. In g
relations at an arbitrary instant of the loading and unloading process can be shown as below, Eq

u = C δ :
F + FF = CT P; 
u = E-1 P + uR; (1)

Here, u, δ, F, FF, P, uR denote the following vectors: strut deformations, nodal displacements,
applied loads, self-equilibrating pair of external point loads, strut forces and predeformations 
assembling, respectively. C, E are matrices of compatibility (equilibrium) and strut stiffness accordin
In such a way, the actual spatial grid structure is modelled by a modified elastic structure, re
from the original one through the removal of the buckled or yielded members, acted upon 
actual load and the reactions of the eliminated members. In such a situation one can easily
that in the case of the proposed method of analysis, properly simulated strut behaviour is o
importance for the accuracy and safety of the estimation of subsequent values of the fu
showing relation between strut forces and displacements of the ends of the strut, i.e. the va
the eliminated strut reactions for a given deformation.

In used method, magnitude of the external forces substituting interaction previously eliminated strut
on is taken from the model of strut behaviour, (Boutros 1991), (Nonaka 1977), (Karczewski 
1997), (Karczewski Barszc and Donten 1996), (Karczewski and Donten 2001), see Fig. 2. The
of strut behaviour is described by the function P(u) i.e. relationship between axial force P and
deformation u expressed by the displacements of strut ends in relation to each other. In used methods u
is composed of five integral components, (Karczewski and Barszcz 1995), Eq. (2).

u = uP + uM + uY + uE +uR  (2)

where: uP - deformation resulting from the elastic deformation produced by axial force, uM - deformation
resulting from variability of the strut geometry with regard formulas proposed by Boutros (Bo
1991), uY - deformation resulting from the plastic axial deformation produced during plastic rotation
in plastic hinge, uE - residual deformation resulting from the plastic axial deformation during pla
rotation in compression, uR - deformation resulting from the plastic elongation produced during exten
when P equal yielding force. The model of strut behaviour (Karczewski and Barszcz 1995), in

Fig. 1 Main assumption of the method used
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method is shown in Fig. 2.
The computer program TRS was worked out by Krzysztof Donten, (Karczewski and Donten 2

to make possible practical utilisation above mentioned plastic analysis method. The general flow
of the program and its plastic procedure are shown at Figs. 3 and 4. The results of analysis
presented numerically or graphically on the computer monitor. The results can be printed in both
The computer program TRS was worked out for environment Windows 9x/NT. In original ve
program was written and tested on computer P333 with graphic cart Matrox-Millenium II/16MB and
operational memory 128MB. For example computer program TRS was employed in analysis of the
structure composed with 4802 nodes and 23425 struts. In version used in investigation the co
program TRS was limited to 1000 nodes and 4000 struts.

Fig. 2 Model of the strut behaviour

Fig. 3 The general flow chart of the program
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2. The basic assumptions of the optimization problem

In optimisation problem was assumed, that the objective functions vector is composed wit
element Eq. (3), (Karczewski 1997). The problem can be solved by employing single cri
optimisation, (Karczewski and Paczkowski 1989). The load carrying increment or factor sho
relation between increments of load carrying capacity and mass of the all struts in the structure 
criterion of the optimisation, Eq. (3). The optimum of the objective function is univocal with 
maximum value.

F(x) = [f1(x)]T    or    F(x) = [ f1(β)]T (3)

where: f1(x); f1 (β ) - increment of the load carrying capacity or above mentioned factor, adequat
As a decisive variables was assumed the values qualifying the chosen from fictitiously elim

struts cross-section increment during their strengthening - l, Eq. (4) and values qualifying struts
distribution in the structure - p, Eq. (5).

l = a, b, c, d (4)

Fig. 4 The flow chart of the plastic procedure implemented in the computer program
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The values of the decisive variable l - a, b, c and d are shown at Fig. 5.

p = 11, 12, 13, 14, 15, 16, 17, 18 (5)

The values of the decisive variable p - 11, 12, 13, 14, 15, 16, 17 and 18 are shown in Fig. 6. The
decisive variables vector was assumed in form

V = [l, p]T (6)

The all variant review method was employed in searching for optimal variant of the structure be
the feasible domain was composed only with 32 variants, (Karczewski and Paczkowski 1989).

3. The structures being a subject of optimization

The spatial grid structures used as a roof of sport hall of dimensions 39×39 m in plane is an o
optimisation. 8 kinds of structures were analysed. Exemplary structure No. 11 is shown at Fig. 
roof is supported by stanchions on the circumference of the upper layer. The orthogonal spat
structure is composed with struts of ring cross-sections made with steel grade 18G2A with mec
characteristic recommended by (Karczewski and Others 1976), Polish Cod of Practice PN-90/B-03

Fig. 5 Decisive variable l - increment of the struts cross-sections [%]

Fig. 6 Decisive variable p - distribution struts in the structures analysed
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fy = 355 MPa (for elements of the thickness up to 16 mm). System strut-node, with nodes type 
was assumed. The mass of the nodes make 10% of the mass of whole structure. The load ad
typical for the roof structure made of spatial grid and climatic conditions are characteristic for Central
Poland. The forces acting on the middle nodes of the upper layer are equal 18 kN and on the
nodes of the lower layer - 9 kN.

4. Plastic computation and analysis results obtained

Optimisation was performed for 32 variants of the structure which are in the feasible domain
computation was realised according to the principles described in the foregoing points. The va
the additional parameters necessary for plastic analysis were assumed as follows: number of the in
loading-1, increment of the loading-1% maximum load for elastic phase, rigour of elastic line iteratio
[%], primary plastic deflection-0,01 [%L], critical displacement 100 [cm], (Karczewski 1997).

First the elastic designing was performed with regard to the recommendations of the Polish Ste
Code of Practice. Next the incremental plastic analysis of the structure designed initially in elastic
phase was worked out. Of course in each stage of analysis the compliance of the effective ma
displacement (deflection) obtained from the analysis was checked accounting the requirements of the
serviceability limit state. The computation starts from the load level corresponding to the yield lo
the structure analysed. The analysis was carried on by an incremental “step by step” m
(Karczewski Barszcz and Donten 1996). The load was increased by 1% of the yield load in
subsequent steps. Incremental analysis was continued up to the moment when the ultimate lim
due to a global or a local mechanism in the structure has occurred. After strengthening of the
sections of the chosen struts the plastic analysis was performed again for next stage from the ini
level-yield load, but for the structure representing greater mass resulting from changes in cross-
chosen fictitiously eliminated struts. The analysis was ended when structure is failed due to the
mechanism. The exemplary result of the plastic analysis performed for all variants of the str

Fig. 7 Exemplary analysed structure No. 11
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Table 1 Correction of fictitiously eliminating struts cross-sections effect (1/4 of the structure) variant 11_

The stage
of 

analysis

Increment of 
the cross-
sections %

Struts with 
strengthening 
cross-sections

Increment of load 
bearing capacity

v/vs ·100%

Increment of the mass of 
all struts in the structure

(δ / δs)100%

The factor of the load 
bearing capacity β = v /δ

1 30 20 120 100 1,20
2 30 54 126 102 1,15
3 30 182 129 109,71 The global mechanism

v, δ - actual load bearing capacity and mass of the all struts in the structure, adequately
vs, δs - the bearing capacity and mass of all struts in the structure in first stage in the analysis, adequate
β - the factor of the load bearing capacity increment

Fig. 8 The plastified or broken struts in the last stage of analysis - variant 11_a

enclosed in the feasible domain defined by decisive variables l and p are shown in Table 1 and Fig. 8
Fig. 9, Fig. 10. After the stiffness adjustment to the structures analysed to the optimal conditio
visible increment of the load bearing capacity, in relation to load bearing capacity of the str
without correction resulting with struts distributions and value of the assumed increment in strengthe
the chosen struts was attained.

The exemplary results of the plastic analysis performed for all variants of the structures with different
decisive variables are collected in Table 1 and shown in Fig. 8. In example the decisive variable
equal: l = 11 and p = a.

After the stiffness adjustment of the structure analysed to the optimal conditions the visible increment
of the load bearing capacity of the structure with some struts distribution, in relation to the load b
capacity of the structure with different struts distribution was attain. This increment, known as pstic
reserve of the load bearing capacity, among others depends strongly upon assumed distributio
struts in the structure has occurred. One can noticed that increasing the load bearing capa
increasing the cross-sections of chosen fictitiously eliminated struts, simultaneously the mass of the
struts in structure increase too. It lead to phenomena that occur variants no optimal with have
mass and higher load carrying capacity then optimal ones, Fig. 9, Fig. 10 and Table 2, Table 3. It
that is better, for the presentations of the real profits resulting from the optimal analysis as w
influence variability of the chosen values assumed during performance of the calculation, to int
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the factor β �υυυυ ////δδδδ showing relation between actual load bearing capacity and the actual mass of 
struts in the structure.

For analysed structures with assumed eight different struts distributions and four options of increme
of cross-sections during strengthening chosen struts was obtained different factor β,  see Table 3. The
increment vary from 19% to 38% of the yield load for the above mentioned structures. It does 
that influence, among others, distribution of the struts in the structure is significant. From outpu
has obtained during computation result, that load carrying capacity tested variants of the st
achieve maximal value for the variant 18c and is equal 171%, Fig. 11. and Table 2 of the yield l
mentioned variant of the structure. The minimal values of the load bearing capacity was achiev
variant 12b and is equal 123% of the yield load of mentioned variant. This observations are con
by data collected at Table 2 and shown in the Fig. 10. The factor of load bearing capacity increm
reached maximal value for the variant 13c of the structure and is equal β  =1.38. The minimal value of

Fig. 9 Low boundary of the load bearing capacity - the spatial view of optimal analysis

Fig. 10 The factor of load bcaring capacity - the spatial view of optimal analysis
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this factor has reached, in this case, for variants 14a, 14b, 14d and is equal β =1.19. From pattern shown
in Fig. 10 results difference between minimal and maximal values equal) ∆β = 0.19.

Fig. 11The factor of load bearing capacity increment for all variants and stable value l =b and for all variants
and stable value p = 11

Table 2 Low Boundary of load carrying capacity considered variants of structure

Stage of the 
analysis

The strut distribution 
in the structure

Low boundary of load carrying capacity variants analysed
The chosen fictitiously eliminated struts cross-sections incremen

a b c d
1 11 129 137 157 129
2 12 150 123 150 127
3 13 138 138 167 163
4 14 133 127 142 136
5 15 143 132 160 143
6 16 158 139 158 145
7 17 158 146 152 150
8 18 157 171 165 140

Table 3 The factor of load bearing capacity increment in analysed variants - ββββ

Stage of the 
analysis

The struts distribution
in the structure

The factor of load bearing capacity increment -β, for variants analysed

The chosen fictitiously eliminated struts cross-sections increme

a b c d

1 11 1,20 1,20 1,23 1,20
2 12 1,20 1,20 1,21 1,20
3 13 1,23 1,23 1,38 1,27
4 14 1,19 1,19 1,20 1,19
5 15 1,21 1,21 1,22 1,21
6 16 1,22 1,22 1,22 1,22
7 17 1,25 1,21 1,31 1,25
8 18 1,27 1,24 1,33 1,23

β = ϑ/δ where: ϑ - low boundary of load bearing capacity, δ - the mass of all struts in the structure
- maximal value of the factor of load bearing capacity increament
- minimal value of the factor of load bearing capacity increament
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5. Conclusions

The proposed in paper optimal analysis of elastic-plastic spatial grid structures seem to be 
safety and accuracy for practical designing. The used method of analysis and computer progra
out for practical its utilising occurred easy in solving difficult problems.

The results of optimal analysis performed for 32 variants of exemplary structures with ass
different options: of the struts distributions in the structure and size of the cross-sections incr
being indicate the appreciable dependence of the maximum load bearing capacity of the struc
above mentioned values. In former investigations the greatest differences was observed if cross-
of all plasticised struts in subsequent stages of analysis are strengthened. Therefore in p
investigation was assumed that in all stages of analysis all plasticised struts were strengthene

From optimal analysis result that greatest values of factorβ were for the size of cross-sectio
increment equal 30% in first stage and 10% in every subsequent - see Fig. 10. Approximately o
assume the value of struts distribution in the structure influence on the load bearing capa
significant. For optimal variant of the structure the factor β increase by 38%, see Fig. 11(b). If one ta
into consideration influence additional value, option of increment of the cross-sections in subs
stages the factor β increase by 19%.

The results obtained by employing the proposed incremental analysis method confirm obse
influence of the assumed values, especially struts distribution in the structure, on finally obtai
bearing capacity. It does mean that during searching for optimal solution, in case of the spat
structure, one has taken into consideration struts distribution in the structure. Also it make 
further investigations of the considered problem. First of all, research anticipated should pay at
to find additional values have significant influence on finally load bearing capacity. This values which
must be taken into consideration during designing the optimal plastic spatial grid structures.
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