Steel and Composite Structures, Vol. 3, No. 3 (2003) 169-184 169
DOI: http://dx.doi.org/10.12989/scs.2003.3.3.169

A general method of analysis of composite beams
with partial interaction

G. Ranzit, M. A. Bradfordt, B. Uytt

School of Civil and Environmental Engineering,
The University of New South Wales, UNSW, Sydney, NSW 2052, Australia

(Received September 12, 2002, Accepted April 16, 2003)

Abstract.  This paper presents a generic modelling of composite steel-concrete beams with elastic shear
connection. It builds on the well-known seminal technique of Newmark, Siess and Viest, in order to
formulate the partial interaction formulation for solution under a variety of end conditions, and lends itself
well for modification to enable direct quantification of effects such as shrinkage, creep, and limited shear
connection slip capacity. This application is possible because the governing differential equations are set up
and solved in a fashion whereby inclusion of the kinematic and static end conditions merely requires a
statement of the appropriate constants of integration that are generated in the solution of the linear
differential equations. The method is applied in the paper for the solution of the well-studied behaviour of
simply supported beams with partial interaction, as well as to provide solutions for a beam encastré at its
ends, and for a propped cantilever.
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1. Introduction

Composite steel-concrete beams are used extensively in contemporary engineering structures
since the attributes that best suit both the concrete (its relatively high compressive strength) and the
steel (its high tensile strengthje uilised, whilst the ramifications of the undesirable attributes of the
concrete (its low tensile strength owing to cracking) and the steel (its low compressive strength due
to buckling) are minimised. In many nations, the use of compaosite construction is necessary on the
basis of economic considerations, since a structure built in steel alone, ociatealone, may be
undesirable on a cost basis compared with the alternate composite steel-concrete design solution th:
provides the best optimisation of cost. The fundamentalactexstic of composite beams that
enables composite action to be mobilised is the shear connection between the concrete slab and ste
joist, and this paper is concerned with the stiffness aspects of the shear connection, that is partia
interaction at the interface.

In order to provide a load path that enables a composite beam to be stressed in the benign way th:
utilises the compressive strength of the concrete slab and the tensile strength of the steel joist
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mechanical shear connection between the slab @tdge@ssential. This is most often achieved by the

use of headed stud connectors (Oehlers and Bradford 1995, 1999), whose load-slip characteristics ca
be determined from standard push-out tests. Although this load-slip characteristic is usually
nonlinear, up to quite moderate load levels it can be considered to be sensibly linear (Oehlers and
Bradford 1995), as can the stress-strain response of the concrete slab in compression and the ste
joist in tension. At service load levels, the three components of the composite beam, viz. the concrete
slab, shear connection and the steel joist, can therefore be considered to behave in a fashion that i
characterised by linear material response. The elastic (rather than rigid) response of the sheal
connection produces partial inéetion, and the structural mechanics of a composite beam with
partial interaction makes the analysis of composite members much more difficult than would appear
at face value. The influence of the elastic shear connection was addressed over half a century ago i
the seminal and highly quoted work of Newmark, Siess and Viest (1951), which established that
when even elementary assumptions in structural mechanics (such as elastic behaviour, Euler-
Bernoulli bending theory and a constant curvature at a cross-sectio@yawvehe angsis, the
solution isfar more complex than the familiaridspan deflection of (5/384)LYEI for an elastic

beam under a uniformly distributed load.

Many investigators have utilised or extended the work of iNafk, Siess and Viest for specific
applications. A mixed formulation has fairly recently been used in several applications to extend the
analysis of partial interaction to investigate the influence of the limited slip capacity of headed stud
connectors (Oehlers and Sved 1995). This technique assumed that the slab and the joist were elasti
but that the shear connector behaved as if rigid and then with a plastic plateau until its ultimate slip
was attained, after which fracture occurred and its strength was zero. When calibrated against tests
the mixed approach produced accurate solutions that can quantify clearly the significance of the
relevant parameters on beam strength. Another formulation of a mixed approach is that of Nguyen,
Oehlers and Bradford (1998), Ahmed, Oehlers and Bradford (2000) and Oeth&rg2000), in
which the elastic formulation for the concrete was combined with elastic assumptions for steel plate,
in which steel plating is bolted to the sides of a concrete beam in a retrofit process, and this was
combined with plasticrhcture assumptions for the shear connectors. This analysis is different from
that for the composite T-beam considered by Newmark, Siess and Viest, as the curvature in the
concrete beam and in the steel side plate cannot be considered to be equal. Nevertheless, the mixe
approach leads to analytical solutions, which when calibrated with test data, allow for an accurate
guantification of the parameters that may cause the shear connection to be lostaktar ¢f the
bolt connectors.

This paper formulates an analysis of a composite steel-concrete composite T-beanstidthhelar
connection in a more generic fashion to that usually developed in application-specific treatments. The
formulation produces analytical results for beams with a number of support conditions, by solving the
linear differential equation that is eklighed in the paper in terms of constants of integration whose
prescription for the support conditions is routine by invoking the kinematic and static boundary
conditions. The formulation is demonstrated for the well-known case of a simply supported beam with
a uniformly distributed load, and also for aam that is encastré at both ends and for a propped
cantilever beam. The solution is formulated in a fashion that lends itself to extension for beams with
shrinkage and creep deformations, and to more general mixed analysis to investigate beam strength the
is governed by limited slip capacity of the mechanical shear connectors.
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2. Partial interaction analysis
2.1 General

The modelling of partial interaction developed in this section is based on the composite cross-section
shown in Fig. 1. For simplicity, a single span beam is considered (as shown in Fig. 2) which is subjected
to a pattern of loading that produces a variation of bending momM&)twhose variation is not
necessarily known initially if the beam is statically indeterminate. Again for simplicity, it is assumed
that both the concrete and steel behave elastically in both cssiggreand tension (so that slab
cracking is ignored), but modifying the procedure to include this is not difficult as will be explained
later. It is assumed further that the shear connection between the concrete slab and steel is elastic, with
modulusk (force per length that defines the relationship between the shear flow tppe unit length
and the slips at the interface by the relationstgp= kxs, as shown in Fig. 3.

The top fibre of the cross-section is selected as a convenient invariant reference position from which
cross-sectional properties are defined, and it is assumed that the cupvatulee same in both the
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\
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Fig. 1 Composite cross-section
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Fig. 2 General single span beam
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shear flow force g (per
unit length)

\

slip s

Fig. 3 Response of shear connection

concrete and steel, and that plane sections remain plane (so that the strain diagram is linear), with a sli
discontinuityds/dz(the slip strain) at the interface.

2.2. Horizontal equilibrium

The axial forces in the concretd ) and steellNs) are

N = JUchc: Ng = )!’UsdAs (1)

whereA. andAs are the areas of the concrete and steel respectively, and for each material
o; = Ec&; Os = Es&s 2)

in which E; and E; are the elastic moduli of the concrete and steel respectively, and the strains are
given by

& = (y_yc)p; &= (y_ys)p (3)
in which y is the distance below the referenceifms, y. is the coordinate of the neutral axis for

the concrete any is that for the slab, as shown in Fig. 1.
From Egs. (1), (2) and (3)

Nc = (Bc - ycAc) Ecp; Ns = (Bs - ysAs) Esp (4)
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where B, and Bs are the first moments of area of the concrete and steel respectively below the
reference position. Since the beam is subjected to bending only, horizontal equilibrium requires that

Ne+Ng =0 (5)

so that
P[ (Bc - ycAc) Ec + (Bs - ysAs) Es] =0 (6)

which yields a relationship between the neutral axis depths given by:

E- ysAsEs_ E- ycAc Ec

= = 7
yC Ac Ec 1 yS AS ES ( )

whereBE = B.E; + BE..
2.3. Slip strain

The slip straire;, between the steel and concrete is (Fig. 1)

ds
Esiip = d_Z = (yc_ys)p (8)
so that
_E AcEc B_E AcEc gslip
ys AE AEp slip yc AE Ep slip p ( )

whereAE = AE; + AE..
2.4. Internal bending moment
The internal bending moment within a cross-section is given by
M, = _/[aydA = A[EcscydAE+A|’EsssydA, (20)
Hence, substituting Eq. (3) into Eq. (10) gives
Mint = Elp—(BcEcye + BsESYs)P (12)

where El = El. + Eds in which I, andls are the second moments of area of the concrete and steel
about the reference gition, respectively. Substituting Eg. (9) into Eq. (11) produces

O BED  BE
Mine = E].EI - E%p + A:E‘gslipAcEc_ BcEcginp (12)
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Fig. 4 Free body diagram of slab at interface

2.5. Shear connection

Fig. 4 shows a free body diagram of the concrete slab of |&aghlith its shear connection at its
soffit. By considering horizontal equilibrium,

dN, B
NG+ 50 a6z5-N; = 0 (13)
so that
dN,
e +q =0 (24)
which produces
dN.
1z - k(3 (15)

If EQ. (9) is substituted into Eq. (4) for the concrete slab, then

BE AE

Nc =B Ecp A E AE AEgsllp (16)

where,ﬁz = ALE.AE;, , and so

dN, O BELdp AEd’s

== - BE, - Bt (17)

dz g ° AE 00z AEdZ
which when using the equilibrium Eqg. (15) gives

O A.E.BEL{ AEd S

[B.E, — ~———2P _ = ks (18)

0°°  AE 09z AEdZ
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The internal momenM; is equal to the applied moment fieM(z) (denoted asv for ease of
notation), so that from Eq. (12)

p = W+aeg, (19)
and hence do _ dM . ad—zs 20)
dz = Vdz T 947
in which
o - SEAE=ACSE =
AEEI- BE
and _
AE
y= ———— (22)
AEEI- BE

Substituting Eq. (20) into Eq. (18) produces the following generic form of tearlidifferential
equation for partial interaction:

~d’s _dMm
adzz—ks = adz (23)

where
(B.E.)°AE, + (B,E,)’A.E.— AEEI

AEE|-BE

a= (24)

The generic differential Eq. (23) may be solved routinely to produce the slip and slip strain
respectively as

adM

s = CleVZ+C2e_VZ—E iz (25)
and
2
Egip = VC,€"7— vCZe_VZ—%Z—L\ZA (26)
in which
Vi = %‘{ (27)

andC, andC, are constants of integration.

Egs. (25) and (26), which are the solution of the differential equation Eq. (23), assume that the
expression oM is not higher than to the second order.ifor higher orders the previous approach is
still valid, but the expressions derived for the slip and slip strain need to be mediigdlingly.



176 G. Ranzi, M. A. Bradford and B. Uy

2.6. Curvature, rotation and deflection

The expression for the curvature can be obtained by substituting Eq. (26) into Eqg. (19) as

2 42
p = W +avC,e”—avC,e" - %Z—L\zﬂ (28)
which when integrated with respectZgields the slope as
z z (12 dZM -
6 = y[Mdz+ aC.e” + aCe’™ _?Id_zzdﬁ Ci (29)

and which when again integrated with respec pwoduces the deflection of the beam as

aC,e” aC,e””

v = y_|’_|’Mdz+ v

2 2 - -~
a.dM
_?Hd_zdeJr Ciz+ G (30)

where C, andC, are constants of integration. The axial force in the concrete is given after appropriate
substitution into Eq. (16) as

Nc = y1p+ yzgslip (31)
in which
BE
nh = BcEc_AcEcA:E (32)
and
AE
Vo = —= (33)
AE

3. Applications

Egs. (25) to (30) form the basis for investigating the behaviour of composite beams under a variety of
end conditions. The use of these equations in a generic form is illustrated in this section for a simply
supported bam, for a beam encastréath ends, and for a propped cantilever. In Fig. 2, which depicts a
redundant beam under a uniforndigtributed load, the bending momémialong the beam is defined as

M = —M,+ onz—""7ZZ (34)
whereR, andM, are the vertical reaction and the moment at the left supporty asmthe uniformly

distributed load. The slip and slip strain can then be expressed using Egs. (25) and (26) as

R,—wz
k

s= Ce”+Ce - a (35)
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and

Eqip = VC€7—VC,e" +

~ls

a (36)

and so the curvature, rotation and deflection are, respectively

w7z az
p= y% Mo + Roz — — > E]+ avC,e”’—avC,e"* W (37)
R 22 ~ 2 ~
6 =y Moz + % _W{% aC,e”+aCye ™ + Twz+ G (38)

M,Z R,z w7#n aC,e” aC,e™ Z -
0o M _w#n, aCe” aCe™ d’w
VEYT T TTe T2a0" Ty vk 2 +Ciz+ G (39)

Applying the kinematic boundary conditions thé&t=0) = 0 andv(z=L) =0, the constants of integration
C, andC, may be determined as

T L L L L L L

(a) simply supported beam

Mqo HHHHJ,J,‘I,J.‘I,J,“iJ,J,J,‘I,J,J,J,JnLJ,UULLH W

L

h .

(b) encastré beam

w
'\AQO/__H,HHHHJ,HJ,J,J,J,JrHHJ,J,LH,HJ,‘L___

le L N

(¢) propped cantilever

Fig. 5 Composite beams
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EML RoL? LWl aC.e’ orcze‘“L WL aC, aC,

a
VB T T a0 L WL k2 WL L (40)
- a
= 4(c,-Cy) @1)

In this form, the constants of integration can be prescribed by imposing the static boundary
conditions for the relevant beam type, iligstrated in the following sub-sections for a simply
supported beam, for a beam encastré at both ends, and for a propped cantilever.

3.1. Simply supported beam subject to a uniformly distributed load

The reactions for the simply supported beam shown in Fig. 5(a) are determined from statics as:

_p WL

RO - RL - 2 ’

The expressions for the slip and slip strain are then determined using Egs. (35) and (36), and
applying the boundary conditions thaj, (z= 0) = 0 andssji; (z= L) = 0 to calculate the constants of

integrationC,; andC,. Hence,

My =M, =0 (42)

W ve-b vy Wark O
= av(e +e ) K o Z (43)
_ W_wl v(z-L) —Vz wa
Eslip = a (_e —€ )+T (44)
2
a
wherey, = ——
s k(e™ +1)

The curvature, rotation and deflection along the beam can bemile¢d from Eqgs. (37), (38) and
(39), and after simplifying these become

2
_ Y otz d’ vz gviz-1)
p= W[ 5 TSt (e )} (45)
3 2 3 2
WL AL 2 W Ld W e ey
Q_W[ 6t a Tk 2k vt )} (46)
4 3 2_2 3 2 2
= _E VLZ az _|_VL L_a u —vz v(z— L)
V= W[ 247 12 Yok 02472 kvz Le )} (47)

Fig. 6 illustrates that the results of the slip calculated using Egafd3jentical to those presented in
Johnson (1994). This behaviour is illustrated for various values of the dimensionless stiffivadssre
visdefined in Eq. (27), and in particular for the value/bf 13.61 that has been worked as a practical
example in Johnson (1994) using a stiffness of 150,000 kN/m and a connector spacing of 180 mm, Sc
thatk = 150,000/0.18 = 833x3&N/m?. The example in Johnson is based directly on the closed form
solution based on Newmark’s approach (Newmark, Siess and Viest 1951). The cross-sectional properties fc
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10.00

—&— vL=1 - based on eqn. (43)
—a—vL=10 - based on egn. (43)
——vL=13.61 - based on eqn. (43)
—3¢—vL=1 - based on Johnson {1994)
—o— yL=10 - based on Johnson (1994)
—&a— vL=13.61 - based on Johnson (1994)

Slip (mm)
\ o
8

Coordinate along beam (m)

(a) Moderate interaction

0.015

—¢-vL=100 - based on eqn. (43)

—o—-yL=500 - based on eqgn. (43)
0.010 g

—o—vL=100 - based on Johnson (1994)
—a—v[ =500 - based on Johnson (1994)

0.005

Slip (mm)
=4
8
o

-0.005 -

-0.010 -

Coordinate along beam (m)
-0.015 -

(b) High interaction

Fig. 6 Slip along a simply supported beam 10 m long subject to a uniformly distributed load

the beam adopted in the comparison are those of the worked example in Johnson (1994) and comprise
rectangular concrete element having a width of 600 mm, a depth of 300 mm and an elastic Bjodulus
=20 kN/mnt, and the corresponding values for the rectangular steel element are 60 mm width, 300 mm
depth andE, = 200 kN/mm. The beam is assumed be cast shored (Oehlers and Bradford 1995, 1999),
and to support a uniformly distributed load of 35 kN/m.

It is interesting to note that the dimensionless paranmktelerived in this paper is identical to the
dimensionless stiffnes@. introduced by Girhammar and Pan (1993) as

1

_ 0l 1 h’ E]T _
X = [kDAlE1+A2E2+I1E1+|2EZD =V (48)
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The cross-sectional properties used to deterryiire Eq. (48) are, however, calculated about the
centroid of the concrete and steel element respectivelyhargresents the distance between these
centroids, while the cross-sectional properties used to detexnaires calculated about the reference
position.

3.2. Encastré composite beam subject to a uniformly distributed load

Fig. 2, which is reproduced again in Fig. 5(b), shows a beam encastré at its ends. From the symmetr
of the loading and of the support conditions shown in Fig. 5(b)
Ry=R =% My=-M, (49)
whereR_ andM_ are the vertical reaction and the moment at the right hand support.
Applying the static boundary conditions tisgg= 0) = 0 ands(z = L) = 0, the constants of integration
that are related to the slip and the slip strain can lerrdeted as

_1evawl
Ci= oy (50)
and
_ 1 awlL
C. = g (52)

which when substituted into Egs. (35) and (36) yield the expressions of the slip and slip strain as

_ WL, ve-y e Wark O

= (e -e)- K o~ 40 (52)
wLv - _

p = T e + 53)

2

a
wherey, = ————.
*7 ok(e™ -1)
The value of the moment at the supports is calculated impéging 0) = 0, which yields.
wL?
= M= — 4
Mo = -M= =5 (54)

Eq. (54) implies that the points of coaflexure for a beam encastré at both ends are independent of
the value of the shear connection stiffness and are located at the same position as those for a beam wi
full interaction.

Using Egs. (49), (50), (51) and (54) in Egs. (40) and (41), the distribution of the curvature, slope and
deflection for an encastré beam are, respsy

2 2 2
- % Pz A % + vl (e Y+ e“’z)J (55)

p:W[ 2 12
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o= W AL Ly o] (56)

and

- E L E&Z ﬁEE aLz Yol ve-u vz vl
V'W[ 24 YOk T2z ok Ty & re e 1)} 57

3.3. Propped cantilever subject to a uniformly distributed load
The left hand end of the propped cantilewsr 0) shown in Fig. 5(c) is assumed to be fixed while the
right hand endz= L) is assumed to be a roller support. From statics,

WL
2

and so the expressions for the slip and slip strain are defined once the constants of irfzgata)
are obtained from the static boundary conditionsdfzat 0) = 0 andss(z = L) =0, as follows

R, = WL—R_, M, =0, My = — —R/L (58)

_ L
ae"VRe —w
kv 1 + e—ZVL

C = (59)

—vL
and a VR, +we”’

k v 1 + e—ZVL (60)

2:

and the expressions for the slip and slip strain are then obtained substituting Eqgs. (59) and (60) intc
Egs. (35) and (36). The longitudinal variation of the curvature, slope and deflection can then be
written respectively as

2 2
o= _v_;yzz + YRz + v_v% —RyJL + %\’ +avCe”—avCe " (61)
2 2 ~
2 74 —VZ
_ Wy YRo_s . twy _ a sz_ aC,e _aCZe - p
V= 24Z+62+DZ RyyL + kDZ y y +C1z+ G (63)
where
R 3 2 2 2 2 —vL
C,= 2w, MRy, az W+ VRy) — & wl_2d gwe +_2Vv|,_?0) (64)
24 3 Lvk 2k LVvk(1+e>"h)
and

~ a’(2we” — VR + VRy)
Cz = 2 —2uL (65)
V(L + €2

in which the value of the reaction at the fixed suppo# Q) is calculated usin§ (z=0) as
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R, = swL (5V|_4V2k—24(,72 + lZ(JZLZVZ)(e_ZVL +1) + 4826t [
8 [Bu(3a’vL®+ L k) (e + 1) + 15va’L(e > -1) O

(66)

The end reactions are therefore a function of the stiffness of the shear connection. Dimensionless
values of the vertical reactionR3/5wL are shown in Fig. 7 for different values of the dimensionless
stiffnessvL, plotted logarithmically, while the variation of the location of the point of contraflexure
aL (z = al) is shown in Fig. 8 expressed as a function of the dimensionless coeféici®lihen

the beam has full interaction, its stiffness is sensibly uniform along its length, and the vertical

1.005

1

~ 0.995
3
o
)

% 0.99

0.985

0.98 . T . . T T . y :
2 15 -1 05 0 0.5 1 1.5 2 2.5 K] 35 4
log(yL)

Fig. 7 Relationship between the reaction at the fixed support and the dimensionless stiffioess propped
cantilever subject to a uniformly distributed load

0.255

0.26
0.245
0.24

&

0.235

0.23

0.225 r T T T . r T ; : T T
2 15 -1 05 0 05 1 15 2 25 3 35 4
log(yL)

Fig. 8 Relationship between the location of the inflexion poing @) and the dimensionless stiffnags
for a propped cantilever subject to a uniformly distributed load
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reaction at the support isvll/8 (Hall and Kabaila 1986). Similarly, when the beam has a low
degree of interaction, its stiffness is again sensibly uniform along its length and acts as a non-
composite steel and concrete section with the same curvature at each cross-section, and again tt
vertical reaction is WwL/8. However, for partial interaction, the effective flexural dityi varies
along the length of the beam, and within the approximate range ®0< 10°® identified in Fig. 7,
the end reaction is less tharwh/8, with the greatest disparity being only about 2%las 1.

In the present case of the propped cantilever, as well as the previous case of an eacasirdas
been assumed that the concrete is uncracked in the negative moment rethisneféct is to be
included, the technique of this paper may be modified, so as to produce a modelling iase@ and
E; for a cracked region, and one basedEgiand Es within the uncracked region. Since the transition
from cracked to uncracked takes place at the inflexion point (if it is assumed that the consitete ten
strength is zero), the inflexion point(s) may be located by imposing the kinematic and static boundary
conditions at either side of it (them), and solving the constraint equations that result to determine its
(their) location. Within the framework of the model herein, this algorithm maydilg &mmulated and
solved numerically, but is outside the subject matter of the present paper.

4. Conclusions

A generic model for partial interaction between two elastic materials, that herein represent the
concrete slab and the steel joist in a composite steel-concrete flexural member, has been derived in thi
paper. The motivation for the form of the derivation is to present a formulation that lends itself to
simple application to a number of beam support tmmd by invoking the relevant static boundary
conditions. The kinematic boundary carahs, knowna priori for the model, are incorporated within
the generic derivation.

The model has been utilised to describe the behaviour of a simply suppatedvihose solution is
well documented, and that of statically indeterminate structures, viz. an encastré beam and a proppe
cantilever subjected to uniformly distributed loading, and closed form solutions of the deformations
and reactions for these cases have been given. The influence of the shear connection stiffness on tt
vertical reactions at the support, as well as on the location of the inflexion point, has been determined
for a propped cantilever. Owing to the general non-uniformity of a proppdikeean with partial
interaction along its length, there is a range of the dimensionless stiffness pardnostar which the
reactions and inflexion point vary. However, this variation was shown to be only slight.

The generic representation forms the basis for the techniques to investigate such material nonlinear effec
as shrinkage, creep, cracking, limit slip capacity of the shear connectors, and combinations of these.
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