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Abstract. Cantilevers are unique statically determinate structural elements with respect to their mod
overall buckling, in that the tension flange is the critical flange under gravity loading, and is the flange
deflects greatest during overall buckling. While this phenomenon does not complicate the calculation o
lateral buckling load, either theoretically or in structural design codes, it has been shown in previous res
that the influence of distortion in the elastic buckling of cantilevers is not the same as that experienced 
elastic buckling of simply supported beams. This paper extends the study of the distortional bucklin
cantilevers into the hitherto unconsidered inelastic range of structural response. A finite element metho
studying the inelastic bifurcative instability of members whose cross-sections may distort during bucklin
described, and the efficacy of the method is demonstrated. It is then used to study the inelastic disto
buckling of hot-rolled I-section cantilevers with two common patterns of residual stresses, and which ma
restrained elastically from buckling by other structural elements.
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1. Introduction

Steel cantilevers are unique statically determinate structural members in regard to their mode of
instability, since the tension flange is the flange that deflects most during buckling, in deference
compression flange that deflects most during buckling in other structural members. When pre
the strength of a cantilever based on the limit state of lateral-torsional buckling, this phenomeno
not complicate the issue as the inelastic lateral-torsional buckling load, upon which the desig
given in national standards are based, is no more difficult to determine for a cantilever than tha
simply supported member. It has been shown that when the cross-section of a member has
restraint (Bradford 1988, 1990, Ronagh et al. 2000), the assumptions upon which the lateral-torsio
buckling strength is based (primarily the Vlasov assumption of an undeformable cross-section)
best questionable. Moreover, when this assumption in Vlasov thin-walled theory is relaxed, 
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buckling studies have shown that determining the resulting lateral-distortional buckling load 
cantilever is not straightforward, either if the cantilever is unrestrained (Bradford 1992) or
restrained partially (Bradford 1998, 1999) against buckling. This paper addresses the issue
inelastic lateral-distortional buckling of cantilevers that are either unrestrained or elastically rest
against buckling.

Studies of the elastic lateral-torsional buckling of cantilevers have been widespread. Amongs
are the closed-form solution for the buckling of a doubly symmetric cantilever given in Trahair (1
and for a monosymmetric cantilever reported by Wang and Kitipornchai (1986). Anderson and T
(1972), Attard (1984) and Attard and Bradford (1990) reported experimental and theoretical stud
unrestrained cantilevers, and Assadi and Roeder (1985) conducted theoretical and experimenta
of the buckling of continuously restrained cantilevers. These studies were restricted to elastic bu
since inelastic buckling requires recourse to a consideration of yielding along the member, inc
monosymmetry induced in the cross-section due to the combined effects of in-plane bendin
residual stresses, which is difficult to model. The first study of the inelastic lateral-torsional buckl
cantilevers appears to be that of Nethercot (1973), who used the finite element method. This the
technique was an approximation, since it modelled the yielding of the cantilever along its lengt
stepped cantilever with a number of uniform elements, and this has been shown (Ronagh and B
1994) to neglect some terms that may cause a convergence to an erroneous answer.

The finite element method has been the main tool for the analysis of the distortional buckl
cantilevers, and this has been restricted hitherto to the elastic range of structural response. Ther
to be no studies of the inelastic lateral-distortional buckling of cantilevers reported in the open literatu
this aspect of applied stability theory is studied herein. A line element with 16 degrees of bu
freedom developed by the authors (Lee and Bradford 2002) is described briefly, and its applica
the buckling of cantilevers is reported in this paper. The method allows for the inclusion of re
stresses induced in the hot-rolling process for universal beams, and for continuous elastic re
against out-of-plane buckling. This finite element model is superior to existing software packag
that it does not require the discretisation of the beam topology into a large number of shell-type eleme
because it is able to include residual stresses. Some pertinent results are given, and conclus
drawn regarding the inelastic buckling of cantilevers.

2. Finite element method of buckling analysis

2.1. General

Lee and Bradford (2002) have reported a general finite element method of analysis for the in
lateral-distortional buckling of I-section members. For statically determinate members (in this
cantilever members), it requires an in-plane analysis to be undertaken, with a reference bending mom
M being subjected to a proportional loading regime under a load factor λ until uncoupled, out of plane
buckling occurs at a critical load factor λcr . By treating the lengthwise buckling of the member as 
assembly of line-type elements (whose lengthwise variation of buckling deformations are cubic polyno
each of whose cross-sections may distort during buckling, it is possible to predict the buckling lo
formulating an eigenproblem. Because of the influence of yielding, the cross-sections become monosy
under the combined effects of residual stresses and bending stresses, and since the member is 
to a bending moment that generally varies along the length of the member, the yielding rend
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2.2. In-plane analysis

A hot-rolled cross-section contains residual stresses fr that are induced during cooling, and these c
be thought of a residual strain field εr obtained by dividing the stress field fr by Young’s modulus of
elasticity E. One particular model of the residual stresses (the so-called ‘polynomial model’) is s
in Fig. 1(a). Under pure bending, a curvature ρ is developed at a cross-section, which induces bend
strains εb. Making use of the usual engineering assumption that plane sections remain plane, the
bending strain is defined as

(1)

in which y is defined in Fig. 2 and y is the coordinate of the neutral axis. The strain field can
obtained simply by superposition as

(2)

and the elastic-plastic-strain hardening stress-strain curve for mild steel shown in Fig. 3 allow
stress to be determined from

(3)

in which Et is the tangent modulus (either E, 0, or the strain hardening modulus Est that is shown in
Fig. 3). The condition of axial equilibrium requires that the axial force vanishes, so that, from Eqs
(1) and (3),

εb ρ y y–( )=

ε εb εr+=

f Eεr Etdε
εr

ε

∫+=

Fig. 1 Residual stress pattern
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ent
on, and
cross-
(4)

which uses the axial equilibrium required for the residual stresses, in which A is the area of the
cross-section. Eq. (4) may be solved at any cross-section, given a specified value of ρ in Eq. (1), to
produce the neutral axis coordinate y using the technique of False Position. The appropriate tang
modulus must be used in the elastic, plastic and strain hardened regions of the cross-secti
these may be determined in the integration in Eq. (4) that is performed analytically at the 
section level.

N E εr
A
∫ dA Et

εr

ε

∫
A
∫ dεdA 0     Et

εr

ε

∫
A
∫ dεdA==+=

Fig. 2 Deformed cross-section during buckling

Fig. 3 Constitutive modelling for mild steel
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2.3. Out-of-plane buckling analysis

A reference buckling field M is assumed first for the cantilever (depending on the loading regim
and this is factored initially by a load factor λ. Using the M-ρ relationship developed from the in-plan
analysis of the cross-section, the boundaries defining the elastic, plastic and strain hardened reg
cross-section at a selected Gaussian station along a line element within the cantilever are determine
The constitutive relationship within each of these three regions is defined by

(5)

where  and  are the generalised infinitesimal buckling stresses and strains, and D is the property
matrix that depends on the curvature ρ (and so on the load factor λ) at the cross-section. The
property matrix is given in Lee and Bradford (2002), and is based on a combination of ortho
plate theory and a flow-theory based quasi-elastic modelling that does not allow for a 
unloading from the yield surface, defined simply using the von Mises criterion under uniaxial s
The member stiffness matrix k(λ) can be determined using Eq. (5) together with a suitable st
matrix that is determined from lengthwise cubic interpolation polynomials (Lee and Bradford 2
In determining this matrix, seven-point Gaussian quadrature is used along the length of th
element. The member stiffness matrix also contains the strain energy stored during buckling
the element is subjected to a dimensionless elastic translational restraint of magnitude kt, dimensionless
elastic minor axis rotational restraint of magnitude kry and dimensionless elastic twist rotationa
restraint of magnitude kz that may be applied at either the top (T) or bottom (B) flange levels,
respectively. These restraints are shown in Fig. 4, together with the restraining actions tha
generate being applied at the flange levels.

In a similar fashion, the geometric stiffness (or stability) matrix s can be developed from a prio
knowledge of the in-plane stresses f in Eq. (3). Again, seven-point Gaussian quadrature is use
determine s, and the choice of the lengthwise polynomials (Lee and Bradford 2002) produces sti
and stability matrices that are of order 16, and which are banded. The element stiffness and stability
matrices may be assembled using familiar assembly techniques based on equilibrium and comp
into their global counterparts K and G respectively.

σ D ρ( ) ε=

σ ε

Fig. 4 Elastic restraints and actions
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To undertake the buckling analysis, the load factor λ is increased in a proportional loading schem
and the solution of the buckling problem can be expedited in some cases by doing this heuristic
the given value of λ, the matrix

(6)

is inspected. Using the technique reported in Smith et al. (1999), the matrix  is reduced to
upper triangular form by Gaussian elimination without row interchanges. The determinant |
then calculated by multiplying the diagonals of the reduced matrix, and of course the value of λ = λcr

that makes this determinant vanish is sought. This is done by noting that the number n of
eigenvalues λcr

(n) less than the trial loading level λ is equal to the number of negative diagonals in t
reduced  matrix. Once the two loading levels that bracket the first (fundamental) eigen
have been found, the method of bisections is used to converge upon the buckling solutio
predetermined tolerance in λ.

2.4. Verification

The numerical method has been firstly compared with the predictions of the elastic lateral-distortional
buckling of cantilevers reported by Bradford (1998). The cross-sectional geometry adopted wabf =
200 mm, tf = 20 mm, h = 1500 mm and tw = 10 mm, residual stresses were not included, and the y
stress fy was set to be very large to simulate elastic behaviour. Fig. 5 shows the comparison betw
elastic buckling solutions obtained from the current method using six equal-length elements, and
Bradford (1998) who also used six elements, for a cantilever of length 15 m. The elastic restraints we
non-dimensionalised as

(7)

(8)

where  is the Euler load. In Fig. 5, the tip buckling load Wd has been non-
dimensionalised with respect to the value Wod that is obtained without considering the effect of th
elastic restraint. The comparison is very close, with discrepancies of less than 0.3% being ach

Since theoretical results for the inelastic distortional buckling of cantilevers appear not to
reported hitherto, and because comparisons with experiments on members should incorpo
effects of major axis curvature that are not included in the present model (Attard and Bradford 
the method herein was used here to demonstrate the convergence of the inelastic buckling loa
Australian 200UB25.4 cross-section (BHP 1998) with E = 200 GPa, ν (Poisson’s ratio) = 0.3, fy = 250
MPa, εst = 11εy and h’ = E/Est = 33. The length of the cantilever was 1952 mm. Table 1 illustrates
convergence of the inelastic buckling solution compared with that for 20 uniform elements, and
be seen that the use of 10 uniform elements produces an error of less than 1.3% relative to the
with 20 elements for inelastic buckling. Ten uniform elements were used in the numerical s
reported in the following section.

A λ( ) K λ( ) G λ( )–=

A λ( )
A λ( )

A λ( )

αt T B,( )
kt T B,( )L

2

π2Ny

-------------------=

αry T B,( )
kry T B,( )

Ny

----------------=

Ny π2EIy L2⁄=
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3. Inelastic lateral-distortional buckling of cantilevers

The numerical method has been used to investigate the inelastic lateral-distortional buck
cantilevers. Two cross-sections were used (an Australian 610UB125 with bf = 229 mm, tf = 19.6 mm,

Fig. 5 Comparison with Bradford’s solution

Table 1 Convergence of finite element results

Number of elements (1) Tip buckling load (kN) (2) Percentage difference (3)

2 26.51255 7.3
4 27.38565 4.2
6 27.78603 2.8
8 28.06204 1.9
10 28.22642 1.3
12 28.33035 0.92
14 28.4167 0.62
16 28.48605 0.37
18 28.55185 0.14
20 28.59278 -
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h = 592.4 mm and tw = 11.9 mm and an Australian 200UC46.2 with bf = 203 mm, tf = 11.0 mm, h = 192
mm and tw = 7.3 mm), and these were assumed to be restrained fully against translation and min
rotation at the level of the top flange, but were assumed to be restrained elastically against twist 
at the level of the top flange. An idealisation of this common restraint configuration is depicted i
6, with the dimensionless torsional restraint αz being defined by

(9)

in which kz is the magnitude of the elastic twist restraint stiffness (which equals 3EIr / Lr in Fig. 6, where
Ir and Lr are the second moment of area and length of the restraint), and GJ is the Saint Venant torsiona
rigidity. The material properties adopted in the previous section where used for the analysis.

Commonly, residual stresses induced during the hot-rolling of universal shapes are described
generic types, that are dependent on the manufacturing process. In Europe and Australia, the s
polynomial model shown in Fig. 1(a) is most often used, and a prescriptive representation of this
has been given by Bradford and Trahair (1985). On the other hand, shapes rolled in North Ame
often described by the so-called simplified pattern of residual stress shown in Fig. 1(b), and pres
equations for this are well-known (Lee and Bradford 2002).

Static equilibrium of an unloaded member requires that the axial force should vanish, that the
axis bending moment should vanish, and that the minor axis bending moment should vanish. The pre
representations of both of these models satisfy these fundamental conditions of equilibrium. In mo
buckling, a ‘Wagner’ stress resultant given by

(10)

αz

kz

GJ L⁄( )
-------------------=

W  f x2 y2+( )dA
A
∫=

Fig. 6 Torsional restraint
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is encountered, and so that the inelastic and elastic solutions will coincide when the combined ef
the residual stresses and bending stresses are below yield, the Wagner parameter W should vanish.
This condition is enforced in the description of the polynomial residual stress pattern give
Bradford and Trahair (1985), but not with the usual simplified residual stress patterns (Le
Bradford 2002). So as to ensure that W = 0 for the simplified pattern, the tangent torsional rigidi
(GJ)t that is encountered in the present finite element modelling must be reduced to (GJ)t − W in the
numerical modelling. The rationale and procedure for this modification are described else
(Lee and Bradford 2002).

The results for the inelastic lateral-distortional buckling of the (compact) 610UB125 wi
concentrated tip load at the level of the top flange are given in Figs. 7 and 8 with the polynomi
simplified residual stress representations respectively, while Figs. 9 and 10 show the coun
buckling results for the 610UB125 with a uniformly distributed load at the level of the top flang
these figures, the inelastic distortional buckling moment MI has been non-dimensionalised with respe
to the plastic moment of resistance MP of the cross-section, while the length L has been non-
dimensionalised with respect to the web depth h. When αz = 0, the cantilever buckles about an enforced
axis at the level of the top flange in a lateral-torsional mode without distortion, but as αz increases the
buckling mode displays increasing cross-sectional distortion, and indeed when αz = 1000 the top flange
of the cantilever does not experience buckling deformations, and the buckling deformations 
bottom flange are accompanied by profound distortion of the web of the cross-section.

Figs. 11 and 12 show the respective counterpart plots of Figs. 7 and 10 respectively, but for th
compact) 200UC46.2 cross-section. For the deep (UB) section, it can be seen that the dist

Fig. 7 610UB125 with a concentrated load at the top 
flange (polynomial residual stresses)

Fig. 8 610UB125 with a concentrated load at th
top flange (simplified residual stresses)
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Fig. 9 610UB125 with a uniformly distributed load at the
top flange (polynomial residual stresses)

Fig. 10 610UB125 with a uniformly distributed load
at the top flange (simplified residual stresses)

Fig. 11 210UC46 with a concentrated load at the top
flange (polynomial residual stresses)

Fig. 12 210UC46 with a uniformly distributed load
at the top flange (simplified residual stresses)
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buckling solutions (shown dotted in Figs. 7 to 10) drop below the corresponding lateral buc
solutions as αz increases, as the cross-sectional distortion during buckling becomes more profoun
practical beams (say L/h < 20), a value of αz = 100 is sufficient to ensure that failure will occur by th
formation of a plastic hinge at MP (and the buckling enters the strain hardening range since MI > MP)
rather than by inelastic distortional buckling (when MI is considerably less than MP) if the beam is not
laterally restrained.

A similar trend can be observed in Figs. 11 and 12 for the non-compact UC profile. However, f
beam, the non-dimensionalised buckling loads are much higher, and buckling occurs in the
hardening range for practical beams (say L/h < 20), and so these beams will fail by the formation o
plastic hinge.

Finally, Figs. 7 to 12 allow for a comparison of the relative effects of the two patterns of res
stresses. It can be seen that while there is a quantifiable discrepancy between the b
solutions using both patterns over the range of αz, this difference can be considered as bein
negligible in practice.

4. Conclusions

This paper has used a finite element method of analysis, developed elsewhere by the aut
investigate the inelastic distortional buckling of cantilevers. The method, which is described brie
superior to other finite element packages that require discretisation into a large number of eleme
which are unable to handle the two patterns of residual stresses (the polynomial and simplified p
that were considered in this study. The so-called simplified pattern must be modified so as to en
torsional equilibrium by the incorporation of a ‘Wagner’ stress resultant. The method was shown
both efficient numerically, and accurate, by comparisons with independent studies.

Restraining the top (tension) critical flange is common in applications using I-section cantile
When the top flange is restrained fully against translation and minor axis rotation during bucklin
elastically against twist (as may occur with a roof sheeting that is very stiff in its membrane actio
flexible in its bending action), the restraint has a profound effect on the inelastic distortional buckling of
the cantilever. This buckling is accompanied by increasing cross-sectional distortion as the to
restraint applied at the top flange level increases, and for the two I-section profiles conside
universal beam section and a universal column section), the restraint may inhibit overall bu
entirely for practical beam lengths, so that failure occurs due to the formation of a plastic hing

While the patterns of residual stresses depend on the mode of manufacture, the two common
(the polynomial pattern and the simplified pattern), although quite different in their magnitude a
their distributions across the cross-section, were shown to produce within the scope of practical
the same buckling solutions for unrestrained cantilevers and for elastically restrained cantilev
Because of this, it can be concluded that the influence of the different types of residual stresses
ignored in practice.
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