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Inelastic distortional buckling of cantilevers
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Abstract.  Cantilevers are unique statically determinate structural elements with respect to their mode of
overall buckling, in that the tension flange is the critical flange under gravity loading, and is the flange that
deflects greatest during overall buckling. While this phenomenon does not complicate the calculation of the
lateral buckling load, either theoretically or in structural design codes, it has been shown in previous research
that the influence of distortion in the elastic buckling of cantilevers is not the same as that experienced in the
elastic buckling of simply supported beams. This paper extends the study of the distortional buckling of
cantilevers into the hitherto unconsidered inelastic range of structural response. A finite element method for
studying the inelastic bifurcative instability of members whose cross-sections may distort during buckling is
described, and the efficacy of the method is demonstrated. It is then used to study the inelastic distortional
buckling of hot-rolled I-section cantilevers with two common patterns of residual stresses, and which may be
restrained elastically from buckling by other structural elements.
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1. Introduction

Steel cantilevers are unique statically determinate structural members in regard to their mode of overal
instability, since the tension flange is the flange that deflects most during buckling, in deference to the
compression flange that deflects most during buckling in other structural members. When predicting
the strength of a cantilever based on the limit state of lateral-torsional buckling, this phenomenon does
not complicate the issue as the inelastic lateral-torsional buckling load, upon which the design rules
given in national standards are based, is no more difficult to determine for a cantilever than that for a
simply supported member. It has been shown that when the cross-section of a member has partic
restraint (Bradford 1988, 1990, Ronaghal. 2000), the assumptions upon which the lateral-torsional
buckling strength is based (primarily the Vlasov assumption of an undeformable cross-section) are at
best questionable. Moreover, when this assumption in Vlasov thin-walled theory is relaxed, elastic
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buckling studies have shown that determining the resulting lateral-distortional buckling load for a
cantilever is not straightforward, either if the cantilever is unrestrained (Bradford 1992) or if it
restrained partially (Bradford 1998, 1999) against buckling. This paper addresses the issue of the
inelastic lateral-distortional buckling of cantilevers that are either unrestrained or elastically restrained
against buckling.

Studies of the elastic lateral-torsional buckling of cantilevers have been widespread. Amongst these
are the closed-form solution for the buckling of a doubly symmetric cantilever given in Trahair (1993),
and for a monosymmetric cantilever reported by Wang and Kitipornchai (1986). Anderson and Trahair
(1972), Attard (1984) and Attard and Bradford (1990) reported experimental and theoretical studies on
unrestrained cantilevers, and Assadi and Roeder (1985) conducted theoretical and experimental studie
of the buckling of continuously restrained cantilevers. These studies were restricted to elastic buckling,
since inelastic buckling requires recourse to a consideration of yielding along the member, including
monosymmetry induced in the cross-section due to the combined effects of in-plane bending and
residual stresses, which is difficult to model. The first study of the inelastic lateral-torsional buckling of
cantilevers appears to be that of Nethercot (1973), who used the finite element method. This theoretica
technique was an approximation, since it modelled the yielding of the cantilever along its length as a
stepped cantilever with a number of uniform elements, and this has been shown (Ronagh and Bradforc
1994) to neglect some terms that may cause a convergence to an erroneous answer.

The finite element method has been the main tool for the analysis of the distortional buckling of
cantilevers, and this has been restricted hitherto to the elastic range of structural response. There appe
to be no studies of the inelastic lateral-distortional buckling of cantilevers reported in the open literature, and
this aspect of applied stability theory is studied herein. A line element with 16 degrees of buckling
freedom developed by the authors (Lee and Bradford 2002) is described briefly, and its application to
the buckling of cantilevers is reported in this paper. The method allows for the inclusion of residual
stresses induced in the hot-rolling process for universal beams, and for continuous elastic restraints
against out-of-plane buckling. This finite element model is superior to existing software packages, in
that it does not require the discretisation of the beam topology into a large number of shell-type elements, ant
because it is able to include residual stresses. Some pertinent results are given, and conclusions al
drawn regarding the inelastic buckling of cantilevers.

2. Finite element method of buckling analysis
2.1. General

Lee and Bradford (2002) have reported a general finite element method of analysis for the inelastic
lateral-distortional buckling of I-section members. For statically determinate members (in this case
cantilever members), it requires an in-plane analysis to be undertaken, with a reference bending moment fiels
M being subjected to a proportional loading regime under a load faatail uncoupled, out of plane
buckling occurs at a critical load factdy; . By treating the lengthwise buckling of the member as an
assembly of line-type elements (whose lengthwise variation of buckling deformations are cubic polynomials),
each of whose cross-sections may distort during buckling, it is possible to predict the buckling load by
formulating an eigenproblem. Because of the influence of yielding, the cross-sections become monosymmetric
under the combined effects of residual stresses and bending stresses, and since the member is subjeci
to a bending moment that generally varies along the length of the member, the yielding renders the
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(a) polynomial residual stresses (b) simplified residual stresses

Fig. 1 Residual stress pattern

member lengthwise as nonuniform.
2.2. In-plane analysis

A hot-rolled cross-section contains residual strekgsat are induced during cooling, and these can
be thought of a residual strain fiedd obtained by dividing the stress fiefldby Young’s modulus of
elasticityE. One particular model of the residual stresses (the so-called ‘polynomial model’) is shown
in Fig. 1(a). Under pure bending, a curvatans developed at a cross-section, which induces bending
strains &. Making use of the usual engineering assumption that plane sectimagnrplane, the
bending strain is defined as

& = p(y-9) (1)

in which y is defined in Fig. 2 ang is the coordinate of the neutral axis. The strain field can be
obtained simply by superposition as

E= &+ & (2)

and the elastic-plastic-strain hardening stress-strain curve for mild steel shown in Fig. 3 allows the
stress to be determined from

&
f = Eg +1[Etds 3)

in which E; is the tangent modulus (eithEr O, or the strain hardening modulls that is shown in
Fig. 3). The condition of axial equilibrium requires that the axietdosanishes, so that, from Egs.
(1) and (3),
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Fig. 2 Deformed cross-section during buckling
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Fig. 3 Constitutive modelling for mild steel
& &
N = E)[srdA+7[z|’ EdedA= 0 = _[_[EtdsdA (4)
T AEI’

which uses the axial equilibrium required for the residual stresses, in Whisththe area of the
cross-section. Eqg. (4) may be solved at any cross-section, given a specified yainekaf. (1), to
produce the neutral axis coordingteusing the technique of False Position. The appropriate tangent
modulus must be used in the elastic, plastic and strain hardened regions of the cross-section, an
these may be determined in the integration in Eq. (4) that is performed analytically at the cross-

section level.
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2.3. Out-of-plane buckling analysis

A reference buckling fiel# is assumed first for the cantilever (depending on the loading regime),
and this is factored initially by a loddctor A. Using theM-p relationship developed from the in-plane
analysis of the cross-section, the boundaries defining the elastic, plastic and strain hardened regions at
cross-section at a selected Gaussian station along admerl within the cantilever are determined.

The constitutive relationship within each of these¢hregions is defined by

g=D(p¢ (5)

whered andé are the generalised infinitesimal buckling stresses and strain, iartie property

matrix that depends on the curvatye(and so on the load factay) at the cross-section. The
property matrix is given in Lee and Bradford (2002), and is based on a combination of orthotropic
plate theory and a flow-theory based quasi-elastic modelling that does not allow for a finite
unloading from the yield surface, defined simply using the von Mises criterion under uniaxial stress.
The member stiffness matri(A) can be determined using Eq. (5) together with a suitable strain
matrix that is determined from lengthwise cubic interpolation polynomials (Lee and Bradford 2002).
In determining this matrix, seven-point Gaussian quadrature is used along the length of the line
element. The member stiffness matrix also contains the strain energy stored during buckling when
the element is subjected to a dimensionless elastic translational restraint of mdgnaitimensionless

elastic minor axis rotational restraint of magnitudg and dimensionless elastic twist rotational
restraint of magnitudé, that may be applied at either the tdp or bottom B) flange levels,
respectively. These restraints are shown in Fig. 4, together with the restraining actions that they
generate being applied at the flange levels.

In a similar fashion, the geometric stiffness (or stability) matrixan be developed from a prior
knowledge of the in-plane stresdesm Eg. (3). Again, seven-point Gaussian quadrature is used to
determines, and the choice of the lengthwise polynomials (Lee and Bradford 2002) produces stiffness
and stability matrices that are of order 16, and which are banded. érhenglstiffness and stability
matrices may be assembled using familiar assembly techniques based on equilibrium and compatibility
into their global counterpart§ andG respectively.
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Fig. 4 Elastic restraints and actions
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To undertake the buckling analysis, the load fagtar increased in a proportional loading scheme,
and the solution of the buckling problem can be expedited in some cases by doing this heuristically. At
the given value of\, the matrix

A(A) = K(2) -G(A) (6)

is inspected. Using the technique reported in Sreittal. (1999), the matrixA(A) is reduced to
upper triangular form by Gaussian elimination without row interchanges. The deterndifant | | is
then calculated by multiplying the diagonals of the reduced matrix, and of course the vhleeAgf

that makes this determinant vanish is sought. This is done bggnthat the numben of
eigenvaluesi, " less than the trial loading levalis equal to the number of negative diagonals in the
reducedA(A) matrix. Once the two loading levels that bracket the first (fundamental) eigenvalue
have been found, the method of bisections is used to converge upon the buckling solution to a
predetermined tolerance

2.4. Verification

The numerical method has been firstly compared with the predictions of stie ketegeral-distortional
buckling of cantilevers reported by Bradford (1998). The cross-sectional geometry adopted-was
200 mmyt; = 20 mmh = 1500 mm and, = 10 mm, residual stresses were not included, and the yield
stresdy was set to be very large to simulate elastic behaviour. Fig. 5 shows the comparison between the
elastic buckling solutions obtained from the current method using six equal-length elements, and that of
Bradford (1998) who also used six elements, forrdileaer of length 15 m. The elastic restraints were
non-dimensionalised as

kirg)L” -

Qyt,B) = 2N
y

k( )
Qry(r,B) = rNTy’B (8)

where N, = 7PEI,/L® is the Euler load. In Fig. 5, the tip buckling load has been non-
dimensionalised with respect to the valldg that is obtained without considering the effect of the
elastic restraint. The comparison is very close, with discrepancies of less than 0.3% being achieved.
Since theoretical results for the inelastic distortional buckling of cantilevers appear not to have
reported hitherto, and because comparisons with experiments on members should incorporate the
effects of major axis curvature that are not included in the present model (Attard and Bradford 1990),
the method herein was used here to demonstrate the convergence of the inelastic buckling load of a
Australian 200UB25.4 cross-section (BHP 1998) vidth 200 GPay (Poisson’s ratio) = 0.3, = 250
MPa, & = 115, andh’ = E/Es; = 33. The length of the cantilever was 1952 mm. Table 1 illustrates the
convergence of the inelastic buckling solution compared with that for 20 uniform elements, and it can
be seen that the use of 10 uniform elements produces an error of less than 1.3% relative to the solutio
with 20 elements for inelastic buckling. Ten uniform elements were used in the numerical studies
reported in the following section.
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Fig. 5 Comparison with Bradford’s solution

Table 1 Convergence of finite element results

Number of elements (1) Tip buckling load (kN) (2) Percentage difference (3)

2 26.51255 7.3
4 27.38565 4.2
6 27.78603 2.8
8 28.06204 1.9
10 28.22642 13
12 28.33035 0.92
14 28.4167 0.62
16 28.48605 0.37
18 28.55185 0.14
20 28.59278 -

3. Inelastic lateral-distortional buckling of cantilevers

The numerical method has been used to investigate the inelastic lateral-distortional buckling of
cantilevers. Two cross-sections were used (an Australian 610UB125;with?9 mm¢{; = 19.6 mm,
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minor axis rotational restraint (membrane
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Fig. 6 Torsional restraint

h=592.4 mm and}, = 11.9 mm and an Australian 200UC46.2 vithe 203 mm{; = 11.0 mmh =192

mm andt, = 7.3 mm), and these were assumed to be restrained fully against translation and minor axis
rotation at the level of the top flange, but were assumed to be restrained elastically against twist rotatior
at the level of the top flange. An idealisation of this common restraint configuration is depicted in Fig.
6, with the dimensionless torsional restraipteing defined by

a, = ke
27 (GJ/L)

in whichk; is the magnitude of the elastic twist restraint stiffness (which ega&lsL3in Fig. 6, where
I, andL, are the second moment of area and length of the restrainfgJdedhe Saint Venant torsional
rigidity. The material properties adopted in the previous section where used for the analysis.

Commonly, residual stresses induced during the hot-rolling of universal shapes are described by twc
generic types, that are dependent on the manufacturing process. In Europe and Australia, the so-calle
polynomial model shown in Fig. 1(a) is most often used, and a prescriptive representation of this model
has been given by Bradford and Trahair (1985). On the other hand, shapes rolled in North America are
often described by the so-called simplified pattern of residual stress shown in Fig. 1(b), and prescriptive
equations for this are well-known (Lee and Bradford 2002).

Static equilibrium of an unloaded member requires that the axial force should vanish, that the major
axis bending moment should vanish, and that the minor axis bending moment should vanish. The prescriptiv
representations of both of these models satisfy these fundamental conditions of equilibrium. In modelling
buckling, a ‘Wagner’ stress resultant given by

(9)

W = 7[ (2 +y*)dA (10)
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is encountered, and so that the inelastic and elastic solutions will coincide when the combined effects o
the residual stresses and bending stresses are below yield, the Wagner pakasheteld vanish.

This condition is enforced in the description of the polynomial residual stress pattern given by
Bradford and Trahair (1985), but not with the usual simplified residual stress patterns (Lee and
Bradford 2002). So as to ensure thét= 0 for the simplified pattern, the tangent torsional rigidity
(GJ) that is encountered in the present finite element modelling must be reducg); toW in the
numerical modelling. The rationale and procedure for this modification are described elsewhere
(Lee and Bradford 2002).

The results for the inelastic lateral-distortional buckling of the (compact) 610UB125 with a
concentrated tip load at the level of the top flange are given in Figs. 7 and 8 with the polynomial and
simplified residual stress representations respectively, while Figs. 9 and 10 show the counterpart
buckling results for the 610UB125 with a uniformly distributed load at the level of the top flange. In
these figures, the inelastic distortional buckling monirttas been non-dimensionalised with respect
to the plastic moment of resistant& of the cross-section, while the lengthhas been non-
dimensionalised with respect to the web dépthena, = 0, the cantilever buckles about an ecéal
axis at the level of the top flange in a lateral-torsional mode without distortion, butresseases the
buckling mode displays increasing cross-sectional distortion, and indeednwh&®00 the top flange
of the cantilever does not experience buckling deformations, and the buckling deformations of the
bottom flange are accompanied by profound distortion of the web of the cross-section.

Figs. 11 and 12 show the respective counterpart plots of Figs. 7 and 10 respectively, but for the (non-
compact) 200UC46.2 cross-section. For the deep (UB) section, it can be seen that the distortional
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buckling solutions (shown dotted in Figs. 7 to 10) drop below the corresponding lateral buckling
solutions asx; increases, as the cross-sectional distortion during buckling becomes more profound. For
practical beams (sdyh < 20), a value ofr, = 100 is sufficient to ensure that failure will occur by the
formation of a plastic hinge &1 (and the buckling enters the strain hardening range BneeMp)

rather than by inelastic distortional buckling (whénis considerably less thav) if the beam is not
laterally restrained.

A similar trend can be observed in Figs. 11 and 12 for the non-compact UC profile. However, for this
beam, the non-dimensionalised buckling loads are much higher, and buckling occurs in the strain
hardening range for practical beams (k#ly< 20), and so these beams will fail by the formation of a
plastic hinge.

Finally, Figs. 7 to 12 allow for a comparison of the relative effects of the two patterns of residual
stresses. It can be seen that while there is a quantifiable discrepancy between the buckling
solutions using both patterns over the rangexgpfthis diference can be considered as being
negligible in pactice.

4. Conclusions

This paper has used a finite element method of analysis, developed elsewhere by the authors, t
investigate the inelastic distortional buckling of cantilevers. The method, which is described briefly, is
superior to other finite element packages that require discretisation into a large number of elements, an
which are unable to handle the two patterns of residual stresses (the polynomial and simplified patterns
that were considered in this study. The so-called simplified pattern must be modified so as to enforce &
torsional equilibrium by the incorporation of a ‘Wagner’ stress resultant. The method was shown to be
both efficient numerically, and accurate, by comparisons with independent studies.

Restraining the top (tension) critical flange is common in applications using I-section cantilevers.
When the top flange is restrained fully against translation and minor axis rotation during buckling, but
elastically against twist (as may occur with a roof sheeting that is very stiff in its membrane action, but
flexible in its bending action), the restraint has a profound effect on thetin@stortional buckling of
the cantilever. This buckling is accompanied by increasing cross-sectional distortion as the torsional
restraint applied at the top flange level increases, and for the two I-section profiles considered (a
universal beam section and a universal column section), the restraint may inhibit overall buckling
entirely for practical beam lengths, so that failure occurs due to the formation of a plastic hinge.

While the patterns of residual stresses depend on the mode of manufacture, the two common model
(the polynomial pattern and the simplified pattern), although quite different in their magnitude and in
their distributions across the cross-section, were shown to produce within the scope of practical desigr
the same buckling sdions for unrestrained cantilevers and for elastically restrained cantilevers.
Because of this, it can be concluded that the influence of the different types of residual stresses may b
ignored in practice.
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