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1. Introduction 

 

Structural Health Monitoring (SHM) is defined as the 

process of gathering adequate information that allows 

detecting, locating and quantifying structural vulnerabilities 

early on fatigue cracking, degradation of boundary 

conditions, etc, thereby improving the resilience of the civil 
infrastructure (Boller et al. 2009). 

Large-scale civil engineering structures, including 

buildings, bridges, dams, and pipelines, are lifelines for 

economic and social needs. Assessing their conditions and 

timely maintenance/ mitigation is critical for structural 

health monitoring to ensure their health, extend their service 

life, and ultimately enhance the level of public safety 

(Farrar and Worden 2012). Wireless sensor networks 

demonstrated great potential for full-spectrum SHM of the 

large-scale civil infrastructures (Alonso et al. 2018, Worden 

et al. 2007). These advanced sensor technologies are 

capable of collecting massive amounts of data. 

Significant efforts on structural health monitoring have 

been extensively undertaken (Boller et al. 2009, 

Deraemaeker and Worden 2012, Farrar and Worden 2012). 

These studies could be mainly classified in two categories: 

(a) physics-based approaches which are based on vibratory 

characteristics of structural systems including natural 
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frequency, mode and curvature (An et al. 2015, Ghiasi et al. 

2016, 2017, Nobahari et al. 2017); and (b) data-driven 

approaches which extract sensitive features from sensor 

data to assess the structural conditions (Figueiredo et al. 

2009, Krishnan et al. 2018, Malekzadeh et al. 2015, Wang 

and Cha 2017, 2018). 

However, some of these studies may suffer three 

weaknesses as follows: 

First, these approaches have not been implemented to 

remove the operational and environmental effects 

aggregated in extracted features; rather, they have been used 

to classify directly the extracted features in a supervised 

way, i.e., when data from the undamaged and damaged 

conditions are available. However, for most civil 

engineering infrastructures, where SHM systems are 

applied, the unsupervised learning algorithms are often 

required because only data from the undamaged condition 

are available (Cha and Wang 2017, Lei et al. 2016, Cha et 

al. 2017). 

Second, the complexity and heterogeneity of the sensor 

data, post great challenges to data analysis for structural 

health monitoring and damage detection. Thus, it is in high 

demand in mining in-situ big data recorded from these large 

civil infrastructures and extracting sensitive features for 

damage detection (Deraemaeker and Worden 2012, Gui et 

al. 2017). 

Third, traditional artificial intelligent techniques are 

unable to extract and organize the discriminative 

information from raw data directly. So lots of the actual 

efforts in intelligent diagnosis methods goes into the design 
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Fig. 1 Intelligent health monitoring framework 

 

 
of feature extraction algorithms in order to obtain the 

representative features from the signals. Such processes 

take advantage of human ingenuity but largely depend on 

much prior knowledge about signal processing techniques 

and diagnostic expertise, which is time-consuming and 

labor- intensive (Jia et al. 2016). Furthermore, lacking a 

comprehensive understanding of structural big data, it is 

often difficult to ensure the extracted features carrying 

optimal information to classify the mechanical faults. Thus, 

diagnosticians need to spend lots of time in analyzing these 

data and grasping their properties, being rather a tough task. 

To overcome these weaknesses, a new two-stage 

framework for intelligent health monitoring of structure is 

presented here, as shown in Fig. 1(b). In this framework, the 

features are directly learned from structural raw signals and 

a classifier is used to classify the structural damage based 

on these learned features. The highlight of the framework is 

that the features are learned from the raw signals using a 

general-purpose learning procedure instead of being 

extracted by diagnosticians. The new framework releases 

the researcher from the tough tasks of designing feature 

extraction algorithms and it makes it easier to build a 

diagnosis system, therefore being more intelligent than the 

traditional one (Fig. 1(a)). 

In the first stage of the proposed framework, Nyström 

method is used for automatic feature extraction from an 

array of accelerometers, when the structure operates in 

different structural state conditions (Yang et al. 2012). Then 

in the second stage, an unsupervised learning technique 

using moving kernel principal component analysis 

(MKPCA) is adapted for data normalization and damage 

detection. MKPCA is a revision of classical KPCA to make 

it more practical for long-term SHM. It models the effects 

of the operational and environmental variability on the 

extracted features. The algorithm produces a scalar output 

as a damage index, which should be nearly invariant when 

features are extracted from the normal condition. Finally, 

DIs from the feature vectors of the test data are classified 

through a threshold defined, based on the 95 percent cut-off 

value over the training data. 

Fundamentally, PCA is a multivariable statistical 

method, based on the assumption of linearity in sets of 

variables. To some extent, many systems show a certain 

degree of nonlinearity and/or non-stationarity, and PCA 

may then overlook useful information on the nonlinear 

behavior of the system (Nguyen and Golinval 2010). As 

reported by Farrar et al. (2007), there are many types of 

damages that make an initially linear structural system 

respond in a nonlinear manner. Therefore, the detection 

problem necessitates methods that are able to study 

nonlinear systems, a reason for which motivate us to use 

KPCA. 

KPCA is a nonlinear extension of PCA built to authorize 

features with nonlinear dependence among variables 

(Santos et al. 2016). Two main concerns inspired us to 

revise classical KPCA; one is the delay in damage detection 

and the other is the computational time issue (Cao et al. 

2003). MKPCA, proposed in this paper, is to address and 

resolve these issues. It divides the large data into segments 

continuously collected and determines the sudden changes 

in windowed scheme. 

Worden et al. (2007) have formulated seven axioms for 

SHM that capture general aspects that have emerged in 

several decades of experience. The following are two that 

are particularly relevant to this paper. 

Axiom IVa: Sensors cannot measure damage. Feature 

extraction through signal processing and statistical 

classification is necessary to convert sensor data into 

damage information. 

Axiom IVb: Without intelligent feature extraction, the 

more sensitive a measurement is to damage, the more 

sensitive it is to changing operational and environmental 

conditions. 

The contributions of this paper are summarized as 

follows: 
 

(1) Following the new intelligent health-monitoring 

framework, a two-stage learning method proposed 

in this paper. In the first learning stage, Nyström 

method is used to learn representative features from 

the structural vibration signals. Then in the second 

learning stage, MKPCA is trained to automatically 

classify the structural health conditions. Because of 

using an unsupervised scheme to learn the features, 

the proposed method does not depend on prior 

knowledge and human labor and may be more 

suitable for processing massive signals in the field 

of structural health monitoring. 

(2) The performance of MKPCA is evaluated through 

receiver operating characteristic (ROC) curves. Its 

effectiveness is compared with several studies in the 

literature. ROC curves are used to determine 

performance on the basis of Type I/Type II error 

trade-offs. In SHM, in the context of damage 

detection, Types I and II errors are a false-positive 

and false-negative indication of damage, 
respectively (Santos et al. 2016). 

(3) Another aim of the present work is to address the 

detection of nonlinear damage in civil structures 

using output-only measurements. The process of 

implementing nonlinear damage on a test bed 

structure will be explained in subsection 5.1. The 

detection is realized by comparing the reference and 

a current state of the system based on MKPCA 

output through the concept of subspace angle 

(Golub and Van Loan 1996). 
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The layout of the paper is as follows. First, 

mathematical description of the Nyström method  will be 

explained. Next, the PCA method is reviewed briefly as it 

constitutes the starting point of the method. The kernel PCA 

method is described later to deal with nonlinear systems and 

the concept of subspace angle is introduced for damage 

detection purposes. Section 4 describes the flowchart of the 

proposed method. It combines the KPCA method with a 

windowed scheme in order to increase the sensitivity to 

damages. A description of the testbed structure, the 

simulated operational and environmental variability, and a 

summary of the data sets will be provided in Sub-Section 

5.1. In 5.2, a comprehensive study is carried out using 

features extracted from time-series data sets measured with 

accelerometers deployed on the test bed structure. Finally, 

Section 6 highlights a discussion on the implementation and 

the analyses carried out in this paper, as a result of which 

some concluding remarks will be presented. 

 

 

2. Automatic feature extraction by Nyström 
method 
 

Automatic Feature Extraction (AFE) is a technique by 

which approximate eigenfunctions are deducted from gram 

matrices constructed via kernel functions. These 

eigenfunctions are features, engineered by a particular 

kernel (Golub and Van Loan 1996, Williams and Seeger 

2001). 

 

2.1 Mathematical background of Nyström method 
 

Let 𝑋𝑘 ∈ ℝ𝑑 , 𝑘 = 1, … , 𝑛 be a random sample drawn 

from a distribution 𝐹(𝑥) and 𝐶 ∈ ℝ𝑑  be a compact set 

such that, ℋ = ℒ2(𝐶) is a Hilbert space of functions given 

by the following inner product 

 

 𝑓, 𝑔 ℋ =  𝑓 𝑥 𝑔 𝑥 𝑑𝐹(𝑥) (1) 

 

Automatic Feature Extraction (AFE) using the Nyström 

method (Nyström 1930) aims at finding a finite dimensional 

approximation to the kernel eigenfunction expansion of 

Mercer kernels, as shown below. 

 

𝐾 𝑥, 𝑡 =  𝜆𝑖𝜙(𝑥)𝜙(𝑡)

𝑖

 (2) 

 

It is well known that Mercer kernels form a 

Reproducing Kernel Hilbert Space (RHKS) of functions 

(Rosipal and Trejo 2001). Every Mercer kernel defines a 

unique RHKS of functions as shown by the Moore-

Aronszajn theorem (Aronszajn 1950). For a more involved 

treatment of RHKS and their applications, the reader may 

refer to the book written by Berlinet and Thomas-Agnan 

(2011). 

Further, let 𝑀(ℋ, ℋ) be a class of linear operators 

from ℋ to ℋ. Mercer's theorem (Mercer 1909) states that 

the spectral decomposition of the integral operator of 𝐾, 

𝒯 ∈ 𝑀(ℋ, ℋ)  defined below, yields the eigenfunctions 

which span the RHKS generated by 𝐾 and having an inner 

product defined as Eq. (2). 

 

 𝒯𝜙𝑖  𝑡 =  𝐾 𝑥, 𝑡 𝜙 𝑥 𝑑𝐹(𝑥) (3) 

 

Eq. (3) is more common, known as the Fredholm 

integral equation of the first kind (Pérez-Rendón and Robles 

2004). Nyström's method approximates this integral using 

the quadrature constructed by considering a finite kernel 

matrix constructed out of a prototype set 𝑋𝑘 , 𝑘 = 1, … , 𝑚. 

It calculates its spectral decomposition consisting of 

eigenvalues 𝜆𝑘  and eigenvectors 𝑢𝑘 . This yields an 

expression for the approximate non-linear feature map 

𝜙 : ℝ𝑑 → ℝ𝑚  

 

𝜙 𝑖 𝑡 =
 𝑚

𝜆𝑖
 𝐾 𝑋𝑘 , 𝑡 𝑢𝑘,𝑖

𝑚

𝑘=1

 (4) 

 

 

3. Principal component analysis (PCA) 
 

PCA is known as Karhunen-Loève transform or Proper 

Orthogonal Decomposition (POD) (Krzanowski 2000). For 

a dynamical system, a set of vibration features identified at 

a time 𝑡 can be represented by the n-dimensional vector 

𝑥𝑘(𝑘 = 1, … , 𝑀), where 𝑀 is the number of samplings and 

𝑛 is the number of output sensors. All the samples are 

collected in the observation matrix 𝑋 ∈ ℜ𝑛× 𝑀. In general, 

PCA involves a data normalization procedure that leads to 

variables with zero-mean and unitary standard deviation. 

PCA provides a linear mapping of data from the original 

dimension 𝑛  to a lower dimension 𝑝  using the trans-

formation (Yan et al. 2005) 

 

𝑌 = 𝑇𝑋 (5) 

 

where 𝑌 ∈ ℜ𝑝× 𝑀 is called the score matrix and 𝑇 ∈ ℜ𝑝× 𝑛  

is the loading matrix. The dimension 𝑝  represents the 

physical order of the system or the number of principal 

components affecting the vibration features. The loading 

matrix may be found from the main 𝑝 eigenvectors of the 

covariance matrix 𝑋. In practice, PCA is often computed by 

Singular Value Decomposition (SVD) of the covariance 

matrix, i.e. 
 

𝑋𝑋𝑇 = 𝑈 𝑈𝑇 (6) 

 

where 𝑈 is an orthonormal matrix whose columns define 

the principal components (PCs) and form a subspace 

spanning the data. Under certain assumptions, PCs in the 

matrix 𝑈 may represent the vibration modes of the system 

(Feeny and Kappagantu 1998). As described in De Boe 

(2003) the order 𝑝 of the system is determined by selecting 

the first 𝑝  singular values in ∑  having a significant 

magnitude (energy). The effective number of PCs that is 

necessary for a good representation of the observation 

matrix 𝑋 chosen based on of cumulated energies threshold. 

For practical purposes, a cumulated energy of 75% to 95% 
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is generally adequate for the selection of the active PCs 

(Nguyen and Golinval 2010). 

 

3.1 Kernel Principal Component Analysis (KPCA) 
 

The definitions and formulation presented here follow 

closely the ones described in De Boe (2003) and He et al. 

(2007). The reader may refer to these references for further 

details. 

The key idea of KPCA is first to define a nonlinear map 

𝑥𝑘𝜙(𝑥𝑘)with 𝑥𝑘 ∈ ℜ𝑛 , (𝐾 = 1, … , 𝑀) which represents a 

high-dimensional feature space 𝐹, and then to apply PCA 

to the data in space 𝐹. With the assumption of centered 

data, i.e., ∑ 𝜙 𝑥𝑖 = 0𝑀
𝑖=1 , the covariance matrix in the 

space 𝐹 is given by 

 

𝐶 =
1

𝑀
 𝜙 𝑥𝑖 𝜙 𝑥𝑖 

𝑇

𝑀

𝑖=1

 (7) 

 

Principal components may be extracted next to solving 

the eigenvalue equation 

 

𝜆𝑉 = 𝐶𝑉 (8) 

 

By defining the kernel matrix 𝐾 of dimension 𝑀 × 𝑀 

such that (Scholkopf et al. 1999) 

 

𝐾 𝑥𝑖 , 𝑥𝑗  = 𝜙 𝑥𝑖 
𝑇𝜙 𝑥𝑗  = 𝜙 𝑥𝑖 . 𝜙 𝑥𝑗   (9) 

 

The eigenvalue problem may be put in the form 

 

𝑀𝜆𝛼 = 𝐾𝛼 (10) 

 

where 𝛼  identifies the eigenvector 𝑉  after 

normalization. The dynamical system characterized by the 

eigenvectors recognized in the feature space 𝐹 and these 

eigenvectors can be considered as kernel principal 

components (KPCs). Note that, since the number of 

eigenvectors (i.e., nonlinear PCs) is the same as the number 

of samples, it is higher than the number of (linear) PCs 

given by PCA. The KPCA method is termed „„nonlinear‟‟ 

since the feature mapping in the space 𝐹 is achieved by a 

nonlinear function. The nonlinear property, extracted KPCs, 

should be able to reflect nonlinear or high order features to 

permit representation and classification of varied states. 

KPCA has the aptitude to use more nonlinear PCs to collect 

structural features than noise (Scholkopf et al. 1999). KPCA 

kernel can be chosen from a various function such as 

follows (Schölkopf et al. 1998): 
 

 polynomial kernel, 
 

𝐾 𝑥𝑖 , 𝑥𝑗  =  𝑥𝑖 . 𝑥𝑗 + 1 
𝑑

, where 𝑑 is a positive 

integer; 
 

 radial basis function (RBF), 
 

𝐾 𝑥𝑖 , 𝑥𝑗  = exp(− 𝑥𝑖 − 𝑥𝑗 
2

2𝜎2 ), where 2𝜎2 = 𝛾 

is the width of the Gaussian kernel. 

In general, the above kernel functions give similar 

results if proper parameters are chosen. For instance, the 

width of the Gaussian kernel can be very small (< 1) or 

quite large. Therefore, the radial basis function present 

advantages owing to its flexibility in choosing the 

associated parameter. In contrast, the polynomial kernel 

requires a positive integer for the exponent. 

 

3.2 Detection based on the concept of subspace 
angle 

 

PCs define a subspace (or hyperplane) that characterizes 

the dynamic behavior of the system based on the active 

principal components. A change in the system modifies 

consequently its dynamic state and affects the subspace 

spanned by the PCs. This change may be estimated using 

the concept of subspace angle introduced by Golub and Van 

Loan (1996). Given two subspaces (each with linear 

independent columns) 𝑆 ∈ ℜ𝑛× 𝑝  and 𝐷 ∈ ℜ𝑛× 𝑞(𝑝 > 𝑞) , 

the procedure is as follows. Carry out the QR factorizations 

(Van Overschee and De Moor 2012) 

 
𝑆 = 𝒬𝑆𝑅𝑆; 𝐷 = 𝒬𝐷𝑅𝐷(𝒬𝑆 ∈ ℜ𝑛× 𝑝 , 𝒬𝐷 ∈ ℜ𝑛× 𝑞) (11) 

 
The columns of 𝒬𝑆  and 𝒬𝐷  define the orthonormal 

bases for 𝑆 and 𝐷, respectively. The angles 𝜃𝑖  between 

the subspaces 𝑆 and 𝐷 are computed from singular values 

associated with the product 𝒬𝑆
𝑇𝒬𝐷 

 

𝒬𝑆
𝑇𝒬𝐷 = 𝑈𝑆𝐷  

𝑆𝐷
𝑉𝑆𝐷

𝑇 ;  
𝑆𝐷

 

= 𝑑𝑖𝑎𝑔 (cos(𝜃𝑖)); 𝑖 = 1, … , 𝑞 
(12) 

 

The largest singular value is thus related to the largest 

angle characterizing the geometric difference between the 

two subspaces. 

In SHM domain, damage may be detected by 

monitoring the angular coherence between subspaces 

estimated from the training and monitoring sets of the 

structure. A state is considered as a training set (reference 

state) if the system operates in normal conditions and 

damage does not exist in structure (i.e., nonlinearity is not 

activated). In addition, the monitoring set shows the current 

state of the system. Fig. 2 shows a 2D example in which an 

active subspace (or hyperplane) is built from two principal 

components. 

 

 

Fig. 2 Angle 𝜃 formed by active subspaces (hyper-planes) 

according to the training phase (reference state) and 

monitoring phase (current state), due to a dynamic 

change 

706



 

An intelligent health monitoring method for processing data collected from the sensor network of structure 

4. The proposed framework for long-term 
monitoring 
 
Real life employment of SHM involves dealing with a 

large amount of multivariate data. Only a small portion of 

abnormal data, in comparison to overall data, is available at 

the time when damage occurs. For detecting the changes in 

datasets effectively, the classical KPCA should be improved 

to make it more practical for long-term SHM data analysis. 

By means of KPCA, the damage can be detectable only 

when the principal components (eigenvectors) are 

influenced by abnormal behavior. Subsequently, 

eigenvectors are subject to changes only if a certain amount 

of abnormal data are captured and possibly affected the 

overall structure of data. This feature makes KPCA less 

effective for long-term SHM implementation. Therefore in 

this paper, Moving kernel principal component analysis 

(MKPCA) will be proposed to address this challenge. 
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Fig. 3 Flowchart of the proposed method 

 
 

4.1 Moving Kernel principal component analysis 
 

Basically, MKPCA computes the KPCA within moving 

windows with a constant size. Fig. 3 gives details of 

MKPCA algorithm designed for long-term SHM 

applications. Moreover, for the sake of clarity, the entire 

process is summarized in Fig. 4. Also, the applied 

procedures can be summarized here as in three different 

steps as follows: 

Step 1: A data matrix should be generated by sorting the 

time history data from each sensor into individual columns. 

Then, Nyström method will be used for an automatic 

feature extraction from raw acceleration data of each sensor. 

The feature matrix will be created based on the result of the 

Nyström method for all structural state conditions. 

For each test, with consideration of 𝑁𝑠 sensors and 𝑁𝑓  

extracted features from each sensor 𝑁𝑠 × 𝑁𝑓-dimensional 

feature vectors will be created when using them in the 

concatenated format. 

Step 2: Feature matrix should be divided into two 

phases, training and monitoring. The training phase is 

intended for developing a baseline, a confidence interval, 

based on normal condition, while monitoring phase is set 

for a long-term monitoring. The dimensions of fixed 

moving windows should be well-defined. In fact, 

determining the window size precisely is one of the most 

critical issues in MKPCA, because it affects the speed and 

accuracy of the proposed method. In this paper, an efficient 

procedure will be implemented to choose the appropriate 

size of moving windows, which will be discussed in section 

4.2 of this study. KPCA should be conducted for each 

window individually and results should be stored. 

Step 3: A sensitive damage index should be selected in 

this step based on MKPCA outputs. In this paper, two 

different damage indexes are considered, the performance 

and robustness of which will be compared to various 

damage scenarios. 

The first damage index is subspace angle defined earlier. 

In the second damage index, different entries of the first 𝑖 
principal components are considered as individual damage 

index is described as follow: 

 

 

 

Fig. 4 A graphic representation of Moving Kernel Principal Component Analysis (MKPCA) 
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The Damage Indicator (𝐷𝐼𝑟𝑝𝑐 ) chosen for this study is 

the square root of the sum of the squares of the first 𝑖 
kernel principal components as shown in Eq. (13) 

 

𝐷𝐼𝑟𝑝𝑐 =   𝐾𝑃𝐶1 
2 +  𝐾𝑃𝐶2 

2 + … +  𝐾𝑃𝐶𝑖 
2 

𝑖 = 1, … , 𝑛 
(13) 

 

where 𝐾𝑃𝐶𝑖  is the 𝑖-th kernel principal components of 

moving windows and 𝑟𝑝𝑐 is the abbreviation of the root of 

principal components. The reason for incorporating the first 

𝑖 kernel principal components in the 𝐷𝐼𝑟𝑝𝑐  is that they 

cover the most useful information in the data. In fact, since 

more than 99% of the energy distribution of KPCs is 

covered by the first 𝑖 principal components, they are the 

only components incorporated in the 𝐷𝐼𝑟𝑝𝑐 . 

It should be mentioned that the number of kernel 

principal components that should be considered depends on 

the data and there is not any prescription for all cases. 

However, in the most cases considered in this study, the 

most variance is covered by the first 5 components (𝑖 = 5) 

which will be discussed in more details in subsection 5.6. 

Therefore, if any damage occurs in the structure, it should 

affect the data and consequently variance of data and it 

should be detected by this damage index. 

It should be noted that the 𝐷𝐼𝑟𝑝𝑐  for all windows are 

calculated w.r.t. time and thus their variations with time are 

plotted. As a final point, the confidence interval developed 

in the training phase should be considered as a benchmark 

(baseline) for detecting any possible damages in the rest of 

the data. 

 

4.2 Size of the moving window and required data 
for training phase 

 

The size of the window is a key parameter for the 

MKPCA algorithm. Commonly it is recommended that the 

window should be large enough so that the damage indexes 

are not influenced by the periodicity of the data. 

Alternatively, it should be small enough to timely detect 

abnormal behavior (Malekzadeh and Catbas 2016). This is a 

very general prescription and in most of the cases, there is 

not any straightforward procedure to identify the window-

size. Therefore, in this section, a procedure is proposed as a 

method to define effective window-size for MKPCA. 

 Another important feature for an unsupervised damage 

detection algorithm is the amounts of data sets that are 

required for the training phase. The advantage is given to 

the algorithm that needs the least number of data sets to 

establish the baseline. The amount of data needed by an 

unsupervised algorithm for the training phase directly 

depends on the size of the window. 

As a consequence, a yet new approach is proposed in 

this study to identify the appropriate size of the window and 

accordingly the required training data-sets. The sequential 

steps for this approach are presented as follow: 
 

Step 1: The largest periodicity in the data (𝑃) is 

identified. 

Step 2: A vector of window-size is generated as follows: 

Window Size = [0.2𝑃, 0.5𝑃, … , 𝑃, 2𝑃] 

Step 3: The damage indexes are derived for all the 

window-sizes based on MKPCA. The optimized 

window-size is the smallest one that results in a 

stationary process. 

 

 

5. Case study 
 

5.1 Prototype structures and data 
 

The standard data sets used in this study are from a 

three-story frame aluminum structure reported in Figueiredo 

et al. (2009) and has been intensively used for SHM 

validation in recent unsupervised damage detection 

approaches (Nguyen et al. 2014, Santos et al. 2016). Test 

bed building model is four-degree-of-freedom system with 

varied practical conditions, including variations in stiffness 

and mass loading. These variations simulate temperature 

changes and traffic, respectively. Those changes were 

designed to introduce variability in the fundamental natural 

frequency up to approximately 7 percent from the baseline 

condition, which is within the range normally observed in 

real-world structures (Figueiredo et al. 2011, Peeters and 

De Roeck 2001). Raw data were collected by four 

 

 

 

(a) Three-story building structure and shaker 

 

 

(b) Adjustable bumper and column 

Fig. 5 Three-story Frame Structure (Figueiredo et al. 2009) 
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Table 1 Data labels of the structural state conditions 

Label Description 

State 1 Baseline condition 

State 2 Added mass (1.2 kg) at the base 

State 3 Added mass (1.2 kg) on the 1st floor 

State 4 

States 4-9: 87.5% stiffness reduction at various 

positions to simulate temperature impact 

(more detail in Figueiredo et al.(2009)) 

State 5 

State 6 

State 7 

State 8 

State 9 

State 10 Gap (0.20 mm) 

State 11 Gap (0.15 mm) 

State 12 Gap (0.13 mm) 

State 13 Gap (0.10 mm) 

State 14 Gap (0.05 mm) 

State 15 Gap (0.20 mm) and mass (1.2 kg) at the base 

State 16 Gap (0.20 mm) and mass (1.2 kg) on the 1st floor 

State 17 Gap (0.10 mm) and mass (1.2 kg) on the 1st floor 
 

 

 

accelerometers mounted on the structure, as shown in Fig. 

5. 

A nonlinear damage scenario was introduced by 

contacting a suspended column with a bumper mounted on 

the floor below to simulate fatigue crack that can open and 

close under loading conditions or loose connections in 

structures. The smaller gap between the column and the 

bumper will result in the higher level of damage. Therefore, 

different levels of damage were created by adjusting the 

gap. More details about the test structure can be found in 

Figueiredo et al. (2009). Acceleration time-series from 17 

different structural state conditions were collected, as 

described in Table 1, where the first 9 state conditions 

introduce the undamaged and the rest are damaged states. 

Time-series discretized into 4096 data points sampled at 

3.125 ms intervals corresponding to a sampling frequency 

of 320 Hz. 

For each structural state condition, data were acquired 

from 100 separate tests. Based on the test description 

(Figueiredo and Flynn 2009), state1 is the baseline 

condition (reference state) of the structure and states 2-9 

include those states with simulated operational and 

environmental variability. State14 is considered as the most 

severely damaged one as it corresponds to the smallest gap 

case, which induces the highest number of impacts. State10 

is the least severe damaged scenario and states11-13 

represent mid-level damage scenarios. States15-17 are the 

variant states of either state10 or state13 with mass added 

effect in order to create more realistic conditions. 

It is worth noting that, although the developed data-

driven machine learning methods presented in Section 4 

were herein verified using a test bed found in the literature, 

it is capable to detect damage in other civil, infrastructure 

and mechanical systems with least modifications, which is 

the best feature in data-driven methods over conventional 

physical-based methods. 
 

5.2 Experimental results and analysis 
 

In this study, the features extracted by the Nyström 

method from response time series are used as damage-

sensitive features. Thus, for each test at each state 

condition, the features are extracted using time-series from 

all four accelerometers (channels 2-5) and stored in a 

feature vector. For each test, the number of extracted 

parameters from each sensor is 10, therefore when using 

them in concatenated format, it yields to 40-dimensional 

feature vectors. This analysis is based on the assumption of 

an output-only damage detection approach, and so data 

from the channel 1 (the input force) is not used. 

Note that extracted parameters should be constant when 

estimated based on time-series data obtained from time-

invariant systems. However, in the presence of operational 

and environmental conditions as well as damage, the 

parameters are expected to change accordantly. To better 

understand such changes, the next section will investigate it 

in more details. 

 

5.3 Sensitivity and amplitude of features 
 

To better understand the performance of the proposed 

machine learning techniques, selection of effective and 

sensitive damage features are in high demand, since they 

could theoretically perform sensitive and robust media to all 

kinds of damages even under high variations and other 

interferences. The 3rd floor‟s sensor data have been selected 

as the benchmark to demonstrate our concept. 

Figs. 6(a) and (b) are plotted for the first and second 

features, extracted automatically using Nyström method to 

demonstrate the level/amplitude of different feature 

parameters for undamaged or damage states. The Nyström 

method is configured to use the RBF kernel with parameter 

𝛾 = 0.75 (De Brabanter et al. 2010, Chandorkar et al. 

2015). These plots are composed of an extracted feature 

from 10 out of 100 tests of each undamaged state (states1-9) 

and 10 out of 100 tests of each damaged state (states10-17), 

so it has a dimension of 170_1. 

The Extracted Feature 1 (EF1) and EF2 are found as the 

best sensitive features to distinguish between undamaged 

and damaged states. As clearly illustrated in Figs. 6(a) and 

(b), two plots have different thresholds but both exhibit 

significant differences in data trend to allow clear 

identification of undamaged or damaged structures. 

 

5.4 Comparing damage indexes 
 

There are several parameters in the proposed method, 

i.e., the selected damage index, the optimized size of 

moving windows, and a number of considered KPCs. A 

study of parameters selection will be carried out here 

accordingly. 

First, the effect of various damage indexes on the 

accuracy of the method will be investigated. As stated in 

section 4.1, two damage sensitive indexes, 𝐷𝐼𝑟𝑝𝑐  and 

subspace angle is used. Training data set is composed of an 

extracted feature from 10 out of 100 tests of each 
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(a) EF1 

 

 

(b) EF2 

Fig. 6 Amplitudes from damaged and undamaged condition 

 

 

undamaged state (states1-9) and testing data set is 

composed of feature from 10 out of 100 tests of each 

undamaged and damaged state (states1-17). It should be 

noted that 20 trials are carried out for each experiment in 

the following study to reduce the effects of the randomness. 

The damage detection results are shown in Fig. 7. In the 

Fig., the training accuracies, testing accuracies, training 

time and the testing time are averaged by 20 trials, and the 

positive error bars show the standard deviations. The 

computation platform is a PC with an Intel Core™ i7 2.0 

GHz and 4G RAM. 

It can be seen that all training accuracies are over 93.0% 

and testing accuracies are over 90.08%. It means that the 

proposed method is able to classify the 9 damage conditions 

of the case study dataset with high accuracies using various 

damage indexes. 

Moreover, the standard deviations of training accuracies 

and testing accuracies using the subspace angle method are 

 

 

 

Fig. 7 Damage detection results using various damage 

indexes 

small, indicating that the damage conditions can be detected 

reliably. However, comparing to 𝐷𝐼𝑟𝑝𝑐 , subspace angle 

spends more time. On the contrary, the standard deviations 

of training and testing accuracies using the 𝐷𝐼𝑟𝑝𝑐  are larger 

than subspace angle and as a result, the reliability of the 

method will be reduced. 

 

5.5 Effect of appropriate size selection of moving 
windows 

 

After evaluating the selection of damage index on the 

accuracy of the proposed method, the effect of a proper size 

selection of moving windows on the accuracy of MKPCA 

will be assessed in this sub-section. A total of 17 data sets 

were considered in this study. Given that for each structural 

state condition 100 separate tests considered, the maximum 

periodicity of data points (𝑃) is 100. This results in the main 

matrix with 1700 rows as the feature vectors and 40 

columns as the extracted features. The corresponding results 

for the MKPCA are visualized in Fig. 8. The horizontal axis 

indicates state condition of structure while the vertical axis 

represents the F-score for three sizes of the moving window. 

F-score is a commonly used criterion measuring the 

performance of a classification method (Sokolova et al. 

2006). It considers both the precision (𝑝) and the recall (𝑟) 

of the result to compute the score. 𝑝 is the number of 

correct positive results divided by the number of all positive 

results returned by the classifier, and 𝑟 is the number of 

correct positive results divided by the number of all true 

positives. In other words, the precision is a function of the 

correctly classified samples, denoted as true positives, TP, 

and samples misclassified as positives (false positives, FP), 

and recall is a function of TP and its misclassified samples 

(false negatives, FN). F-score reaches its best value at 1 and 

the worst score is at 0. 

 

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑎𝑛𝑑 𝑟 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝 × 𝑟

𝑝 + 𝑟
 (15) 

 

In Fig. 8, the F-scores of the case study dataset using the 

three size of moving windows are shown. It can be seen that 

the F-scores using 𝑁𝑤  = 10 range from 0.953 to 1, whereas 

 

 

 

Fig. 8 F-score of data set for selecting optimized size of 

moving windows 
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Table 2 Number and percentage of Type I for each size of 

moving windows 

Windows size based 

on periodicity (P) 

Size of moving 

windows (𝑁𝑤 ) 
Type I error 

0.02P 2 32 (7.11%) 

0.05P 5 20 (4.44%) 

0.1P 10 16 (3.56%) 

0.5P 50 28 (6.22%) 

P 100 46 (10.22%) 

2P 200 70 (15.56%) 
 

 

 

the F-scores using 𝑁𝑤  = 5 range from 0.907 to 0.98 and 

the F-scores using the method 𝑁𝑤  = 2 range from 0.899 to 

0.98. 

The appropriate size of moving windows can also be 

selected based on Type I error that shows false indication of 

damage on date set of undamaged state. Table 2 shows 

results when training matrix is composed of extracted 

parameters from 50 out of 100 tests from each undamaged 

state (states1-9), and the test matrix Z is composed of the 

remaining 50 tests of each undamaged state. 

For most health conditions, the 𝑁𝑤  = 10 obtains higher 

F-scores than the other size. Furthermore, 𝑁𝑤  = 10 has 

smallest Type I error. Taking this information into account, 

the size of the moving window is chosen as 10 × 40. 

Hence, it means 10 feature vectors must be used for 

processing and interpreting of the data. 

 

5.6 KPCA-based detection method 
 

KPCA differs from PCA, notably in the number of 

kernel principal components (KPCs) which is equal to the 

number 𝑀 of time samples whereas the number of PCs in 

the PCA method is equal to the number 𝑛 of measurement 

responses (Cao et al. 2003). In the KPCA method, the 

energy distribution of KPCs depends on the parameter 

chosen in the kernel function. Furthermore as discussed in 

section 4, most of the energy distribution of KPCs is 

covered by the first principal components. Therefore in this 

sub-section, results were achieved with KPCA using the 

RBF kernel with a parameter 𝛾 = 0.025. The eigenvalue 

diagram of Fig. 9 shows that the first five KPCs apprehend 

most of the system energy. 

It must be noted while PCs represent modal features 

(e.g., mode-shapes) under certain circumstances, KPCs do 

 

 

 

Fig. 9 Eigenvalue diagram 
 

 

Fig. 10 MKPCA detection based on the subspace angle 

 

 

not represent any specific physical meanings (He et al. 

2007). However, KPCs are useful for classifying different 

dynamic behaviors of the system. The KPCA method needs 

to add up a sufficiently large number of KPCs in the 

subspace to accumulate enough effective information. On 

the other hand, KPCA offers a possibility of redistributing 

the energy of KPCs i.e. to regulate the main energy on the 

first but also on secondary KPCs (Nguyen and Golinval 

2010). Noted that noise is related mainly to last KPCs. 

Therefore, KPCA is more immune to noise because of its 

capability to extract several first representative KPCs. 

To compare the performance of MKPCA using the 

various number of KPCs, one test from each structural state 

condition is considered. As shown in Fig. 10, the use of five 

KPCs allows a good detection of various damage state. The 

result is based on subspace angle index. It also shows that, 

by taking into account some more KPCs, the detection is 

actually performed in a stable manner. In this example, the 

optimum detection is achieved with 5 KPCs. In conclusion, 

the KPCA-based method is effective for the detection of the 

nonlinear damage. 
 

5.7 Assessing the proposed approach in term of 
feature extraction 

 

To evaluate the effectiveness of the proposed methods 

for AFE, several existing studies in the literature are used 

for comparison, as listed in Table 3 (Gui et al. 2017, Santos 

et al. 2016). Clearly, different methods exhibit somehow 

different levels of accuracy, ranging up to five percent 

deviation for feature extraction and damage detection 

prediction. For example, the Auto-associative neural 

network has error of 4.3 percent in prediction and the one-

class SVM reaches up to 3.36 percent deviation to true 

solutions. As a comparison, the SVM with optimization 

technique (GS) could yield a better prediction when using 

auto-regressive (AR) features within 1.18 percent. It may 

confirm that the use of optimization techniques could help 

to select the parameters for damage detection. Meanwhile 

as stated in previous sections traditional artificial intelligent 

techniques are unable to extract and organize the 

discriminative information from raw data directly. Thus, 

some actual efforts in intelligent damage detection methods 

are focused on the design of feature extraction algorithms in 

order to obtain the representative features from the signals 

(Krishnan et al. 2018, Langone et al. 2017). To overcome 

this problem, AFE based on Nyström method is used, which 

further increases accuracy as shown in Table 3. It can be 
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Table 3 Comparison of the proposed study with existing 

ones in the literature 

 Method 

Feature 

extraction 

method 

Prediction 

error 

Exiting 

studies 

Auto-associative neural 

network (AANN)* 

AR Parameter 

4.30 % 

Factor analysis (FA)* 4.20 % 

Mahalanobis squared 

distance (MSD)* 
4.00 % 

Singular value 

decomposition (SVD)* 
4.60 % 

One-class SVM** 3.36 % 

Support vector data 

description (SVDD)** 
3.44 % 

Kernel principal 

component analysis 

(KPCA)** 

2.72 % 

Greedy kernel principal 

component analysis 

(GKPCA)** 

2.64 % 

Particle Swarm 

Optimization (PSO)+ 

SVM*** 

2.35 % 

Genetic Algorithm 

(GA)+ SVM*** 
2.35 % 

Grid-search techniques 

(GS)+ SVM*** 
1.18 % 

Proposed 

study 

Nyström method+ 

MKPCA 

Automatic 

Feature 

Extraction (AFE) 

0.42 % 

 

 

 

envisioned that the proposed machine learning with AFE 

will be more robust when under those complex data. A 

comprehensive comparison will be discussed in the next 

section. 
 

5.8 Accuracy of damage detection methods 
 

Having chosen the parameters of the proposed method, a 

comprehensive comparison will be made here between 

different methods to evaluate the effectiveness of the 

MKPCA method. 

For generalization purposes, the feature vectors are split 

into the training and test matrices. The training matrix, X, 

permits each algorithm to learn the underlying distribution 

and dependency of all undamaged states on the simulated 

operational and environmental variability. Thus, this matrix 

is composed of extracted parameters from 50 out of 100 

tests from each undamaged state (states1-9), and so it has a 

dimension of 450 _40. The test matrix Z (1250 _40) is 

composed of extracted parameters from the remaining 50 

tests of each undamaged state together with extracted 

parameters from all the 100 tests of each damaged state 

(states10-17). This procedure permits one to evaluate the 

generalization performance of the machine learning 

algorithms in an exclusive manner because time-series used 

in the test phase are not included in the training phase. 

During the test phase, the algorithms are expected to detect 

deviations from the normal condition when feature vectors 

come from damaged states, even in the presence of 

operational and environmental effects. 

The next step is to carry out statistical modeling for 

feature classification. In that regard, the algorithm based on 

MKPCA is implemented in an unsupervised learning mode 

by first taking into account features from all the undamaged 

state conditions (training matrix). To evaluate the 

effectiveness of the proposed methods several existing 

studies in the literature (Gui et al. 2017, Nguyen et al. 2014, 

Santos et al. 2016) are used for comparison. These existing 

methods could be classified in two categories: (a) kernel-

based algorithms such as one-class SVM, KPCA, GKPCA; 

and (b) enhanced versions of SVM with optimization 

algorithm (Gui et al. 2017): SVM-PSO, SVM-GA, and 

SVM-GS, which implemented and configured as described 

in Nguyen et al. (2014) and Santos et al. (2016). Finally, for 

each algorithm, the damage index is stored into a 1250-

length vector. 

The subset of 25 percent of the training data is used for 

MKPCA kernel projection and algorithm is configured to 

retain 90 percent of the variability in the data after 

dimension reduction. Furthermore, the RBF kernel with 

parameter 𝛾 = 0.025 is chosen for KPCA kernel (Gui et 

al. 2017). 

ROC curves are used to compare the performance of 

various methods based on the tradeoff between Type I and 

Type II error. The point at the left-upper corner of the plot 

(0, 1) is called a perfect classification. Figs. 11 and 12 

illustrate the ROC curves for aforementioned algorithms. 

In the first case, all kernel-based algorithms are 

compared together (Fig. 11). The curves show that none of 

the algorithms can have a perfect classification with a linear 

threshold because none of the curves goes through the left-

upper corner, neither have supremacy in terms of true 

detection rate for the entire false alarm domain. 

Furthermore, for levels of significance around 5 percent, the 

GKPCA and MKPCA have better true detection rate than 

one-class SVM and KPCA. They are in fact the ones that 

maximize the true detection of damaged cases with similar 

performances in terms of false alarm rate. It worth to be 

noted that, false alarm rate of 0.05 is acceptable in real-

world scenarios of SHM (Santos et al. 2016). 

Note that the proposed algorithms apply data 

transformation in the high dimensional feature space to 

achieve a data model that represents the normal structural 

condition. On the other hand, the MKPCA algorithm 

reduces the data dimensionality in high-dimensional space, 

storing the principal components that have the largest 

variability in the data. 

Due to the superiority of the MKPCA to the KPCA, the 

authors chose the MKPCA algorithm for a comparative 

analysis with improved algorithms already made known in 

the literature (Gui et al. 2017). In the second case, Fig. 12 

shows a comparison between the SVM+PSO, SVM+GS, 

SVM+ GA and MKPCA algorithms. In the whole false 

alarm range and for a given threshold, the proposed 
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Fig. 11 ROC curves for the GKPCA, KPCA, one-class 

SVM and MKPCA algorithms 

 

 

 

Fig. 12 ROC curves for the SVM+PSO, SVM+GA, 

SVM+GS and MKPCA algorithms 

 

 

algorithm has, clearly, better performance to detect 

abnormal conditions in the test structure than the improved 

SVM-based algorithms. In general, the MKPCA seems to 

be more effective than the SVM in most points of the ROC 

curves by assimilating the normal structural condition 

embedded into the principal components, especially for 

false alarm rates around 5 percent. 

In order to quantify the performance of the MKPCA and 

KPCA for a given threshold, Figs. 13(a) and (b) plot the 

𝐷𝐼𝑟𝑝𝑐  for the feature vectors of the entire test data along 

with a threshold defined based on the 95 percent cut-off 

value over the training data. Both algorithms show a 

monotonic relationship between the level of damage and 

amplitude of the 𝐷𝐼𝑟𝑝𝑐 , even when operational and 

environmental variabilities are present. In the other words, 

the approaches are able to remove the operational and 

environmental effects in such a way that 𝐷𝐼𝑟𝑝𝑐  from 

states15, 16 and 10 have similar amplitude, as well as 

state17 is associated with state13. As stated in subsection 

5.1, states15-17 are the variant states of either state10 or 

 

(a) MKPCA 
 

 

(b) Original KPCA 

Fig. 13 𝐷𝐼𝑟𝑝𝑐  calculated based on feature vectors from the 

undamaged and damaged condition using two 

version of KPCA algorithms along with defined 

threshold 
 

 

state13 with operational effects. 

The performance of statistical classification methods 

mostly indicated by the Type I (a false-positive indication of 

damage) and Type II (false-negative indication of damage) 

errors. This technique recognizes that a false-positive 

classification may have different consequences than false-

negative one (Santos et al. 2016). In Figs. 13(a) and (b), the 

Type I errors are 𝐷𝐼𝑟𝑝𝑐  that exceed the threshold value in 

the undamaged condition domain (1-450). On the other 

hand, the Type II errors are 𝐷𝐼𝑟𝑝𝑐  that does not surpass the 

threshold value in the damaged condition domain (451-

1250). Table 4 summarizes the number and percentage of 

Type I and Type II errors for all algorithms that mentioned 

in this paper. 

In terms of an overall analysis, the proposed scheme 

based on AFE and MKPCA has the best overall 

performance in detecting damage (0.625%) and 

representing the normal condition (3.55%). On the contrary, 

The FA algorithm has a good performance to avoid false 

indications of damage (2.22 %) but has the worst 

performance to detect damage (5.38%), due to its being 

sensitive to the number of factors driving changes in 
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Table 4 Number and percentage of Type I and Type II 

errors for each algorithm 

Algorithm 
Error 

Accuracy 
F1-

score Type I Type II Total 

ANN* 44 (9.78%) 10 (1.25%) 54 (4.32%) 0.956 0.966 

FA* 10 (2.22%) 43 (5.38%) 53 (4.24%) 0.957 0.966 

MSD* 42 (9.33%) 8 (1.00%) 50 (4.00%) 0.96 0.969 

SVD* 29 (6.44%) 29 (3.62%) 58 (4.64%) 0.953 0.963 

One-class 

SVM* 
36 (8.00%) 6 (0.75%) 42 (3.36%) 0.966 0.974 

SVDD* 37 (8.22%) 6 (0.75%) 43 (3.44%) 0.965 0.973 

KPCA* 21 (4.67%) 13 (1.62%) 34 (2.72%) 0.972 0.978 

GKPCA* 24 (5.33%) 9 (1.12%) 33 (2.64%) 0.973 0.979 

AFE+ 

MKPCA 

16 

(3.55%) 

5 

(0.625%) 

21 

(1.68%) 
0.983 0.987 

 

 

 

features. 

The one-class SVM and SVDD algorithms performed 

similarly and offered 0.75% performance to detect damage; 

however, their false alarm rate is relatively high as greater 

than 8%. This can be due to that, the selected support 

vectors can easily identify the damaged data, but are not 

properly representing the normal condition as the number of 

Type I errors is higher than 5 percent. 

In the field of damage detection, sensitivity measures 

the portion of damaged cases correctly identified and 

specificity measures the portion of undamaged cases which 

are correctly identified. According to this definition, the 

AANN reveals the worst performance in terms of Type I 

errors (9.78 percent), but a relatively good performance in 

terms of minimization of Type II errors (1.25 percent), 

which indicates that when the sensitivity of the classifier is 

increased, and so it detects more damaged scenarios, it also 

increases the number to mislabels of undamaged cases. 

Thus, as the sensitivity goes up, specificity goes down. 

The KPCA and GKPCA attempt a balancing between 

Type I and Type II errors, their total error is relatively small, 

which is supported by the retention of principal components 

in the high-dimensional space. This should eliminate 

variability caused by operational and environmental effects. 

Finally, the proposed algorithm has a tendency to reduce the 

total number of misclassifications (1.68 percent) when 

compared with other aforementioned algorithms. This 

superiority might be related to the ability of the proposed 

algorithm to find nonlinear patterns in the data via the 

kernel trick, as well as the independence on the choice of 

the initial parameters. 

Nevertheless, as far as the total misclassifications is 

concerned, all algorithms perform relatively well on these 

standard data sets for Type I and Type II errors. 

Additionally, based on Table 4 and for these specific data 

sets, Two important conclusions can be drawn: (a) when life 

safety issues are the main reason for deploying an SHM 

system and one wants to minimize false-negative 

indications of damage, the proposed scheme, one-class 

SVM and SVDD algorithms are preferred. (b) When 

reliability issues are ruling an SHM system and one wants 

to minimize false-positive indications of damage without 

increasing the false-negative indications of damage, the 

proposed scheme, the GKPCA, and KPCA algorithms are 

more appropriate. Finally, MKPCA has good generalization 

performance, which is a very important advantage for real-

world applications, where the thresholds are defined based 

on undamaged data used in the training phase. 
 

 

6. Conclusions 
 

In this paper, the performance of the proposed two-stage 

method for structural damage detection, under varying 

operational and environmental conditions, is shown using 

benchmark data sets from a well-known base-excited three-

story frame structure. The data sets are characterized by 17 

different structural state conditions, including linear 

changes caused by varying stiffness and mass-loading 

conditions as well as nonlinear effects caused by damage. 

Different levels of damage were created by adjusting the 

gap between a suspended column and a bumper. 

It would be desirable to make an intelligent health 

monitoring less dependent on prior knowledge and 

diagnostic expertise when processing structural big data, 

especially in the feature extraction step. In this paper, the 

Nyström method adaptively studies features that capture 

discriminative information from vibration signals in an 

unsupervised way. Then the features are fed to MKPCA to 

classify health conditions. Through the case studies on the 

frame structure, it is shown that the proposed method 

adaptively learns features from raw signals for various 

diagnosis issues and is superior to the existing methods in 

health monitoring of the structure. 

The MKPCA algorithm is shown to be reliable to create 

a global damage index that can separate damaged from 

undamaged conditions, even when the structure is operating 

under varying operational and environmental conditions and 

yield better results in terms of minimization of total 

misclassifications; three fundamental reasons are also 

proposed for that behavior: 

 

(i) All kernel-based algorithms map the original 

observations into the high-dimensional space. 

However, the MKPCA map the original 

observations into the high-dimensional space, in 

order to model nonlinear patterns presented in the 

original observation space and capture the 

operational and environmental effects with a known 

percentage. They are then back to the original space 

to perform the damage detection. 

(ii) The KPCA perform the damage detection by 

retaining the principal components that take into 

account 90 percent of the data variability. It might 

be useful to discard some sort of noise and 

singularities from the data that can mask changes 

caused by damage from changes caused by 

operational and environmental conditions. The 

KPCA eliminate some noise from the data and 

provide a better trade-off between sensitivity and 

specificity. 

(iii) In order to make KPCA method more practical and 
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feasible for long-term monitoring, a windowing 

technique is employed. As a result, MKPCA 

algorithm proposed as promising upgraded version 

of KPCA that can segment the data flow to detect 

damage more precisely. 
 

Finally, MKPCA algorithms do not require a direct 

measure of the sources of variability, e.g., traffic loading 

and temperature. Instead, the algorithm relies only on 

measured response time-series data acquired under varying 

operational and environmental effects. 
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