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1. Introduction 

 
Bridge redundancy can be referred to as the load-

carrying capacity of a bridge without undergoing excessive 
deformations after suffering a failure of one or more main 
structural members. According to the AASHTO LRFD 
Bridge Design Specification (2014), two-girder bridges are 
classified as fracture critical (i.e., non-redundant), implying 
that the failure of the main members leads to bridge 
collapse. Bridge collapse does not only directly cause a 
large number of casualties, but also induces the indirect loss 
of road-user costs. For this reason, the AASHTO LRFD 
Specification (2014) requires more stringent fabrication and 
material provisions to increase bridge safety for a non-
redundant bridge than for one that is redundant. 
Furthermore, this type of bridge requires more frequent and 
detailed inspections, such as biennial hands-on and 
nondestructive inspections on welded connections, which 
cost from two to five times the inspection cost of a 
redundant bridge (Connor et al. 2005). However, despite the 
non-redundant classification of two-girder bridges, several 
historical incidents involving the failure of the main 
members in steel plate girder bridges, such as the US 422 
Bridge (Connor et al. 2007) and the I-794 Hoan Bridge 
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(Hesse et al. 2014), have demonstrated that they could 
reserve significant load-carrying capacity. Compared with 
steel plate girder bridges, steel box-girder bridges have 
higher torsional stiffness and more structural elements that 
might contribute to load redistribution in the event of a 
fracture in one or more of its main members. Therefore, 
there is a high possibility that steel box-girder bridges with 
two girders may reserve a sufficient load-carrying capacity 
so as to be redundant. Accordingly, in view of the high 
maintenance costs associated with non-redundant bridges, it 
is worth accurately evaluating the redundancy of bridge 
systems and finding a method to improve it. 

Ghosn and Moses (1998) initiated the attempt to 
quantitatively evaluate the redundancy of a two girder 
bridge. They proposed three system reserve factors as 
redundancy evaluation criteria using a probabilistic method 
based on the assumption that a four girder bridge is always 
redundant. These factors limit the ultimate strength and 
displacement for the two girder bridge to be redundant. 
Pham et al. (2014) evaluated the redundancy of two I-girder 
bridges based on these criteria. They found that the two I-
girder bridges are not always redundant depending on the 
level of damage on the one of two girders. 

For the redundancy evaluation of steel box-girder 
bridges, a simplified evaluation method was proposed by 
Samaras et al. (2012). They suggested that a twin steel box-
girder bridge is redundant if it satisfies the strength checks 
on the intact girder, deck, and stud connections of the 
bridge. Based on this method, however, the displacement of 
the bridge could not be evaluated although it is one of 
important factors for public safety. Kim and Williamson 
(2015) suggested a deterministic method to evaluate the 
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redundancy based on a worst case loading scenario that 
could occur in a twin steel box-girder bridge. Using this 
method, the strength and displacement of the bridge can be 
directly evaluated simultaneously. 

Compared to the studies on the redundancy evaluation 
methods, relatively limited research has been conducted to 
improve the redundancy of two girder bridges. Park et al. 
(2007) investigated the effect of a lateral bracing on the 
redundancy of two I-girder brides suffering one girder 
fracture. They found that the presence of the bracing could 
improve the redundancy of the bridge. Williamson et al. 
(2010) and Samaras et al. (2012) showed that the concrete 
deck of a twin steel box-girder bridge provides the main 
load redistribution path of the bridge suffering one girder 
fracture. If the redundancy of a two girder bridge could be 
improved by modulating such main bridge components 
providing a load redistribution path and the level of 
improvement could be quantitatively evaluated, bridge 
designers and bridge owners might control the level of the 
redundancy to the extent that the bridge could be considered 
as redundant. Therefore, there is a research need to 
investigate bridge components affecting the bridge 
redundancy and their contributions on it. 

In this study, the various components of a twin steel 
box-girder bridge are investigated to evaluate their effects 
on the bridge redundancy. For this purpose, a detailed finite 
element model is constructed so that it could simulate 
critical aspects of responses that could occur in the ultimate 
behavior of the bridge required for the redundancy 
evaluation, such as large deflections, yielding of steel 
plates, concrete cracking or crushing, stud connection 
failure, and railing contacts over expansion joints. Based on 
the result of a full-scale bridge-fracture test conducted at the 
University of Texas at Austin (Williamson et al. 2010), the 
accuracy of the finite element (FE) model is proved and 
accordingly utilized for a parametric study to investigate the 
effects of various bridge components, such as railing, stud 
connection, and concrete deck, on the ultimate strength, 
stiffness, and the redundancy of the bridge. In the 
parametric study, three twin steel box-girder bridges with 
different span-to-girder depth ratios are utilized. 

 
 

2. Damage level and loading scenario 
 
Generally, a crack initiated on a tension member of 

 
 

a steel bridge gradually grows until its size becomes critical 
(Anderson 2017). Therefore, bridge members with such 
damage could be replaced or repaired through regular 
maintenance. However, it is not always possible to detect 
and fix such a crack before it becomes critical. 

To evaluate the load-carrying capacity of the damaged 
bridge, the standard truck load (HS-20) specified in the 
AASHTO Bridge Design Specification (2014) is utilized. 
The HS-20 truck live load consists of three axle loads: a 36-
kN (8-kip) front axle load, and 142-kN (32-kip) middle and 
rear axle loads. The distance between the front and the 
middle axles is fixed at 4.27 m (14 ft), whereas that 
between the middle and rear can vary from 4.27-9.14 m 
(14-30 ft). In this study, it is assumed that the rear axle is 
also 4.27 m (14 ft) away from the middle so as to maximize 
the loading effect on the bridge. The truck live load is 
applied on the bridge after the girder fracture damage is 
imposed on a section such that the maximum positive 
bending moment is induced by the truck load. To estimate 
the ultimate loading capacity, each axle load is increased 
proportionally beyond one truck loading. This loading 
configuration corresponds to placing one truck on top of 
other truck loads. 

 
 

3. FE models for ultimate behavior evaluation 
 
Numerical models for the ultimate response of the twin 

steel box-girder bridge are developed using 
ABAQUS/Standard 2017 which is a commercially available 
general purpose finite element analysis software package. 
The FE bridge models are constructed based on the test 
bridge as shown in Fig. 1. The test bridge had been in 
service for approximately nine years as a high-occupancy 
vehicle lane near the intersection of Interstate I-10 and 
Loop 610 in Houston, Texas. However, because this bridge 
was removed from service as a consequence of a highway 
expansion plan and the steel girders were transferred to the 
Ferguson Structural Engineering Laboratory at the 
University of Texas at Austin, where the deck and bridge 
rails were reconstructed. After its reconstruction, three 
separate tests were performed. The purpose of the first two 
was to investigate bridge performance in relation to the 
sudden loss of bridge components. The detailed information 
describing these tests is available in Neuman (2009) and 
Williamson et al. (2010). The third test—bridge fracture 

 

Fig. 1 Cross section of test bridge 
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test—related to the objective of this research, which was to 
evaluate the ultimate behavior of a bridge sustaining a 
girder fracture. 

The test bridge consisted of two trapezoidal box girders 
with a span of 36.58 m (120 ft). The girder depth was 1448 
mm (4 ft 9 in), the bottom and top flange widths were 1194 
mm (3 ft 11 in) and 305 mm (1 ft), respectively, as shown in 
Fig. 2. The web thickness was 12.7 mm (0.5 in), and the 
thicknesses of the bottom and top flanges were 19.1 mm 
(0.75 in) and 15.9 mm (0.63 in), respectively. The bridge 
was slightly curved with a radius of curvature of 416.05 m 
(1365 ft). The thickness of the concrete deck was 203.2 mm 
(8 in) with a 76.2-mm (3 in) haunch on each top flange. 
Three welded headed studs with a height of 127 mm (5 in) 
were utilized for each stud connection. The Texas DOT 
T501 safety rails were constructed on the bridge deck with 
expansion joints placed at every 9.14 m (30 ft) along the 
bridge span. Accordingly, an expansion joint was made at 
the midspan of the bridge. 

The FE bridge models are constructed with various 
types of elements to provide a realistic representation of the 
box-girder bridge as shown in Fig. 2. The steel plates are 
modeled using eight-node shell elements (S8R) and the 
external brace members are modeled using two-node truss 
(T3D2) and beam elements, depending on the boundary 
conditions of the braces. Eight-node solid elements 
(C3D8R) are used for the concrete deck and railing of the 
bridge models. Reinforcement in the concrete is modeled 
with T3D2 elements embedded into the concrete elements. 
Simply supported boundary conditions are used in the FE 
bridge models. One end constrains the vertical, transverse, 
and longitudinal translations of girders and the other end 
constrains the vertical and transverse translations. 

Traditional metal plasticity is adopted to represent the 
nonlinear behavior of the steel members, such as the 
reinforcement and steel box girders. For the concrete 
members, cast iron plasticity is used to incorporate the 

 
 

Fig. 2 Finite element bridge model 

nonlinear behavior of concrete. In addition to material 
nonlinearities, railing contact and the failure of the stud 
connections are considered in the models using nonlinear 
spring (SPRING2) and connector (CONN3D2) elements, 
respectively. Details of the numerical simulations are 
described in the following sections. 

 
3.1 Steel and concrete 
 
The inelastic behavior of steel plates, brace members, 

and reinforcing steel are modeled using an elastic-perfectly 
plastic model with an isotropic hardening based on classical 
metal plasticity in both tension and compression (Dassault 
Systèmes 2017a). The yield strengths used for reinforcing 
steel and plates are 440 MPa (63.8 ksi) and 382 MPa (55.4 
ksi), respectively, which were obtained from tension coupon 
tests conducted as a part of the research programs for the 
full-scale bridge fracture test. The assumed material density 
is 7849 kg/m3 (490 lb/ft3) for the reinforcement and steel 
plate. 

There are two material models available in ABAQUS/ 
Standard 2017 for simulating the inelastic behavior of 
concrete: the concrete smeared cracking model and concrete 
damaged plasticity model. These models are capable of 
simulating tensile cracking and compressive crushing, 
including softening behavior beyond the failure surface of 
the material. However, full-scale bridge simulations with 
these material models, are not only computationally 
demanding but also difficult to converge into a solution. For 
this reason, in this study, the concrete deck and railing are 
modeled using a cast iron plasticity model which is less 
computationally demanding compared to the material 
models developed for concrete. The cast iron plasticity 
model was originally developed for gray cast iron, which 
has lower strength in tension than it does in compression 
similarly to concrete. To simulate the different strengths, a 
composite yield surface is utilized in the cast iron plasticity 
model where tension yielding is governed by the maiximum 
principal stress while compression yielding is governed by 
deviatoric stresses (Dassault Systèmes 2017b). Beyond the 
yield surface, a perfectly plastic behavior is assumed for the 
tension and compression, which is a primary difference 
between the concrete model and the cast iron. Despite such 
difference, it was shown that the cast iron plasticity model 
could be suitably applied to estimate the ultimate bending 
behavior of the concrete deck, by modulating the tensile 
strength to 4% of the compressive strength (Kim and 
Williamson 2015). 

For the inelastic behavior of concrete, hardening rules in 
tension and compression should be defined with concrete 
compressive strength. In this study, the hardening curve for 
compression behavior is defined using Eq. (1), as suggested 
by Hognestad (Wight and Macgregor 2012) and the initial 
stiffness of the stress-strain curve in compression is used for 
the tension behavior. 
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where fc = concrete compressive stress at a given strain 

439



 
Janghwan Kim, Seong-Hoon Kee, Heejung Youn and Dae Young Kim 

(ksi), fc
’’ = 0.85fc

’ (to account for the difference between 
cylinder and member strengths), fc

’ = concrete compressive 
strength (ksi), ε = strain, and εo = strain at maximum stress. 

Over time, the concrete compressive strength increases 
after curing and detailed strength data as function of time 
would be needed to account for the aging effect of the 
concrete components in the bridge model. However, in 
general, collecting concrete strength data for this purpose 
would not be practical. Instead, the equation (for concrete 
Type I under the moisture curing condition) recommended 
by ACI Committee 209 (Wight and Macgregor 2012) can be 
used to estimate the strength gain of concrete as a function 
of time, as indicated in Eq. (2). The measured average 
concrete compressive strength of the concrete deck for the 
full-scale test bridge was 33.4 MPa (4.84 ksi) obtained from 
the concrete cylinder tests at 28 days. Concrete density was 
determined to be 2323 kg/m3 (145 lb/ft3). The bridge 
fracture test was conducted approximately 32 months later 
(973 days) after the deck casting. Therefore, the estimated 
concrete strength for the full-scale fracture test is 39.1 MPa 
(5.67 ksi). 

 

' '( ) (28)
4 0.85c c

t
f t f

t
      

(2)

 
where fc

’ (t) = concrete compressive strength at age t (ksi) 
and t = curing time (day). 

 
3.2 Railing 
 
Various types of bridge rails, differing in materials and 

shapes, are currently available in the bridge industry. The 
rails primarily function as safety barriers for vehicles on the 
bridge. Under normal conditions (i.e., without any damage 
on the bridge), the rails have negligible contribution to the 
overall loading capacity of the bridge because the metal 
railing has low bending strength and the concrete railing 
(T501) has gaps between rails for expansion joints. 
Therefore, the railing is not considered as a structural 
member and its contribution to the loading capacity is 
typically ignored. However, under a damaged condition, 
such as when one girder is fractured, the gap between the 
T501 railings could close when the bridge is largely 
deflected. In this case, the railing may act as an edge beam 
and bear some amount of the longitudinal bending moment 
of the bridge. 

In this regard, a detailed contact analysis may be utilized 
to account for the engagement of the rail sections. However, 
for the contact analysis, a refined mesh density is required 
at the contact surfaces in order to obtain accurate results. 
Moreover, convergence problems could frequently arise 
when the analysis is related to nonlinear material properties 
(Dassault Systèmes 2017a). For the full-scale bridge 
modeling, significant computational resources are needed to 
create appropriate mesh refinements for such localized 
contact regions. Furthermore, material nonlinearities 
adopted in this study could lead to excessively long 
computational time and potentially prevent the convergence 
of the analysis because of the contact regions. For these 
reasons, a simplified modeling technique is utilized—spring 

elements are used to account for the engagement of the rail 
sections. Once the rails engage through the gap, it is 
possible that shear forces are transferred through friction. In 
this study, this effect is ignored in the FE simulations, and it 
is conservatively assumed that only normal forces are 
transferred through the railing contact. Note that no normal 
forces should develop in the spring elements before the rail 
gaps completely close. To simulate this behavior, spring 
elements designed to resist only compression forces are 
utilized. Displacement constraints are also applied on the 
load-displacement behavior of the spring elements such that 
they are effective when the compressive displacement 
exceeds 19.1 mm (3/4 in), which corresponds to the initial 
gap distance of the T501 railing for the test bridge. Once 
rail contact is initiated, the stiffness of the spring elements 
is determined using the elastic stiffness of the concrete to 
simulate the post contact behavior of the railing. 

 
3.3 Stud connection 
 
In the construction of the steel box-girder bridge, the 

stud connection is used to develop composite action by 
transferring mainly horizontal shear forces between the 
concrete deck and steel box girder. Typically, welded 
headed studs are utilized for the stud connections shown in 
Fig. 3 and cast into the concrete deck to provide mechanical 
shear transfer. In the FE bridge models, the stud 
connections have been typically modeled as rigid ties 
(Linzell and Nadakuditi 2011, Joo et al. 2015) or nodal 
constraints (Wu et al. 2015) without considering their 
potential failure mechanism. Nevertheless, this modeling 
approach provides good results when estimating the load-
displacement behavior of a composite bridge without the 
girder fracture damage. 

When the girder fracture damage is initiated, the deck 
deflects in a double curvature to transfer the applied load 
from the fractured girder to the intact girder, as shown in 
Fig. 4(a). In addition, high tensile forces are developed on 
the stud connections along the interior top flange of the 
fractured girder, which could lead to the failure of the 
connections. Once the stud connections fail, the bent shape 
of the deck changes into a single curvature, as shown in Fig. 
4(b). Consequently, the bending strength and stiffness of the 
deck could be reduced (Samaras et al. 2012). For this 
reason, the detailed failure behavior of a stud connection 
under tensile forces combined with shear is needed to 
properly evaluate the ultimate behavior of the bridge. In this 

 
 

Fig. 3 Schematic of stud connection with haunch 
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(a) Deflected shape before stud connection failure 
 

(b) Deflected shape after stud connection failure 

Fig. 4 Deflection shape change by stud connection failure
 
 

study, connector (CONN3D2) elements are utilized in the 
FE models to represent the stud connections comprising of 
a group of studs, as shown in Figs. 2 and 3. The connector 
elements can be utilized in a three dimensional problem to 
connect two different parts with various kinematic 
constraints such as welding, a door hinge, and a constant 
velocity joint. The connector elements have relative 
displacements and rotations that are represented by six 
nodal degrees of freedom (Dassault Systèmes 2017a). The 
detailed element responses for the stud connections under 
shear and tension are described in the following sections. 

 
3.3.1 Shear behavior of stud connection 
Based on the shear test results of the stud connections 

comprising of welded headed studs, Topkaya (2002) 
proposed a nonlinear shear load-displacement relationship 
that could be utilized to define the constitutive relation of a 
connector element representing a stud connection in the FE 
model. The proposed relationship is as follows 

 

3
0.03

1 2
0.03

dQ Q

 
 
 

   
   

(3)

 

 0.3'1.75d sc c cQ A f E
 

(4)

 
where Qd = design shear strength (kips), ∆ = shear 
displacement of headed stud (in), Asc = cross-sectional area 
of shear stud (in2), fc

’ = concrete compressive strength (ksi), 
and Ec = elastic modulus of concrete (ksi). 

As indicated in Eq. (3), the shear load-displacement 
response of a stud connection could be determined by 
computing the design shear strength, Qd. For example, the 
stud connection of the test bridge comprised of three 127-
mm (5-in) long and 22.4-mm (7/8-in) diameter headed studs 
set in a row transversely as schematically shown in Fig. 3. 
The stud connection is modeled with a single connector 
element in the FE bridge models for simplicity, with a total 
cross-sectional area, Asc, of 1164 mm2 (1.8 in2). Using Eq. 

(2), the compressive strength of concrete estimated for the 
test bridge is 39.2 MPa (5.69 ksi) and its relevant modulus 
of elasticity is 29.7 GPa (4300 ksi) based on the guidelines 
of ACI 318-14 (2014). Substituting these values into Eq. 
(4), the design shear strength, Qd, for the constitutive 
relation of the connector element is determined as 291 kN 
(65.4 kips). 

In addition to the shear load-displacement relationship, 
Topkaya (2002) also suggested an equation (Eq. (5)) to 
estimate the maximum shear strength for the stud 
connection. Although the maximum strength is not required 
to simulate the pure shear behavior of the connector 
element, it is necessary to compute the reduced design shear 
strength (Qd) for shear load-displacement relationship 
because of shear-tension interaction, discussed later in this 
paper. 

 0.3'2.5 1.43u sc c c dQ A f E Q 
 

(5)

 
3.3.2 Tensile behavior of stud connection 
A stud connection comprising of welded headed studs 

shows the concrete breakout failure under tension. The 
tensile load-displacement relationship of the stud 
connection is linearly proportional until the load reaches its 
maximum strength. Beyond the maximum strength, the load 
quickly drops due to the brittle nature of the concrete 
(Sutton et al. 2014). To numerically model the tensile 
behavior of the stud connection, Kim and Williamson 
(2018) proposed a tensile load-displacement relationship, as 
shown in Fig. 5, based on the direct tension test results of 
stud connections performed by Sutton (2007) and Mouras 
(2008). 

Sutton (2007) and Mouras (2008) conducted the direct 
tension test for stud connections and found that the tensile 
strength of a stud connection without a haunch 
configuration could be estimated using the concrete 
breakout strength equation of anchors in ACI 318-08, 
Appendix D.5.2 which corresponds to the provision in 
Section 17.4.2 of the recent ACI code (ACI 318 2014). 

 
 

Fig. 5 Tensile load-displacement behavior 
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However, for a stud connection with a haunch, as shown in 
Fig. 3, the anchor strength equation specified in ACI 318 
overestimates the tensile strength. To account for the 
haunch effect on the tensile strength, Kim and Williamson 
(2018) proposed a modified anchor strength equation with a 
haunch modification factor, ψh,N, as follows 

 

, , , , ,
N c

cbg h N ec N ed N c N cp N b
N co

A
N N
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     (6)
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where ANc = projected concrete failure area of a single or 
group of anchors (in2), ANco = projected concrete breakout 
surface area of a single anchor (= 9 hef 

2, in2), hef = effective 
embedment depth of an anchor (in), ψh,N = haunch 
modification factor, ψec,N = modification factor for anchor 
groups loaded eccentrically, ψed,N = modification factor for 
edge effects, ψc,N = cracked concrete modification factor 
(1.0 for cast-in anchors), ψcp,N = modification factor for 
post-installed anchors (1.0 for cast-in-place anchors), Nb = 
concrete breakout strength of a single anchor (lb), kc = 24 
for cast-in anchors, and fc

’ = concrete compressive strength 
(psi.). 
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where hef
’ = modified effective embedment depth of an 

anchor into the concrete slab excluding the haunch height 
(= hef − hh) (in), hh = haunch height (in), hef

’
,min = minimum 

effective embedment depth (= 50.8 mm (2 in) – stud head 
thickness), cah = edge distance measured from the center of 
a stud to the haunch edge, and cah,min = minimum edge 
distance (= minimum concrete cover specified in ACI 318-
14+ half of the stud diameter). 

To determine the tensile load-displacement relationship, 
the displacement Um (where the maximum strength occurs) 
is required. Kim and Williamson (2018) conducted a data 
regression analysis to determine Um as a function of the 
modified effective embedment depth of a stud utilizing the 
load-displacement data collected from the direct tension test 
for stud connections performed by Sutton (2007) and 
Mouras (2008). Based on the analysis, Um was proposed, as 
follows 

 ' '
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U

h


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where hd = deck height (in). 

In the full-scale test bridge, three 127-mm (5-in) long 
studs each with a 9.5-mm (3/8-in) head thickness were 
utilized and embedded into the concrete deck through the 
76.2-mm (3-in) haunch (hh) as schematically shown in Fig. 
3. Therefore, the modified effective embedment depth (hef

’) 
is 41.3 mm (1-5/8 in) by subtracting the head thickness and 
haunch height from the embedment depth. The haunch edge 
distance (cah) was 50.8 mm (2 in) and deck height (hd) was 
203.2 mm (8 in). The modulus of elasticity of concrete is 
29.7 GPa (4300 ksi) based on the guidelines in ACI 318-14 
(2014). Therefore, from Eqs. (6) and (10), the estimated 
tensile strength is 69 kN (15.5 kips), and from Eq. (11), its 
corresponding displacement is 0.4 mm (0.02 in). 

 
3.3.3 Shear-tension interaction 
As previously discussed, high tensile forces with shear 

forces could be developed in the stud connection of a bridge 
sustaining one girder fracture. In this case, the shear and 
tensile strengths of the stud connection could be 
significantly reduced because of the interaction between the 
shear and tension forces. Therefore, it is necessary to 
incorporate strength reduction into the behavior of a 
connector element representing the stud connection to 
accurately estimate the ultimate strength of the bridge. The 
reduced strength can be determined according to the ACI 
guideline (ACI 318 2014) as follows 

 
5/3 5/3

1.0
cbg u

N Q

N Q

   
          

(12)

 
where N = applied tension force, Q = applied shear force, 
Ncbg = nominal concrete breakout strength of a group of 
anchors in tension from Eq. (6), and Qu = shear strength 
computed from Eq. (5). 

According to Eq. (12), the shear resistance is reduced to 
80% of its maximum strength if the tensile demand 
corresponding to 50% of its tensile capacity exists on the 
stud connection and vice versa, as indicated in Figs. 5 and 
6. Note that the load-displacement relationships under pure 
tension and pure shear in the figures show quite different 
post-yielding behaviors—brittle in tension and ductile in 
shear. 

Once the tensile failure of a stud connection is initiated, 
any shear resistance mechanism is lost because of the brittle 
nature of the concrete breakout failure under tension forces. 
Therefore, because of the reduction effected by the shear-
tension interaction, it is necessary to degrade the shear 
resistance under the combined loading condition below the 
maximum strength. In this study, a linear damage model 
suggested by Kim and Williamson (2018) is utilized to 
incorporate such strength degradation to diminish the shear 
resistance after the stud connection failure under combined 
forces, as shown in Fig. 6. In the linear damage model, to 
determine the degradation rate of the shear resistance, it is 
assumed that the residual shear displacement (∆f − ∆m) is 
the same as the residual tensile displacement (Uf − Um). 
This assumption is based on the inferred behavior of a stud 
connection failed under combined forces. At the initial 
stage of stud connection failure under tension forces, 
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Fig. 6 Shear-displacement behavior 
 
 

a portion of the shear loads may be transferred through 
cracks by interlocking between cracked concrete surfaces. 
Once the stud connection separates from the concrete deck 
due to concrete breakout failures, however, no shear-
transferring mechanism remains. Therefore, it may be 
inferred that the stud connection starts to gradually lose its 
shear resistance after the initial stage of stud connection 
failure by tensile forces, and the shear resistance vanishes 
when the stud connection completely breaks out from the 
concrete deck 

 
3.4 Simulation procedure 
 
According to the damage level and loading scenario, the 

FE simulation procedure to evaluate the ultimate strength of 
a bridge sustaining one girder fracture can be categorized 
into three analysis groups: (1) bridge construction (steps 1–
5), (2) girder fracture (step 6), and (3) load application (step 
7), as described in the following: 

 
(1) Deactivating the deck, railing, and rebar elements; 
(2) Activating the dummy elements to trace the 

movement of the deactivated elements through 
girder displacement; 

(3) Applying the gravity load to the girders and 
imposing the equivalent weight of the deactivated 
elements on the top flanges; 

(4) Activating the deck, railing, and rebar elements with 
gravity load and removing the equivalent weight; 

(5) Deactivating dummy elements; 
(6) Applying girder fracture damage; 
(7) Applying truck live load(s). 
 
The bridge construction steps are intended to 

incorporate loading histories during the construction 
process, during which the bridge acts non-compositely. The 
elements deactivated in the first step, have no effect on 
mass and stiffness in ABAQUS. After deactivating these 
elements, pressure loads, equivalent to the self-weight of 

the concrete deck and railing, including the rebar, are 
evenly distributed on the top flanges of the girders. Before 
the concrete deck is cured, the deck and railing deform 
freely along with the girder deflection. To trace such a 
deformed position, dummy elements are used. The dummy 
elements share the same nodes with the original deck and 
railing elements, but they have no contribution on the 
bridge stiffness and weight. After this step, the concrete and 
railing elements are reactivated in the deformed position 
without strain changes, simulating the hardened concrete. 

After the bridge construction analysis, a full-depth 
girder fracture (i.e., fracture on one of the girders) is applied 
at the location where the maximum positive bending 
moment caused by a moving vehicle occurs (e.g., at 
midspan for a simply supported bridge, such as the test 
bridge in this case). To mimic the girder fracture, duplicated 
nodes for shell elements along a fracture path are made and 
initially joined by connector elements with weld properties. 
The girder fracture can then be simulated by deactivating 
the connector elements. Once the bridge fracture is applied, 
then the live load is applied. 

 
 

4. Full-scale bridge test and FE simulation 
 
4.1 Full-scale bridge test 
 
A full-scale bridge fracture test was performed to 

determine the ultimate load-carrying capacity of the twin 
steel box-girder bridge sustaining one girder fracture at the 
University of Texas at Austin (Williamson et al. 2010). In 
this research, the bridge fracture test is revisited to compare 
the primary failure modes and ultimate load-carrying 
capacity of a FE bridge model with test results. 

 
 

(a) Simulated load configuration 
 

(b) Incremental loading process (Williamson et al. 2010) 

Fig. 7 Loading configuration and process 
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To impose a damage corresponding to the girder fracture 
in the bridge fracture test, a torch was used to cut the web of 
one of the girders from the bottom flange to a point 
approximately 254 mm (10 in) below the top flange (i.e., 
83% web removal) instead of a full-depth cut because of 
safety concerns. The damaged and undamaged girders were 
designated as fractured (FG) and intact (IG) girders, 
respectively, as indicated in Fig. 1. 

To simulate the loading scenario (i.e., placing one truck 
on top of other truck loads), concrete blocks and load base 
were used, as shown in Fig. 7. As the concrete blocks were 
loaded, a crack initiated from the point where the torch cut 
was terminated and propagated towards the top flange. The 
concrete blocks were arranged in the form of a bin as shown 
in Fig. 7(a) so that the road base could be additionally 
loaded inside it. The total weight of the concrete blocks was 
365 kN (82.1 kips). The concrete blocks were 
symmetrically placed about the bridge midspan but were 
transversely biased toward the fractured girder by setting 
609.6 mm (2 ft) away from the east railing. This loading 
configuration was intended to mimic the worst loading 
condition that could be induced by the simulated truck 
loads. 

The road base, consisting primarily of gravel and dirt, 
was placed using an air-operated lift bucket with a small 
backhoe, as shown in Fig. 7(b). The lift bucket was attached 
to the lifting hook of a crane. Once the bucket was filled, 
the weight of the road base was measured using a load cell 
attached to the end of the crane hook. After the crane lifted 
the bucket and weight was recorded, the lift bucket was 
positioned above the bridge and the road base was placed 
inside the concrete bin located on the bridge deck. The 
bridge finally collapsed when the total load imposed by the 
concrete blocks and road base reached 1614 kN (363 kips), 
corresponding to more than five times the HS-20 design 
truck load. 

From visual inspections made during and after the 
bridge fracture test, the overall failure of the bridge was 
investigated. It was observed that the applied load was 
redistributed from the fractured girder to the intact girder 
through the concrete deck. The deck bent transversely in 
double curvature to transfer the load from the fractured 
girder to the intact girder. As the load increased, the 
conspicuous failure of the bridge components was initiated 
with the separation of the deck haunch (i.e., tensile failure 
of stud connections) along the interior top flange of the FG 
near the midspan, as shown in Fig. 8(a). This could have 
been caused by the tensile loading on the stud connections, 
increased by the transverse bending to transfer the applied 
load. Consequently, the tensile failure of the stud 
connections led to the change in the deflection shape of the 
concrete deck, as shown in Fig. 4. 

As the loading increased, the failure of the stud 
connections was subsequently occurred along the outside of 
the fractured girder near the midspan. As the stud 
connection failure propagated along the bridge span, the 
bridge deck deflected largely near the midspan and the 
expansion joint at the top of the east railing was closed over 
most of its height as shown in Fig. 8(b). As the east railing 
started to crush, the stud connection failure along the 

 
(a) Stud connection failure (b) Railing crushing 

 

(c) Bridge collapse 

Fig. 8 Ultimate behavior of bridge (Williamson et al. 2010)
 
 

interior top flange of the fractured girder continued to 
extend as did the stud connections along the outside of the 
fractured girder near the midspan. The bridge eventually 
collapsed when the stud connections failed along the entire 
length of the interior and exterior top flange of the fractured 
girder, as shown in Fig. 8(c). 

 
4.2 FE simulation for full-scale bridge test 
 
To investigate the accuracy of the simulation model, the 

girder displacement and concrete strain of the railing 
collected from the full-scale bridge fracture test are 
compared with the simulation results. During the bridge 
fracture test, it was observed that the gap between the rails 
closed at the midspan. In the FE simulation of the bridge 
test, spring elements are used to account for the engagement 
of the rails at the midspan expansion joint, as previously 
mentioned. 

Fig. 9(a) shows strain gauges installed on the top and 
side of the east railing above the fractured girder, and Fig. 
9(b) compares the longitudinal strains obtained from the 
bridge test and FE simulation. As shown in Fig. 9(b), the 
railing starts to engage from the top and propagates to the 
bottom along the railing height. The simulated model 
captures the progressive contact of rails successfully, but 
the computed strains tend to deviate from the test result 
after railing contact initiates. This could be attributed to 
various factors, such as the spalling of the concrete cover, 
extensive crushing of the railing concrete, and non-uniform 
contact with the width of the railing. The large amount of 
the spalled concrete cover in the railing during the bridge 
fracture test, as shown in Fig. 8(b), suggests that the 
concrete strain gauge readings may not accurately represent 
the strain variation. Furthermore, the large deck deflection 
above the fractured girder could cause the rails to rotate 
about the longitudinal axis, resulting in the non-uniform 
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(a) Strain gauge setup (Williamson et al. 2010) 

 

(b) Strain response through railing height 

Fig. 9 Longitudinal strain response 
 
 
 

contact with the width of the railing. 
The displacement results of the fractured girder from the 

bridge fracture test and corresponding FE simulation are 
shown in Fig. 10. In this figure, the displacement is 
normalized with the bridge span. During the test, the girder 
displacement was measured at a location of 5.49 m (18 ft) 
away from the midspan. The measured and FE simulated 
data are indicated with solid and dashed lines, respectively. 

During the test, as the applied load increased, the 
haunch along the interior top flange of the fractured girder 
was separated near the midspan and gradually extended 
along the span. Once the load reached approximately 689 
kN (155 kips), there was a sudden deflection increase as 
indicated by a plateau in the displacement response. This 
sudden deflection was caused by the fracture of the stud 
connections from the outside of the fractured girder. The 
fracture of the stud connections was initiated near the 
midspan and suddenly extended approximately 6.1 m (20 ft) 
to the north and the south directions. When the applied load 
reached the maximum load of 1619 kN (364 kips), the 
entire haunch of the fractured girder was separated from the 
deck. Subsequently, the bridge collapsed. 

As shown in Fig. 10, the overall load-displacement 
response of the FE simulation model agrees well with test 
data. The maximum load capacity estimated by the 
simulation is approximately 1664 kN (374 kips) which is 

Fig. 10 Girder-displacement responses 
 
 

only 3% higher than that of the bridge test result. However, 
different from that in the bridge test, the sudden fracture of 
the stud connections does not occur on the outside of the 
fractured girder in the FE simulation. Instead, it gradually 
occurs along the span of the fractured girder. Note that the 
test bridge had been damaged in the two preceding tests, but 
the rehabilitation of the bridge was not attempted before the 
bridge fracture test to evaluate its ultimate load-carrying 
capacity, which is the focus of this study. The FE model 
does not account for such damage from previous tests, 
which could be one of the reasons why the local failure 
behavior is different (i.e., sudden fracture of the stud 
connections on the outside of the fractured girder). 

The assumed loading scenario to evaluate the load-
carrying capacity of the bridge is to increase the axle loads 
of the HS-20 truck proportionally to the original axle loads 
of one truck. In the bridge fracture test, the concrete blocks 
and road base were used to simulate the loading scenario 
with the HS-20 truck loading configuration. The concrete 
blocks are modeled with concentrated loads and the load 
base is modeled with the pressure load in the FE simulation 
for the bridge fracture test. However, the simulated truck 
loading has a different loading configuration compared to 
the HS-20 truck, as shown in Fig. 7. To evaluate the 
difference between the loading configurations, the fractured 
girder displacement of the bridge model with the HS-20 
truck loading is compared with that of the bridge model 
with the simulated loading. 

The dotted line in Fig. 10 indicates the load-
displacement response of the model utilizing the HS-20 
truck loading configuration. Comparing the results of the 
HS-20 loading case with those of the simulated loading, the 
HS-20 truck loading configuration has a more severe 
loading effect than the simulated truck loading. This could 
be caused by the fact that the HS-20 loading modeled with 
concentrated loads has a longer lever arm for the transverse 
bending than the simulated loading because the road base of 
the simulated load is distributed over a wider region of the 
deck. 
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5. Parameters affecting the ultimate behavior 
 
The crushing of the railing and tensile failure of the stud 

connections in the full-scale bridge fracture test were 
identified as the prominent failure behaviors that need to be 
considered to investigate the ultimate loading capacity of 
the bridge. Therefore, changing the railing conditions and 
(or) stud connections could affect the ultimate behavior 
(i.e., the ultimate loading capacity and the stiffness) of the 
twin steel box-girder bridge. In addition to these factors, 
concrete compressive strength not only directly affects the 
transverse bending strength of the concrete deck but also 
influences the strength of the stud connections of the bridge. 
For these reasons, the railing, strength of the stud 
connection, and concrete strength are selected as variable 
parameters to investigate the ultimate behavior of the twin 
steel box-girder bridge in this study. 

To investigate the effects of these parameters on the 
ultimate loading capacity and stiffness of the twin steel box-
girder bridge, three simply supported bridges with varying 
span-to-girder depth ratios (i.e., 23.7 for the S24 model, 25 
for S25, and 27.9 for S28) are simulated using FE models. 
Their load-displacement behaviors are evaluated in this 
section. 

The dimensions of the bridges utilized for the simulation 
models are listed in Table 1. Among the three bridges listed 
in this table, two bridges (S24 and S28) are currently in 
service as exit ramps at Woodway near the intersection of I-
10 and Loop 610 in Houston. S25 is the test bridge 
reconstructed at the Ferguson Structural Engineering 
Laboratory. In the FE simulations for the parametric study, 
the loading configuration of the HS-20 truck and concrete 
compressive strength of 27.6 MPa (4 ksi) are utilized except 
in the cases where the effect of the concrete strength is 
investigated. 

 
5.1 Concrete railing 
 
As demonstrated in the bridge fracture test, the T501 

railing could act as an edge beam once the gap between the 
rails was closed by transferring normal forces through it. 
This implies that the railing could affect the ultimate 
behavior of the bridge. In this study, to investigate the 
contribution of the railing engagement on the ultimate 
loading capacity and stiffness of the twin steel box-girder 

 
 

Fig. 11 Parameters affecting remained load-carrying 
capacity (S25 model) 

 
 

bridge sustaining a fracture on one of the girders, the 
displacement responses of the FE models without the railing 
engagement effect (i.e., without the spring elements to 
account for the railing contact) are compared with those of 
the FE models with the railing engagement effect. 

The load-displacement behaviors of the S25 model (with 
a span-to-girder depth ratio of 25) are shown in Fig. 11. The 
solid and dashed lines compare the load-displacement 
behaviors between the bridge models with and without the 
railing engagement effect. The simulation result of the 
model with the railing engagement effect not only shows a 
35% higher load-carrying capacity than the model without 
the railing engagement, but also a stiffer behavior beyond a 
displacement exceeding approximately 0.4% of the span. 
Note that Fig. 11 only shows the displacements caused by 
the live load after the girder fracture. According to the FE 
simulation, the calculated displacement by the girder 
fracture is 0.39 % of the bridge span. Therefore, the railing 
begins to be effective on the load-displacement response of 
the bridge when the displacement caused by the girder 
fracture and live load exceeds approximately 0.79 % of the 
bridge span. 

To quantitatively evaluate the stiffness in the load-
displacement behavior, a secant stiffness of 2% of the 
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Table 1 Box girder and stud connection dimensions 

Model 

Box girder Concrete deck 

Span to girder depth ratio Width (mm) Thickness (mm) 
Width 

(m) 
Thk.
(mm)Span 

(m) 
Depth 
(m) 

Span 
/Depth 

Bottom 
Between webs

@ top 
Top 

flange 
Bot 

 flange
Web 

Top 
flange 

S24 
51.8 2.2 23.7 1,130 2,134 457 38.1 19.1 38.1 8.1 203

(170 ft) (86 in.) (44.5 in.) (84 in.) (18 in.) (1.5 in) (0.75 in.) (1.5 in.) (26.42 in.) (8 in.)

S25 
36.6 1.5 25.0 1,194 1,829 305 19.1 12.7 16.3 7.1 203

(120 ft) (57.7 in.) (47 in.) (72 in.) (12 in.) (0.75 in.) (0.5 in.) (0.64 in.) (23.25 in.) (8 in.)

S28 
61.0 2.2 27.9 1,130 2,134 457 50.8 19.1 44.5 8.1 203

(200 ft) (86 in.) (44.5 in.) (84 in.) (18 in.) (2 in.) (0.75 in.) (1.75 in.) (26.42 in.) (8 in.)
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bridge span is computed, as illustrated in Fig. 11 for the S25 
model without the railing effect. The 2% displacement is 
arbitrarily selected in this study, considering that all the 
investigated bridge models show perfectly plastic behaviors 
before the aforementioned displacement is reached. The 
stiffness of the S25 model without the railing is evaluated as 
1.36 MN/m and is increased to 1.84 MN/m to account for 
the railing effect. 

The ultimate load-carrying capacity and stiffness 
variations of the bridge models at different span-to-depth 
ratios are shown in Figs. 12 and 13. The ultimate capacity 
and stiffness tend to decrease as the span-to-girder depth 
ratio. This tendency could be attributed to the higher 
longitudinal bending moment induced by the applied truck 
live load in longer bridge spans. Within the range of the 
investigated bridge spans, the ultimate loading capacity and 
stiffness improved by the railing are indicated by the solid 
line with circle markers. The railing enhances the ultimate 

 
 

Fig. 12 Ultimate strength variation 
 
 

Fig. 13 Stiffness variation 

strength and stiffness from 6–35% and 7–36%, respectively. 
 
5.2 Tensile strength of the stud connection 
 
As mentioned previously, the applied load on the 

fractured girder could be redistributed to the intact girder 
through the transverse bending of the concrete deck, which 
causes high tensile forces on the stud connections of the 
fractured girder. Such high tensile forces could induce the 
stud connection failure on the interior flange of the 
fractured girder, resulting in the reduction of the bending 
strength and stiffness of the deck by changing the bending 
shape from a double curvature into single curvature 
(Samaras et al. 2012). Accordingly, the ultimate loading 
capacity and stiffness of the bridge could be affected by the 
tensile strength of the stud connection. 

The tensile strength of a stud connection could be 
influenced by various factors such as the concrete strength, 
embedment depth of a stud(s), and presence of the deck 
haunch (Mouras 2008). Among these factors, the 
embedment depth of the stud could be modulated without 
any impact on the design of the other components of the 
bridge. For this reason, in this study, the tensile strength 
effect on the ultimate load-carrying capacity of the bridge is 
investigated by increasing the embedment depth of a stud. 
The stud connections of the investigated bridges comprise 
of three 127-mm long and 22.4-mm (7/8-in) diameter studs, 
as schematically shown in Fig. 3. The studs are embedded 
into the concrete deck through the 76.2-mm (3-in) haunch. 
The haunch edge distance (cah) is 76.2 mm for the S24 and 
S25 bridge models, and 50.8 mm (2-in) for the S25 model. 
To investigate the tensile strength effect on the ultimate 
loading capacity, the embedment depth of the stud is 
increased by increasing the stud length from 127 (hef

’ = 41.3 
mm) to 229 mm (hef

’ = 143 mm). The dimensions and 
tensile strengths of the stud connections are summarized in 
Table 2. By increasing the stud length, it is estimated that 
the tensile strength increases from 69 (15.5)–136 kN (30.6 
kips) for S24 and S28, and from 58 (13.1)–121 kN (27.2 
kips) for S25 according to Eqs. (6) and (10). 

The dotted-dashed and solid lines in Fig. 11 compare the 
load-displacement responses in S25 model. As shown in 
Fig. 11, the bridge model with 229-mm studs shows not 
only a higher ultimate loading capacity, but also a stiffer 
behavior compared to the model with 127-mm studs. Figs. 
12 and 13 show that the increased tensile strength of the 
stud connection (indicated by the solid line with triangle 
markers) is effective to improve the ultimate loading 
capacity and stiffness of the other bridge models with 
different span-to-girder depth ratios. By increasing the stud 
length from 127 mm to 229 mm, the ultimate strength 
increases by 28 to 79% and the stiffness by 10 to 56%. 

 
5.3 Concrete strength 
 
Concrete strength could affect not only the strength of 

the deck, but also influence the shear and tensile strength of 
a stud connection. The concrete strength is related to the 
tensile strength of the stud connection because the concrete 
breakout strength of a single isolated stud, Nb, in Eq. (9) is 
proportional to the concrete strength (ACI 318 2014). As 
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Table 2 Stud connection dimensions 

Item S24 & S28 S25 

hd (mm) 
203 

(8.0 in) 
203 

(8.0 in) 

hh (mm) 
76.2 

(3.0 in) 
76.2 

(3.0 in) 

hef
’ (mm) for 

127 mm stud 
41.3 

(1.6 in) 
41.3 

(1.6 in) 

hef
’ (mm) for 

229 mm stud 
143 

(5.6 in) 
143 

(5.6 in) 

cah (mm) 
76.2 

(3.0 in) 
50.8 

(2.0 in) 

s (mm) 
152 

(6.0 in) 
102 

(6.0 in) 

ψh,N for 
127 mm stud 

0.44 
(0.017 in) 

0.44 
(0.017 in) 

ψh,N for 
228.6 mm stud 

0.44 
(0.017 in) 

0.44 
(0.017 in) 

ψec,N, ψed,N, ψep,N, 
and ψcp,N 

1.00 1.00 

ψc,N 1.25 1.25 

Nb (kN) for 
127 mm stud 

125.4 
(28.2 kips) 

105 
(23.6 kips) 

Nb (kN) for 
228.6 mm stud 

247 
(55.5 kips) 

220 
(49.5 kips) 

Ncbg (kN) for 
127 mm stud 

69 
(15.5 kips) 

58 
(13.0 kips) 

Ncbg (kN) for 
228.6 mm stud 

136 
(30.6 kips) 

121 
(27.2 kips) 

 

 
 

indicated in Eq. (4), the shear strength of the stud 
connection increases as the concrete strength increases. 
Therefore, it is expected that the load-carrying capacity of 
the bridge could be improved with the increase in concrete 
strength. According to Russell (2003), the specified 
concrete strength used for bridge deck construction is 
typically in the range 27.6 (4)–55.2 MPa (8 ksi). To 
evaluate the concrete strength effect, the FE simulation 
model with a compressive strength of 27.6 MPa is 
compared to the model with a 41.4 MPa (6 ksi) strength. 

The dotted line in Fig. 11 shows the load-displacement 
response of the model with the concrete compressive 
strength of 41.4 MPa. As expected, the ultimate loading 
capacity and stiffness are improved by increasing the 
concrete strength. In the investigated range of the span-to-
girder depth ratio, the ultimate loading capacity is improved 
by 21 to 38% and the stiffness by 22 to 27%, as shown in 
Figs. 12 and 13. 

 
 

6. Redundancy evaluation 
 
Bridge redundancy can be described as the load capacity 

that a bridge continues to carry without undergoing 
excessive deformation after sustaining failure in one or 
more of its main structural members. This implies that the 

bridge should not only sustain specified damage and load 
level, but also its displacement within a tolerable limit. 
Therefore, a damage and loading scenario should be 
specified together with the tolerable displacement limit for 
the redundancy evaluation of the bridge. Kim and 
Williamson (2015) proposed a redundancy evaluation 
method that could be applied to twin steel box-girder 
bridges. As damage and loading conditions for the 
redundancy evaluation, they assumed that the sudden girder 
fracture occurs at a section where the HS-20 truck live load 
induces the maximum positive bending moment. As target 
safety levels under the damage and loading conditions, they 
utilized two limit states. First, the largest girder 
displacement is limited to 1% of the span. This 
displacement was proposed by Ghosn and Moses (1998) as 
a tolerable limit, which allows the bridge to maintain 
minimal functionality as bridge users evacuate after a 
sudden girder fracture occurs. Second, the strain on the 
concrete deck above the intact girder is limited to 0.003, 
corresponding to the initiation of a collapse mechanism at 
the onset of concrete crushing. 

In this study, the redundancy of the bridge models 
varying in span-to-girder depth ratio from 23.7 (S24 
model)–27.9 (S28 model), is evaluated utilizing the method 
proposed by Kim and Williamson (2015). As shown in the 
previous section, the ultimate load-carrying capacity and 
stiffness of the twin steel-box girder bridge, sustaining a 
fracture on one of its girders, could be improved by 
modulating the conditions of the railing, embedment depth 
of the stud, and concrete strength. For this reason, these are 
considered as variable conditions in investigating the 
redundancy. 

The girder displacement results of the bridge models 
with varying conditions in the railing, embedment depth of 
the stud, and concrete strength are shown in Fig. 14 and the 
corresponding deck strains are listed in Table 3. According 
to the redundancy evaluation results, the 127-mm (5-in) 
stud models with and without the S28 railing fail to 
converge during the analysis because of the excessive 
displacement induced by the failure of the stud connections 

 
 

Fig. 14 Redundancy evaluation (girder displacement) 
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Parameters influencing redundancy of twin steel box-girder bridges 

 

Table 3 Redundancy evaluation (deck strain) 

Concrete 
strength 

Model 
Deck strain / 0.003 (%)

S24 S25 S28

Span length (m) 51.8 36.6 61.0

Span/depth 23.7 25.0 27.9

fc
’ = 27.6 Mpa 

(4 ksi) 

127-mm (5 in.) stud 98 83 - 

127-mm stud w/ rail 88 71 - 

229-mm (9 in.) stud 74 52 123

fc
’ = 41.4 Mpa 

(6 ksi) 

229-mm (9 in.) stud 50 49 86 

229-mm stud w/ rail 48 49 82 
 

 
 

along the entire span of the fractured girder. For this reason, 
these cases are considered as non-redundant although they 
are not plotted in Fig. 14. As indicated by the solid line with 
circle markers in the figure, the 127-mm (5-in) stud model 
of S25 yields large girder displacements exceeding the 
tolerable limit (i.e., 1% of the bridge span) although the 
corresponding deck strains listed in Table 3 are within 
0.003. A solid line with triangle markers shows the effect of 
the increased embedment depth. By increasing the 127-mm 
stud to 229 mm, the displacement of the S25 model is 
reduced within the limit qualifying it to be classified as 
redundant, whereas the displacement and strain of the S28 
model still exceed the limits. By increasing the 27.6 MPa (4 
ksi) concrete strength to 41.4 MPa (6 ksi), the displacement 
and deck strain of the S28 model decrease below the limits. 
These results imply that by modulating the embedment 
depth of the stud and (or) concrete strength, the 
displacement of the twin steel-box girder bridge could be 
improved to the extent that the bridge could be considered 
as redundant. 

The dotted lines with circle and triangle markers show 
the effect of the railing on the redundancy of the 127- and 
229-mm stud models, respectively. Different from the effect 
of increasing the embedment depth of the stud or concrete 
strength, modifying the railing does not significantly 
improve the displacements of the bridge models although it 
effectively improves their ultimate strength and stiffness. 
This discrepancy could be attributed to the fact that the 
railing only affects the load-displacement response when 
the bridge is largely deflected, as shown in the previous 
section. For instance, the railing begins improving the load-
displacement response of the S25 model as the girder 
displacement caused by the damage and live load exceeds 
0.79% of the span. In other words, the railing does not 
significantly affect the load-displacement response of the 
bridge within the 1% limit for the redundancy evaluation. 

 
 

7. Conclusions 
 
In this paper, a full-scale bridge fracture test and 

detailed FE modeling techniques are introduced to evaluate 
the ultimate load-carrying capacity of a twin steel-box 
girder bridge sustaining a fracture on one of its girders. The 
proposed FE model accounts for the nonlinear behaviors of 
the steel and concrete, railing contact, and stud connection 

failure under combined shear-tension loads that could occur 
before the applied load reaches the ultimate load capacity of 
the bridge. The ultimate capacity estimated by the FE model 
agrees well with the result of the full-scale bridge fracture 
test to within 3% difference. FE simulation conducted for 
various span-to-depth ratios demonstrate that the twin steel 
box-girder bridge could sustain a significant amount of load 
(i.e., approximately from 2.5 to 6 times the HS-20 truck 
load) even if it sustains a full-depth fracture on one of its 
girders, which is consistent with previous research 
(Williamson et al. 2010). This implies that this type of 
bridge could have a redundancy greater than that suggested 
by current design provisions to the extent that it might be 
classified out of the fracture-critical designation. 

In the bridge fracture test, conspicuous local failures 
were observed in the T501 concrete railing and stud 
connections before the bridge collapsed. The railing 
exhibited a concrete crushing failure, acting as an edge 
beam after the gaps between the rail sections were closed 
because of the large deflection of the bridge. Moreover, the 
stud connections in the fractured girder were pulled out by 
high tensile forces induced by the transverse bending of the 
concrete deck. These imply that the railing and stud 
connections could have important functions in the load 
redistribution mechanism of the bridge with a girder 
fracture. For these reasons, the effects of the railing and 
tensile strength of the stud connection on the ultimate 
strength behavior and redundancy of the twin steel box-
girder bridge are investigated in this study. Additionally, 
concrete compressive strength is also included as a variable 
parameter, considering that various concrete strengths are 
practically utilized in the bridge construction industry. The 
investigation considered three different bridge span-to-
girder depth ratios, from 23.7–27.9. 

The results of the parametric study using the proposed 
FE models show that the T501 railing, increased tensile 
strength of the stud connection, and the high strength 
concrete effectively increased not only the ultimate load-
carrying capacity but also bridge stiffness. However, 
although the increased tensile strength and high concrete 
strength are effective in enhancing bridge redundancy, the 
railing does not significantly contribute to it when the 
displacement for the redundancy evaluation is limited to 1% 
of the bridge span. This is attributed to the fact that the 
railing only affects the load-displacement behavior when 
the bridge is largely deflected. In addition, there is a 
tendency for the ultimate loading capacity and stiffness to 
decrease as the span-to-girder depth ratio increases. In other 
words, the longer bridge span is, the higher is the tendency 
of the bridge to be non-redundant when the displacement is 
limited to 1% for the redundancy evaluation. Nevertheless, 
by modulating the tensile strength of the stud connection 
and (or) concrete compressive strength, the redundancy of 
the bridge could be enhanced for it to be excluded from its 
fracture-critical designation. This study suggests that 
although the twin steel box-girder bridge could be fracture 
critical (i.e., non-redundant) depending on its span-to-girder 
depth ratio, it could also be adjusted to become redundant 
by modulating the tensile strength of the stud connection 
and (or) concrete strength. 
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