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1. Introduction 

 

Functionally graded materials (FGMs) initiated by 

Japanese scientists in the middle eighties as space materials 

are increasingly used for development of structural 

elements subjected to severe mechanical and thermal 

loading (Birman and Byrd 2007). Beam as a major part in 

many structures is designed to resist different static and 

dynamic loading, and new materials, including composites 

and FGMs are increasingly employed to fabricate this 

important structural element for improving its strength to 

weight ratio. Investigation on mechanical behavior of FGM 

beams has drawn much attention from researchers in recent 

years, and a large number of publications on static 

(Chakraborty et al. 2003, Kadoli et al. 2008, Frikha et al. 

2016), vibration (Li 2008, Li et al. 2013, Mahi et al. 2010, 

Trinh et al. 2016), and buckling (Wattanasakulpong et al. 

2011, Kahya and Turan 2017) behavior of FGM beams have 

been reported in the literature. 

Non-prismatic beams with variable cross section are 

important in engineering because of their ability in 

optimizing the weight and strength of structures. Due to the 

variable coefficients in the governing differential equations, 

analytical methods are often encountered difficulties in 
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analyzing the variable cross section beams, and a special 

technique or a numerical method should be employed 

instead of. In this line of works, Huang and Li (2010) 

studied free vibration of axially FGM Euler-Bernoulli 

beams with variable flexural rigidity and mass density by 

transforming the governing equations to Fredholm integral 

equations and expanding the mode shape into power series. 

The authors then extended the study to buckling analysis of 

axially graded Euler-Bernoulli beams with arbitrarily axial 

varying cross section (Huang and Li 2011). An auxiliary 

function for transforming the couple governing equations to 

a single governing differential equation was introduced by 

Huang et al. (2013) for determining natural frequencies of 

axially FGM Timoshenko beams. The proposed method is 

capable to determine the lower and higher natural 

frequencies simultaneously from the multi-roots. Tang et al. 

(2014) derived the exact frequency equations for free 

vibration of non-uniform FGM Timoshenko beams with 

bending stiffness and mass density longitudinally varying 

by an exponential law. The free vibration of non-uniform 

axially FGM beams was also considered by Hein and 

Feklistova (2011) by using Haar wavelet method. Based on 

Timoshenko beam theory, Shahba et al. (2011) formulated a 

finite beam element for free vibration and stability analysis 

of tapered axially FGM beams with classical and non-

classical boundary conditions. The element employed the 

solution of static part of governing equations to interpolate 

the displacement field, which helps to improve its 

convergence. Shahba and Rajasekaran (2012) employed the 
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power-law functions. The finite element formulation based on the first-order shear deformation theory is derived by using 

hierarchical functions to interpolate the displacement field. In order to improve efficiency and accuracy of the formulation, the 

shear strain is constrained to constant and the exact variation of the cross-sectional profile is employed to compute the element 

stiffness and mass matrices. A comprehensive parametric study is carried out to highlight the influence of the material 

distribution, the taper and aspect ratios as well as the boundary conditions on the vibration characteristics. Numerical 

investigation reveals that the proposed model is efficient, and it is capable to evaluate the natural frequencies of BFGM beams 

by using a small number of the elements. It is also shown that the effect of the taper ratio on the fundamental frequency of the 

BFGM beams is significantly influenced by the boundary conditions. The present results are of benefit to optimum design of 

tapered FGM beam structures. 
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differential transform method (DTM) and differential 

quadrature method (DQM) to study free vibration and 

stability of axially FGM Euler-Bernoulli beams. The 

modified couple stress theory and Rayleigh–Ritz method 

were used by Akgöz and Civalek (2013) to determine 

natural frequencies of tapered axially FGM microbeams. 

Rajasekaran (2013), Rajasekaran and Tochaei (2014) 

employed DTM to study the buckling and vibration of 

tapered beams formed from axially FGM. The authors 

showed that the DTM is able to capture the effects of 

variable cross section, centrifugal force and the material 

inhomogeneity, and the tapered ratio has decreasing the 

effect on natural frequencies of the beams. The co-rotational 

finite element formulations (Nguyen 2013, Nguyen and Gan 

2014), and the generalized DQM (Niknam et al. 2014) were 

used to study large deflection behavior of tapered beams 

with the material properties varying in the thickness or 

longitudinal direction. Gan et al. (2015) derived a finite 

element formulation for studying the vibration of 

Timoshenko beams under multiple moving loads. The cross 

section of the beams was considered to be linear variation 

along the beam length and the material properties are 

assumed to vary in the axial direction by a power- law 

function. The DQM was utilized in combination with the 

domain decomposition technique by Bambill et al. (2015) 

to study free vibration of stepped axially FGM Timoshenko 

beams. Different combinations of classical and elastic 

boundary conditions have been considered in the work. 

Also using the DQM, Ghazaryan et al. (2017) carried out a 

free vibration analysis of FGM beams with non-uniform 

cross section. Calim (2016) applied complementary 

function method in transient analysis of axially FGM 

Timoshenko beam with variable cross section. The dynamic 

response of tapered beams under impulsive load was 

obtained by the author by using the modified Durbin’s 

algorithm. B-spline method was employed by Li and Zhang 

(2015) in dynamic analysis of rotating AFG beams with 

linearly varying cross section. Recently, Zhao et al. (2017) 

considered free vibration of axially FGM beams with 

varying cross section by using Chebyshev polynomials 

theory. 

The FGM beams in the above discussed references are 

formed from unidirectional FGMs with material properties 

varying in one spatial direction, axial or transverse direction 

only. The unidirectional FGMs may not be appropriate to 

resist multi-directional variations of thermal and mechanical 

loadings in many practical circumstances. For example, the 

temperature on the outer surface of the new aerospace craft 

in sustained flight can range from 1033K along the top of 

the fuselage to 2066K at the nose and from outer surface 

temperature to room temperature inside the plane (Nemat-

Alla and Noda 2000). Development of FGMs with effective 

material properties varying in two or three directions for 

withstanding severe general loadings, therefore is great 

important. Analysis of beams made of bi-directional 

functionally graded material (BFGM) has been carried out 

by several authors in recent years. Using a hybrid state 

space-based DQM, Lü et al. (2008) derived semi-analytical 

elasticity solutions for static bending and thermal 

deformation of BFGM beams with Young’s modulus 

varying exponentially along the thickness and longitudinal 

directions. The exponential variation of material properties 

was also considered by Simşek (2015) in vibration analysis 

of BFGM beams under a moving load. The author showed 

that the natural frequencies and dynamic response of the 

beams are significantly influenced by the material gradient 

distribution, and the material properties of the BFGM 

beams can be selected to meet the design goals of 

optimizing the dynamic response. The forced vibration of 

FGM Timoshenko beams with material properties varying 

exponentially in both the thickness and length directions 

was also studied by the dynamic stiffness method (Hao and 

Wei 2016). The NURBS isogeometric finite element 

approach was employed by Lezgy-Nazargah (2015), Huynh 

et al. (2017) to investigate the coupled thermo-mechanical 

behavior and free vibration of BFGM beams, respectively. 

Wang et al. (2016) assumed the material properties 

following an exponential function along the beam length 

and a power-law function though the thickness in the free 

vibration analysis of BFGM Euler-Bernoulli beams. 

Numerical investigation in the work showed that there is a 

critical frequency at which the natural frequencies have an 

abrupt jump. Nguyen et al. (2017) considered the forced 

vibration of BFGM beams formed from four distinct 

constituent materials whose volume fraction varying in both 

the thickness and longitudinal directions by power 

functions. A first-order shear deformable finite element 

formulation was derived by the authors for computing the 

dynamic response of the beams carrying a moving load. 

Based on the classical hairbrush hypothesis, Pydah and 

Sabale (2017) presented an analytical model for static 

bending analysis of circular FGM beams with material 

properties varying smoothly along tangential and radial 

directions. Karamanli (2017) studies bending behavior of 

BFGM sandwich beams by using the quasi-3D shear 

deformation theory and the symmetric smoothed particle 

hydrodynamics method. The generalized DQM has been 

employed by Shafiei and Kazemi (2017), Shafiei et al. 

(2017) to study buckling and vibration of porous BFGM 

nano/micro beams, respectively. Based on a quasi-3D 

theory, Trinh et al. (2018) studied free vibration of BFGM 

mirobeams by assuming the material properties to vary 

exponentially along both longitudinal and thickness 

directions. 

In this paper, the free vibration analysis of tapered 

BFGM beams using a finite element procedure is presented. 

The beams are considered to be formed from four distinct 

constituent materials whose volume fraction varying in the 

thickness and longitudinal directions by power-law 

functions. A first-order shear deformable finite element 

model using hierarchical functions to interpolate displace-

ment field is derived and employed in the analysis. To 

improve the accuracy and efficiency of the finite element 

formulation, the shear strain is constrained to constant and 

the exact variation of the cross-sectional profile is employed 

to evaluate the element stiffness and mass matrices. 

Validation of the model is confirmed by comparing the 

numerical results of the present work with the published 

data. A parametric study is carried out to highlight the 

effects of the material distribution and taper ratio of 
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Case A 

 

Case B 

 

Case C 

 

Fig. 1 Geometry and coordinate system of FGM beams for 

different tapered cases 
 

 

vibration characteristics. The influence of the aspect ratio 

on the frequencies of the beams is also examined and 

discussed. 
 

 

2. Tapered BFGM beam 
 

An FGM beam with rectangular cross section and length 

of L is considered. The beam is assumed to be 

longitudinally tapered in three following taper cases 
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where A(x) and I(x) are, respectively, the area and inertia 

moment of cross section; A0 and I0 are the area and moment 

of inertia of the section at the left end (x = 0), respectively; 

0 ≤ α <1 is the taper ratio. The beam become uniform when 

α = 0. The three tapered cases are illustrated in Fig. 1, 

where the Cartesian coordinate system (x, y, z) is chosen 

such that the x-axis is on the mid-plane and z-axis directs 

along the thickness direction. 

The beam material is assumed to be formed from two 

ceramics, referred to as ceramic 1 (C1) and ceramic 2 (C2), 

and two metals, referred to as metal 1 (M1) and metal 2 

(M2), whose volume fraction varies in both the thickness 

and longitudinal directions according to 
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where nx and nz are the material grading indexes, which 

dictate the variation of the constituent materials along the x 

and z directions, respectively. It can be seen from Eq. (2) 

that the left and right lower sides, corresponding to (x = 0, z 

= -h/2) and (x = L, z = -h/2), contain only M1 and M2, 

respectively, whereas the corresponding upper two sides, 

according to (x = 0, z = h/2) and (x = L, z = h/2) are, 

respectively, pure C1 and C2. The variation of the volume 

fraction of C1 and C2 in the x- and z-directions according to 

Eq. (2) is depicted in Fig. 2 for various values of the 

material grading indexes nx and nz. 

 

 

 

Fig. 2 Variation of volume fraction of ceramics in the longitudinal and thickness directions 
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Effective material properties P such as the elastic 

modulus and the mass density are evaluated according to 
 

1 1 2 2 1 1 2 2C C C C M M M MV V V V   P P P P P  (3) 
 

where Pc1, Pc2, PM1 and PM2 denote the properties of the C1, 

C2, M1 and M2, respectively. 

Using Eq. (2), one can rewrite Eq. (3) in the form 
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(4) 

 

It is evident that Eq. (4) deduces to the effective material 

properties of a unidirectional transverse FGM beam if nx = 

0, or if C1 is the same as C2, and M1 is identical to M2. In 

addition, if nz = 0, Eq. (4) results in the effective material 

properties of an axially FGM beam formed from C1 and 

C2. 

Based on the first-order shear deformation theory, the 

axial displacement, u1(x, z, t), and transverse displacement, 

u3(x, z, t), at any point of the beam are given by 
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where z is the distance from the mid-plane to the 

considering point; u(x,t) and w(x,t) are, respectively, the 

axial and transverse displacements of the point on the mid-

plane; θ(x,t) is the cross-sectional rotation. 

The axial strain (εxx) and the shear strain (γxz) resulted 

from Eq. (4) are of the forms 
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where and hereafter, a subscript comma is used to indicate 

the derivative of the variable with respect to the spatial 

coordinate x. 

The constitutive relation for the BFGM beam based on 

Hooke’s law is of the form 
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where σxx and τxz are the axial and shear stresses, 

respectively; E(x,z) and G(x,z) are, respectively, the Young’s 

modulus and shear modulus, and they are functions of both 

the spatial coordinates, x and z. 

The strain energy of the beam (U) resulted from (6) and 

(7) is as follows 
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(8) 

where ψ is the shear correction factor, chosen by 5/6 for the 

beams with rectangular cross section considered herein; A11, 

A12, A22 and A33 are, respectively, the extensional, 

extensional-bending coupling, bending rigidities and shear 

rigidity, which are defined as 
 

     

   

2

11 12 22

( )

33

( )

, , , , 1, , ,

, ,

A x

A x

A A A x z E x z z z dA

A x z G x z dA








 

(9) 

 

with the cross-sectional area A(x) is defined in Eq. (1). 

Using Eq. (4), one can rewrite the beam rigidities in (9) 

as follows 
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where 𝐴11
𝐶1𝑀1, 𝐴12

𝐶1𝑀1, 𝐴22
𝐶1𝑀1 and 𝐴33

𝐶1𝑀1 are the rigidities 

of the unidirectional transverse FGM beam formed from C1 

and M1; 𝐴11
𝐶2𝑀2, 𝐴12

𝐶2𝑀2, 𝐴22
𝐶2𝑀2  and 𝐴33

𝐶2𝑀2  are the 

rigidities of the transverse FGM beam composed of C2 and 

M2. As can be clearly seen again from Eq. (10) that the 

rigidities of the present BFGM beam degenerate to that of 

the unidirectional FGM beam if nx = 0 or the two ceramics 

and two metals are identical. Since 𝐴𝑖𝑗
𝐶1𝑀1, 𝐴𝑖𝑗

𝐶2𝑀2  are 

functions of z only, explicit expressions for these rigidities 

can easily be obtained (Nguyen et al. 2017). 

The kinetic energy for the beam (T) resulted from Eq. 

(5) is of the form 
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where an over dot is used to indicate the differentiation with 

respect to time variable t, and I11, I12, I22 are the mass 

moments, defined as 
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The mass moments can be also written in the form 
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with 𝐼𝑖𝑗
𝐶1𝑀1 (i, j = 1, 2) denote the mass moments of the 

unidirectional FGM beams formed from C1 and M1, and 

𝐼𝑖𝑗
𝐶2𝑀2 are the corresponding mass moments of the beam 

formed  from C2 and M2, respectively. 

Equations of motion for the BFGM beam can be 

obtained by applying Hamilton’s principle to Eqs. (8) and 

(11), and they have the following forms 
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It is necessary to note that the coefficients of the above 

differential equations are functions of both x and z, and thus 

a closed-form solution is difficult to obtain. A finite element 

model is developed herein to solve Eq. (14). 

 

 

3. Finite element model 
 

This section derives the finite element formulation, 

namely the stiffness and mass matrices for a beam element 

with length of l. A first-order shear deformable finite beam 

formulation can be formulated using linear functions with 

reduced integration technique to avoid the shear locking 

(Cook et al. 2002). The formulation derived from the linear 

functions is, however slow convergence. Convergence of a 

first-order finite element formulation can be improved by 

using the higher-order polynomials to interpolate the 

displacement field as shown by Nguyen et al. (2017). The 

finite element formulation derived from the higher-order 

polynomials, however has a drawback. Since the 

coefficients of the polynomials are determined from the 

element boundary conditions, related to nodal values of the 

variables, totally new shape functions have to be re-

determined whenever the mesh refinement is made. A finite 

element formulated from the hierarchical functions, in 

which the higher-order shape functions contain the lower-

order ones, enables to overcome the above drawback 

(Zienkiewicz and Taylor 1997). The hierarchical functions 

have been employed previously by Nguyen and Bui (2017) 

to formulate a unidirectional FGM Timoshenko beam 

element, and they are used herein to derive stiffness and 

mass matrices for the BFGM beam element. For one-

dimensional beam, the hierarchical functions are of the 

forms (Zienkiewicz and Taylor 1997) 

 

   

   

1 2

2 2

3 4

1 1
1 , 1 ,

2 2

1 , 1

N N

N N

 

  

   

   
 

(15) 

 

where 𝜉 = 2
𝑥

𝑙
− 1 is the natural coordinate. 

In the first-order shear deformable finite element beam 

model, a quadratic variation of the rotation should be 

chosen to represent a linearly varying bending moments 

along the element. With the shear strain given by Eq. (6), 

interpolation functions for the transverse displacement w 

should be chosen one order higher than that of the rotation 

θ. In this regard, the displacements and rotation can be 

interpolated as follows 
 

   

     

     

 

1 2

2

1 2 3

2

1 2 3

2

4

1 1
1 1 ,

2 2

1 1
1 1 1 ,

2 2

1 1
1 1 1

2 2

1

u u u

w w w w

w

 

      

  

 

   

     

     

 
 

(16) 

 

where u1, u2, θ1, θ2, θ3, w1,..., w4 are nine unknown values of 

the variables. Noting that θ3, w3 and w4 are not values of the 

variables at the nodes. 

The efficiency of the finite element formulation can be 

improved by constraining the shear strain γxz to constant, 

and the number of the unknown values reduces from nine to 

seven (Nguyen and Bui 2017). Substituting θ and w from 

Eq. (16) into expression for γxz in Eq. (6), one gets 
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2
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2 1 4 1 2 3

6 4 1 1
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xz w w
l l
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l
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   

 
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   

(17) 

 

By constraining γxz to constant, one gets 
 

 3 1 2 4 3, and
8 6

l l
w w    

 
(18) 

 

Using (18), one can be rewrite Eq. (16) in the form 
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(19) 

 

and the shear strain γxz is now of the form 
 

   2 1 1 2 3

1 1 2

2 3
xz w w

l
       

 
(20) 

 

The finite element formulation in the present work is 

formulated from seven unknown values u1, u2, w1, w2, θ1, θ2 

and θ3 with the interpolation scheme defined by Eq. (19). 

The vector of unknown values for a generic beam element 

is given by 
 

 1 1 1 3 2 2 2

T
u w u w  d

 
(21) 

 

where ui, wi and θi (i = 1, 2) is the displacements and 

rotations at nodes 1 and 2, but θ3 is not a nodal rotation. 
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Noting that the order of the unknown for the element vector 

is not necessary as that of Eq. (21). 

The interpolation (19) can be written using the vector of 

unknown values as 
 

, ,u wu w  N d N d N d  (22) 
 

with 
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(23) 

 

are the matrices of interpolation functions for u, θ and w, 

respectively. 

With the interpolation scheme (22), the strain energy of 

the beam in Eq. (8) can be written in the form 
 

1

1
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2
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uu u s

T

s

i
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(23) 

 

where ne is total number of the elements; k is the element 

stiffness matrix; kuu, kuθ, kθθ and kss are, respectively, the 

element stiffness matrices stemming from the axial 

stretching, axial stretching-bending coupling, bending and 

shear deformation. Using Eq. (10), one can write these 

matrices kuu, kuθ, kθθ and kss in the following forms 
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(25) 

 

where notations 𝐴11
𝐶12𝑀12 = 𝐴11

𝐶1𝑀1 − 𝐴11
𝐶2𝑀2,     𝐴12

𝐶12𝑀12 =
𝐴12
𝐶1𝑀1 − 𝐴12

𝐶2𝑀2,    𝐴22
𝐶12𝑀12 = 𝐴22

𝐶1𝑀1 − 𝐴2
𝐶2𝑀2,     𝐴33

𝐶12𝑀12 =
𝐴33
𝐶1𝑀1 − 𝐴33

𝐶2𝑀2 have been used. In order to improve the 

accuracy of the finite element formulation, the exact 

variation of the cross-sectional profile is employed to 

evaluate the stiffness matrices in Eq. (25). 

Similarly, the kinetic energy (11) can be written in the 

form 
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in which 
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are, respectively, the element mass matrices resulted from 

the axial and transverse translations, axial translation-

rotation coupling and cross-sectional rotation. Eq. (27) has 

been written by using Eq. (13) and notations 𝐼11
𝐶12𝑀12 =

𝐼11
𝐶1𝑀1 − 𝐼11

𝐶2𝑀2,    𝐼12
𝐶12𝑀12 = 𝐼12

𝐶1𝑀1 − 𝐼12
𝐶2𝑀2  and 𝐼22

𝐶12𝑀12 =
𝐼22
𝐶1𝑀1 − 𝐼22

𝐶2𝑀2. The exact variation of the cross-sectional 

profile is also employed to compute the element mass 

matrices in Eq. (27). 

Using the derived stiffness and mass matrices, the 

equations of motion for the free vibration analysis can be 

written in the form 

 

 MD KD 0  (28) 

 

where D, M and K are the global nodal displacement 

vector, mass and stiffness matrices, obtained by assembling 

the corresponding element vector and matrices over the 

total elements, respectively. 

 

 

Table 1 Properties of constituent materials of BFGM beam 

(Nguyen et al. 2017) 

Material Role E (GPa) ρ
 
(kg/m3) υ 

Steel (SUS304) M1 210 7800 0.3 

Aluminum (Al) M2 70 2702 0.23 

Alumina (Al2O3) C1 390 3960 0.3 

Zirconia (ZrO2) C2 200 5700 0.3 
 

 

 

Assuming a harmonic response for the free vibration, 

Eq. (28) leads to 

 
2( ) K M D 0  (29) 

 

with ω is the circular frequency, and 𝐃  is the vibration 

amplitude. Eq. (29) leads to an eigenvalue problem, which 

can be solved by the standard method (Cook et al. 2002). 

 

 

4. Numerical results and discussion 
 
Numerical investigations are carried out in this Section 

to study the effects of the material distribution and the 

tapered ratio on vibration characteristics of the BFGM 

beam. To this end, the beam is assumed to be formed from 

stainless steel (SUS304), aluminum (Al), alumina (Al2O3) 

and  zirconium oxide (ZrO2) with  the material properties 

given in Table 1. Otherwise stated, an aspect ratio L/h0 = 20 
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is employed in all the computations reported below. Three 

types of boundary conditions (B.C.), namely clamped at x = 

0 and free at x = L (C-F), simply supported at both end (S-

S), and clamped at both ends (C-C) are considered. In order 

to facilitate the discussion, the frequency parameters 

defined as 𝜇𝑖 = 𝜔𝑖
𝐿2

ℎ
 𝜌𝑀1

/𝐸𝑀1
 with ωi is the ith natural 

frequency; 𝜌𝑀1
, 𝐸𝑀1  are the elastic modulus and mass 

density of Al is introduced herewith. 

 

4.1 Accuracy and convergence studies 
 

The accuracy of the finite element model is shown by 

comparing the first frequency parameter of a tapered 

unidirectional axial FGM beam with the results of Shahba 

et al. (2011) in Table 2. The frequency parameter in the 

table is obtained for the beam formed from Al and ZrO2 

with a length 𝐿 =  
𝐼0

0.01𝐴0
, and it is defined  according to 

 

 

 

 

Shahba et al. (2011) as 𝜇 =  
𝜌𝑧𝐿

4𝐴0

𝐸𝑧𝐼0
, where ρZ and EZ are, 

respectively, the mass density and Young’s modulus of 

ZrO2. Table 3 compares the fundamental frequency 

parameter of a S-S uniform BFGM beam with the results of 

Nguyen et al. (2017). Very good agreement between the 

frequency parameters obtained in the present work with that 

of Shahba et al. (2011) and Nguyen et al. (2017) is seen 

from Tables 2 and 3. Noting that both the referenced papers 

employed the first-order shear deformable beam elements 

with super convergent shape functions derived by 

Kosmatka (1995) to interpolate the transverse displacement 

and rotation in evaluating the fundamental frequency. 

The convergence of the derived finite element 

formulation in evaluating the frequency parameter of a 

simply supported tapered BFGM with various values of the 

grading indexes and tapered ratio is illustrated in Table 4. 

The convergence of the present formulation is achieved 

by using 30 elements, which is almost the same as that of 

Table 2 Comparison of the fundamental frequency parameter of tapered unidirectional axial FGM beam with the 

result of Shahba et al. 2011) (nx = 2) 

  Taper ratio α 

B.C. Case Source 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

C-F 

B 
Shahba et al. (2011) 3.9956 4.0640 4.1438 4.2393 4.3571 4.5090 4.7180 5.0371 

Present 3.9955 4.0638 4.1434 4.2386 4.3560 4.5074 4.7154 5.0330 

C 
Shahba et al. (2011) 4.2384 4.4565 4.7121 5.0178 5.3931 5.8695 6.5009 7.3787 

Present 4.2382 4.4560 4.7113 5.0164 5.3909 5.8660 6.4952 7.3696 

S-S 

B 
Shahba et al.(2011) 7.2921 6.8975 6.4653 5.9879 5.4540 4.8448 4.1244 3.2016 

Present 7.2913 6.8963 6.4635 5.9854 5.4503 4.8394 4.1159 3.1858 

C 
Shahba et al. (2011) 7.2245 6.7764 6.2755 5.7118 5.0709 4.3295 3.4452 2.3193 

Present 7.2235 6.7748 6.2730 5.7082 5.0655 4.3215 3.4326 2.2958 

C-C 

B 
Shahba et al.(2011) 12.2126 11.9172 11.5739 11.1706 10.6896 10.1036 9.3634 8.3590 

Present 12.2114 11.9155 11.5715 11.1670 10.6843 10.0950 9.3483 8.3253 

C 
Shahba et al. (2011) 12.2429 11.9737 11.6683 11.3199 10.9200 10.4579 9.9207 9.3010 

Present 12.2416 11.9718 11.6653 11.3153 10.9129 10.4466 9.9015 9.2639 
 

Table 3 Comparison of the fundamental frequency parameter μ1 of S-S uniform BFGM beam with the result of 

Nguyen et al. (2017) 

nz 
 nx 

Source 0 1/3 1/2 5/6 1 4/3 3/2 2 

0 
Nguyen et al. (2017) 3.3018 3.7429 3.9148 4.1968 4.3139 4.5118 4.5956 4.8005 

Present 3.3018 3.7428 3.9146 4.1966 4.3137 4.5116 4.5954 4.8003 

1/3 
Nguyen et al. (2017) 3.1542 3.5050 3.6305 3.8252 3.9022 4.0277 4.0792 4.2009 

Present 3.1542 3.5049 3.6304 3.8250 3.9021 4.0275 4.0790 4.2007 

1/2 
Nguyen et al. (2017) 3.1068 3.4285 3.5397 3.7087 3.7745 3.8805 3.9236 4.0245 

Present 3.1068 3.4284 3.5396 3.7085 3.7744 3.8803 3.9234 4.0243 

5/6 
Nguyen et al. (2017) 3.0504 3.3296 3.4206 3.5548 3.6059 3.6869 3.7194 3.7947 

Present 3.0504 3.3295 3.4205 3.5546 3.6057 3.6867 3.7192 3.7945 

1 
Nguyen et al. (2017) 3.0359 3.2984 3.3819 3.5035 3.5495 3.6219 3.6508 3.7177 

Present 3.0359 3.2983 3.3818 3.5034 3.5493 3.6217 3.6507 3.7176 
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the element using Kosmatka’s shape functions (Kosmatka 

1995) reported by Shahba et al. (2011). In this regards, a 

mesh of 30 elements is employed in the computations 

reported below. 
 

4.2 Effect of material distribution 
 

A BFGM beam of case B tapered type with a taper ratio 

α = 0.5 is considered in this subsection. Tables 5-7 list the 

fundamental frequency parameter μ1 of the C-F, S-S and C-

C beams for various values of the grading indexes nx and nz, 

respectively. The effect of the material distribution defining 

through the grading indexes nx and nz on the frequency 

parameter is clearly seen from the tables. At a given value 

of nz, the tables show an increase of μ1 by increasing the 

longitudinal index nx, regardless of the boundary conditions. 

Examining the table in more detail one can see that the 

variation of the parameter μ1 with the increase of index nx, 

however depends on the value of the index nz, and this 

increase is less significant for the beam associated with a 

higher index nz. For example, when increasing nx from 0 to 

2, μ1 increases 42.19% for the C-F beam associated with nz 

= 0.2, but this parameter increases only 39.74% and 36.9% 

for the beam having nz = 1 and nz = 2, respectively. 
 

 

 

 

The boundary conditions also play an important role on 

the dependence of μ1 with the longitudinal index. The 

frequency parameter μ1 increases 19.53% and 18.73%, 

respectively, for the S-S beam and C-C beam with nz = 1 

when increasing nx from 0 to 2, which is much lower 

comparing to that of the C-F beam. The increase of the 

frequency parameter can be explained by the higher content 

of the ceramics for a beam associated with a higher index 

 
 

 

 

 

Table 4 Convergence of the formulation in evaluating frequency parameter μ1of S-S tapered BFGM 

beam (case C) 

α Grading indexes 
Number of elements (ne) 

10 15 20 25 30 35 40 

0 

nx = nz = 1/2 3.5401 3.5398 3.5397 3.5396 3.5396 3.5396 3.5396 

nx = nz = 5/6 3.5553 3.5549 3.5548 3.5547 3.5546 3.5546 3.5546 

nx = nz = 1 3.5500 3.5496 3.5494 3.5493 3.5493 3.5493 3.5493 

0.2 

nx = nz = 1/2 3.1423 3.1420 3.1419 3.1418 3.1418 3.1418 3.1418 

nx = nz = 5/6 3.1491 3.1487 3.1486 3.1485 3.1484 3.1484 3.1484 

nx = nz = 1 3.1428 3.1423 3.1422 3.1421 3.1420 3.1420 3.1420 

0.6 

nx = nz = 1/2 2.1602 2.1597 2.1596 2.1596 2.1596 2.1596 2.1596 

nx = nz = 5/6 2.1482 2.1476 2.1474 2.1473 2.1472 2.1472 2.1472 

nx = nz = 1 2.1389 2.1383 2.1381 2.1380 2.1379 2.1379 2.1379 

0.9 

nx = nz = 1/2 1.0178 1.0162 1.0154 1.0151 1.0149 1.0149 1.0149 

nx = nz = 5/6 0.9930 0.9912 0.9904 0.9900 0.9898 0.9898 0.9898 

nx = nz = 1 0.9818 0.9800 0.9791 0.9787 0.9785 0.9785 0.9785 
 

Table 5 Fundamental frequency parameter of C-F beam 

with various grading indexes 

nz 
nx 

0 0.2 0.5 1 1.2 1.5 2 

0 1.2825 1.4527 1.5965 1.7253 1.7582 1.7966 1.8422 

0.2 1.2445 1.4181 1.5587 1.6767 1.7048 1.7358 1.7695 

0.5 1.2066 1.3868 1.5255 1.6331 1.6562 1.6799 1.7021 

1 1.1792 1.3689 1.5064 1.6030 1.6210 1.6372 1.6478 

1.2 1.1756 1.3681 1.5051 1.5983 1.6149 1.6289 1.6363 

1.5 1.1743 1.3701 1.5062 1.5951 1.6098 1.6211 1.6246 

2 1.1781 1.3772 1.5116 1.5945 1.6067 1.6145 1.6130 
 

Table 6 Fundamental frequency parameter of S-S beam 

with various grading indexes 

nz 
nx 

0 0.2 0.5 1 1.2 1.5 2 

0 2.3869 2.5653 2.7789 3.0465 3.1319 3.2426 3.3901 

0.2 2.3161 2.4686 2.6424 2.8493 2.9131 2.9943 3.1005 

0.5 2.2457 2.3725 2.5085 2.6623 2.7084 2.7664 2.8412 

1 2.1945 2.2945 2.3940 2.5011 2.5326 2.5721 2.6230 

1.2 2.1877 2.2795 2.3688 2.4638 2.4917 2.5267 2.5720 

1.5 2.1855 2.2665 2.3429 2.4234 2.4471 2.4770 2.5159 

2 2.1925 2.2583 2.3177 2.3801 2.3988 2.4226 2.4541 
 

Table 7 Fundamental frequency parameter of C-C beam 

with various grading indexes 

nz 
nx 

0 0.2 0.5 1 1.2 1.5 2 

0 5.4376 6.0099 6.5160 7.0321 7.1834 7.3750 7.6277 

0.2 5.2779 5.8078 6.2309 6.6122 6.7145 6.8391 6.9964 

0.5 5.1191 5.6104 5.9531 6.2119 6.2726 6.3422 6.4251 

1 5.0034 5.4571 5.7196 5.8663 5.8913 5.9157 5.9406 

1.2 4.9880 5.4301 5.6697 5.7865 5.8026 5.8159 5.8271 

1.5 4.9826 5.4087 5.6194 5.7004 5.7060 5.7064 5.7020 

2 4.9979 5.4000 5.5725 5.6088 5.6016 5.5870 5.5644 
 

370



 

Free vibration of tapered BFGM beams using an efficient shear deformable finite element model 

 

 

 
 

nx, as can be seen from Eq. (2), and this leads to higher 

rigidities of the beam. The mass moments of the beam with 

a higher index nx are also larger, but with the material data 

in Table 1, the increase of the rigidities by increasing nx is 

more significant than that of the mass moments, and this 

explains for the increase of the frequency by increasing the 

index nx. The effect of the index nz on the frequency 

parameter is, however opposite to that of the index nx, and 

the frequency parameter decrease  by  the  increase of 

nz, regardless of the boundary condition. The change of the 

parameter μ1 by the change of nz is also dependent on the 

index nx, and the decrease of μ1 by increasing nz is more 

significant for the beam with a higher index nx. The 

decrease of the parameter μ1 by the increase of nz can also 

be explained by the more significant decrease of the 

rigidities comparing the increase of the mass moments for 

 

 

 

 

the beam associated with a higher index nz. Among the three 

boundary conditions considered herein the C-F is the most 

sensitive to the change of the material grading indexes and 

the C-C beam is the least sensitive to the change of these 

parameters. 

Figs. 3-5 depict the variation of the first four frequency 

parameters with the grading indexes nx and nz of the C-F, S-

S and C-C beams, respectively. The variation of the second, 

third and fourth frequency parameter with the material 

grading indexes, as can be seen from the figures, is similar 

to that of the first frequency parameter, that is they also 

increase with increasing nx and decrease when increasing nz, 

regardless of the boundary conditions. The variation of the 

frequencies with the grading indexes in the figures guides to 

design a tapered BFGM beam with desired frequencies by 

appropriately choosing the material grading indexes. 

 

Fig. 3 Variation of the first four natural frequencies with grading indexes of C-F beam 

 

Fig. 4 Variation of the first four natural frequencies with grading indexes of S-S beam 
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The first four mode shapes for the transverse displace-

ment of the simply supported BFGM beam are illustrated in 

Fig. 6 for various values of the grading indexes nx and nz. 

As can be seen from the figure that the flexural mode 

shapes of the BFGM beam are different from that of the 

conventional transverse FGM beam, and the first mode is 

no longer symmetric with respect to the mid-span of the 

 

 

 

 

beam. The effect of the grading indexes which define the 

material distribution on the flexural mode shapes of the 

BFGM beam is clearly seen from the figure. 

 

4.3 Effect of taper ratio and taper case 
 

The taper ratio versus the fundamental frequency 

 

Fig. 5 Variation of the first four natural frequencies with grading indexes of C-C beam 

 

Fig. 6 Vibration mode shapes for transverse displacement of S-S beam with different grading indexes: 

(a) nx = 0, nz = 0.5; (b) nx = 0.5, nz = 0; (c) nx = 2, nz = 0.5; (d) nx = 0.5, nz = 2 
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Fig. 8 Taper ratio versus fundamental frequency parameter of S-S beam with different taper cases and 

grading indexes: (a) nx = 0, nz = 0.5; (b) nx = 0.5, nz = 0; (c) nx = 2, nz = 0.5; (d) nx = 0.5, nz = 2 

 

Fig. 9 Taper ratio versus fundamental frequency parameter of C-C beam with different taper cases and 

grading indexes: (a) nx = 0, nz = 0.5; (b) nx = 0.5, nz = 0; (c) nx = 2, nz = 0.5; (d) nx = 0.5, nz = 2 
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parameter of the BFGM beam with nz = 0.5 and different 

values of nx is depicted in Figs. 7-9 for the C-F, S-S and C-

C beams, respectively. As can be seen from the figures, the 

variation of the frequency parameter with the taper ratio is 

governed by the boundary condition and the taper case as 

well. While the frequency parameter of the C-F beam 

increases by increasing the taper ratio, that of the S-S and 

C-C beams decreases with the increase of the taper ratio, 

regardless of the taper case. For a given boundary 

condition, the dependence of the frequency parameter upon 

the taper ratio α is, however significantly influenced by the 

taper case. The rate of the variation of μ1 with α is the most 

significant for the type C of the C-F and S-S beams, while 

that is occurred for the type B of the C-C beam. 

 

4.4 Effect of aspect ratio 
 

The effect of the aspect ratio L/h0 on the frequencies of 

 

 

the frequency of the BFGM beams is illustrated in Tables 8 

and 9, where the fundamental frequency parameters of the 

C-F and S-S beams are, respectively, given for different 

values of the aspect ratio and the grading indexes. The 

frequency parameter μ1 is increased with an increase of the 

aspect ratio, regardless of the grading indexes and the 

boundary condition. A careful examination of the tables 

shows that the effect of the aspect ratio on the frequency of 

the tapered beam is less significant than that of the uniform 

beam. For example, with nx = 1 and nz = 1 the frequency 

parameter of the uniform C-F beam increases 3.01% when 

increasing the aspect ratio from 5 to 15, while that of 

tapered C-F beam with α = 0.5 increases only 2.44%. The 

effect of the aspect ratio on the frequency is also influenced 

by the boundary condition, and the increase of the 

fundamental frequency of the S-S beam is more significant 

than that of the C-F beam, regardless of the grading indexes 

and the taper ratio. The effect of the aspect ratio obtained in 

Table 8 Frequency parameter μ1 of case B tapered C-F beam with different aspect ratios 

L/h0 α nz 
nx 

0 0.2 0.5 1 1.2 1.5 2 

5 

0 

0 1.1455 1.3118 1.4461 1.5596 1.5875 1.6193 1.6564 

0.5 1.0798 1.2565 1.3858 1.4789 1.4975 1.5157 1.5315 

1 1.0555 1.2417 1.3695 1.4519 1.4658 1.4770 1.4823 

1.5 1.0508 1.2429 1.3692 1.4442 1.4550 1.4618 1.4606 

2 1.0535 1.2489 1.3735 1.4429 1.4513 1.4550 1.4494 

0.5 

0 1.2526 1.4177 1.5577 1.6838 1.7162 1.7541 1.7992 

0.5 1.1804 1.3546 1.4888 1.5933 1.6159 1.6391 1.6610 

1 1.1537 1.3367 1.4693 1.5626 1.5801 1.5958 1.6063 

1.5 1.1486 1.3371 1.4679 1.5535 1.5677 1.5787 1.5821 

2 1.1517 1.3431 1.4721 1.5517 1.5635 1.5710 1.5696 

10 

0 

0 1.1719 1.3435 1.4815 1.5973 1.6255 1.6576 1.695 

0.5 1.1031 1.2859 1.4194 1.5150 1.5340 1.5524 1.5682 

1 1.0780 1.2711 1.4035 1.4885 1.5027 1.5140 1.5192 

1.5 1.0735 1.2731 1.4043 1.4818 1.4928 1.4997 1.4982 

2 1.0768 1.2801 1.4097 1.4815 1.4901 1.4937 1.4877 

0.5 

0 1.2764 1.4455 1.5885 1.7167 1.7495 1.7878 1.8333 

0.5 1.2012 1.3802 1.518 1.6249 1.6479 1.6715 1.6936 

1 1.1739 1.3623 1.4987 1.5946 1.6126 1.6286 1.6392 

1.5 1.1690 1.3633 1.4983 1.5865 1.6011 1.6123 1.6158 

2 1.1727 1.3702 1.5034 1.5856 1.5978 1.6055 1.6040 

15 

0 

0 1.1771 1.3497 1.4884 1.6047 1.6329 1.6651 1.7025 

0.5 1.1076 1.2916 1.4260 1.5220 1.5411 1.5596 1.5754 

1 1.0824 1.2768 1.4102 1.4956 1.5099 1.5213 1.5264 

1.5 1.0779 1.2790 1.4111 1.4892 1.5002 1.5071 1.5055 

2 1.0813 1.2861 1.4167 1.4890 1.4977 1.5013 1.4952 

0.5 

0 1.2809 1.4509 1.5944 1.7231 1.7559 1.7943 1.8399 

0.5 1.2052 1.3851 1.5236 1.6309 1.6541 1.6777 1.6999 

1 1.1778 1.3672 1.5044 1.6008 1.6188 1.6350 1.6456 

1.5 1.1730 1.3684 1.5041 1.5929 1.6076 1.6188 1.6223 

2 1.1767 1.3754 1.5095 1.5922 1.6044 1.6122 1.6106 
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this subsection shows the ability of the finite element model 

developed in this paper in modeling the shear deformation 

effect on the frequencies of the BFGM beams. 
 

 

5. Conclusions 
 

An efficient finite element model has been formulated 

and employed to study the free vibration of BFGM beams. 

The model has been derived by using the hierarchical 

functions to interpolate the displacements and rotation of 

the beams. To improve the efficiency and accuracy of the 

element model, the shear strain was enforced to constant 

and the exact variation of the cross-sectional profile was 

employed to compute the element stiffness and mass 

matrices. Numerical investigations revealed that the finite 

element model proposed in the present paper is efficient, 

and it is capable to give accurate natural frequencies of 

BFGM beams by using a small number of the elements. A 

 

 

parametric study has been carried out to illustrate the effect 

of the material distribution, taper ratio and boundary 

conditions on the vibration characteristics. The obtained 

numerical results showed that the dependence of the 

fundamental frequency upon the taper ratio is significantly 

influenced by the taper type and the boundary conditions of 

the beams. The present results are of benefit to optimum 

design of tapered BFGM beams. It should be noted that the 

finite element model in the present paper was derived for 

the beams with the three tapered cases, and more efforts are 

necessary to make for dealing with BFGM beams with 

more complicated variation of cross section. 
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Table 9 Frequency parameter μ1 of case B tapered S-S beam with different aspect ratios 

L/h0 α nz 
nx 

0 0.2 0.5 1 1.2 1.5 2 

5 

0 

0 3.1157 3.3872 3.6942 4.0608 4.1740 4.3179 4.5048 

0.5 2.9395 3.1436 3.3465 3.5597 3.6201 3.6937 3.7843 

1 2.8706 3.0413 3.1957 3.3460 3.3868 3.4356 3.4946 

1.5 2.8545 3.0020 3.1259 3.2402 3.2705 3.3065 3.3496 

2 2.8592 2.9880 3.0896 3.1796 3.2031 3.2310 3.2643 

0.5 

0 2.3076 2.4821 2.6876 2.9429 3.0240 3.1290 3.2688 

0.5 2.1747 2.2978 2.4274 2.5726 2.6159 2.6704 2.7406 

1 2.1246 2.2213 2.3154 2.4156 2.4449 2.4817 2.5291 

1.5 2.1142 2.1925 2.2643 2.3388 2.3607 2.3882 2.4242 

2 2.1191 2.1828 2.2382 2.2954 2.3124 2.3341 2.3630 

10 

0 

0 3.2613 3.5422 3.8666 4.2585 4.3800 4.5346 4.7355 

0.5 3.0705 3.2820 3.4977 3.7276 3.7932 3.8733 3.9718 

1 3.0001 3.1765 3.3414 3.5050 3.5499 3.6037 3.6688 

1.5 2.9866 3.1383 3.2711 3.3969 3.4307 3.4709 3.5193 

2 2.9950 3.1266 3.2358 3.3360 3.3627 3.3943 3.4323 

0.5 

0 2.3702 2.5479 2.7597 3.0248 3.1093 3.2187 3.3646 

0.5 2.2308 2.3569 2.4916 2.6435 2.6890 2.7463 2.8200 

1 2.1799 2.2792 2.3775 2.4832 2.5142 2.5531 2.6033 

1.5 2.1705 2.2510 2.3264 2.4057 2.4290 2.4583 2.4966 

2 2.1771 2.2425 2.3011 2.3624 2.3807 2.4040 2.4349 

15 

0 

0 3.2911 3.5740 3.9020 4.2992 4.4224 4.5794 4.7832 

0.5 3.0972 3.3102 3.5285 3.7620 3.8287 3.9101 4.0104 

1 3.0264 3.2040 3.3711 3.5376 3.5834 3.6383 3.7047 

1.5 3.0136 3.1661 3.3008 3.4290 3.4636 3.5048 3.5542 

2 3.0228 3.1550 3.2658 3.3682 3.3955 3.4280 3.4670 

0.5 

0 2.3825 2.5608 2.7739 3.0408 3.1260 3.2363 3.3835 

0.5 2.2418 2.3684 2.5041 2.6574 2.7034 2.7611 2.8356 

1 2.1907 2.2905 2.3897 2.4964 2.5278 2.5671 2.6178 

1.5 2.1816 2.2625 2.3386 2.4187 2.4424 2.4721 2.5108 

2 2.1885 2.2541 2.3134 2.3755 2.3940 2.4177 2.4491 
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