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Free vibration of tapered BFGM beams
using an efficient shear deformable finite element model
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Abstract. An efficient and free of shear locking finite element model is developed and employed to study free vibration of
tapered bidirectional functionally graded material (BFGM) beams. The beam material is assumed to be formed from four
distinct constituent materials whose volume fraction continuously varies along the longitudinal and thickness directions by
power-law functions. The finite element formulation based on the first-order shear deformation theory is derived by using
hierarchical functions to interpolate the displacement field. In order to improve efficiency and accuracy of the formulation, the
shear strain is constrained to constant and the exact variation of the cross-sectional profile is employed to compute the element
stiffness and mass matrices. A comprehensive parametric study is carried out to highlight the influence of the material
distribution, the taper and aspect ratios as well as the boundary conditions on the vibration characteristics. Numerical
investigation reveals that the proposed model is efficient, and it is capable to evaluate the natural frequencies of BFGM beams
by using a small number of the elements. It is also shown that the effect of the taper ratio on the fundamental frequency of the
BFGM beams is significantly influenced by the boundary conditions. The present results are of benefit to optimum design of
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tapered FGM beam structures.
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1. Introduction

Functionally graded materials (FGMSs) initiated by
Japanese scientists in the middle eighties as space materials
are increasingly used for development of structural
elements subjected to severe mechanical and thermal
loading (Birman and Byrd 2007). Beam as a major part in
many structures is designed to resist different static and
dynamic loading, and new materials, including composites
and FGMs are increasingly employed to fabricate this
important structural element for improving its strength to
weight ratio. Investigation on mechanical behavior of FGM
beams has drawn much attention from researchers in recent
years, and a large number of publications on static
(Chakraborty et al. 2003, Kadoli et al. 2008, Frikha et al.
2016), vibration (Li 2008, Li et al. 2013, Mahi et al. 2010,
Trinh et al. 2016), and buckling (Wattanasakulpong et al.
2011, Kahya and Turan 2017) behavior of FGM beams have
been reported in the literature.

Non-prismatic beams with variable cross section are
important in engineering because of their ability in
optimizing the weight and strength of structures. Due to the
variable coefficients in the governing differential equations,
analytical methods are often encountered difficulties in
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analyzing the variable cross section beams, and a special
technique or a numerical method should be employed
instead of. In this line of works, Huang and Li (2010)
studied free vibration of axially FGM Euler-Bernoulli
beams with variable flexural rigidity and mass density by
transforming the governing equations to Fredholm integral
equations and expanding the mode shape into power series.
The authors then extended the study to buckling analysis of
axially graded Euler-Bernoulli beams with arbitrarily axial
varying cross section (Huang and Li 2011). An auxiliary
function for transforming the couple governing equations to
a single governing differential equation was introduced by
Huang et al. (2013) for determining natural frequencies of
axially FGM Timoshenko beams. The proposed method is
capable to determine the lower and higher natural
frequencies simultaneously from the multi-roots. Tang et al.
(2014) derived the exact frequency equations for free
vibration of non-uniform FGM Timoshenko beams with
bending stiffness and mass density longitudinally varying
by an exponential law. The free vibration of non-uniform
axially FGM beams was also considered by Hein and
Feklistova (2011) by using Haar wavelet method. Based on
Timoshenko beam theory, Shahba et al. (2011) formulated a
finite beam element for free vibration and stability analysis
of tapered axially FGM beams with classical and non-
classical boundary conditions. The element employed the
solution of static part of governing equations to interpolate
the displacement field, which helps to improve its
convergence. Shahba and Rajasekaran (2012) employed the
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differential transform method (DTM) and differential
quadrature method (DQM) to study free vibration and
stability of axially FGM Euler-Bernoulli beams. The
modified couple stress theory and Rayleigh—Ritz method
were used by Akgdéz and Civalek (2013) to determine
natural frequencies of tapered axially FGM microbeams.
Rajasekaran (2013), Rajasekaran and Tochaei (2014)
employed DTM to study the buckling and vibration of
tapered beams formed from axially FGM. The authors
showed that the DTM is able to capture the effects of
variable cross section, centrifugal force and the material
inhomogeneity, and the tapered ratio has decreasing the
effect on natural frequencies of the beams. The co-rotational
finite element formulations (Nguyen 2013, Nguyen and Gan
2014), and the generalized DQM (Niknam et al. 2014) were
used to study large deflection behavior of tapered beams
with the material properties varying in the thickness or
longitudinal direction. Gan et al. (2015) derived a finite
element formulation for studying the vibration of
Timoshenko beams under multiple moving loads. The cross
section of the beams was considered to be linear variation
along the beam length and the material properties are
assumed to vary in the axial direction by a power- law
function. The DQM was utilized in combination with the
domain decomposition technique by Bambill et al. (2015)
to study free vibration of stepped axially FGM Timoshenko
beams. Different combinations of classical and elastic
boundary conditions have been considered in the work.
Also using the DQM, Ghazaryan et al. (2017) carried out a
free vibration analysis of FGM beams with non-uniform
cross section. Calim (2016) applied complementary
function method in transient analysis of axially FGM
Timoshenko beam with variable cross section. The dynamic
response of tapered beams under impulsive load was
obtained by the author by using the modified Durbin’s
algorithm. B-spline method was employed by Li and Zhang
(2015) in dynamic analysis of rotating AFG beams with
linearly varying cross section. Recently, Zhao et al. (2017)
considered free vibration of axially FGM beams with
varying cross section by using Chebyshev polynomials
theory.

The FGM beams in the above discussed references are
formed from unidirectional FGMs with material properties
varying in one spatial direction, axial or transverse direction
only. The unidirectional FGMs may not be appropriate to
resist multi-directional variations of thermal and mechanical
loadings in many practical circumstances. For example, the
temperature on the outer surface of the new aerospace craft
in sustained flight can range from 1033K along the top of
the fuselage to 2066K at the nose and from outer surface
temperature to room temperature inside the plane (Nemat-
Alla and Noda 2000). Development of FGMs with effective
material properties varying in two or three directions for
withstanding severe general loadings, therefore is great
important. Analysis of beams made of bi-directional
functionally graded material (BFGM) has been carried out
by several authors in recent years. Using a hybrid state
space-based DQM, L et al. (2008) derived semi-analytical
elasticity solutions for static bending and thermal
deformation of BFGM beams with Young’s modulus

varying exponentially along the thickness and longitudinal
directions. The exponential variation of material properties
was also considered by Simgek (2015) in vibration analysis
of BFGM beams under a moving load. The author showed
that the natural frequencies and dynamic response of the
beams are significantly influenced by the material gradient
distribution, and the material properties of the BFGM
beams can be selected to meet the design goals of
optimizing the dynamic response. The forced vibration of
FGM Timoshenko beams with material properties varying
exponentially in both the thickness and length directions
was also studied by the dynamic stiffness method (Hao and
Wei 2016). The NURBS isogeometric finite element
approach was employed by Lezgy-Nazargah (2015), Huynh
et al. (2017) to investigate the coupled thermo-mechanical
behavior and free vibration of BFGM beams, respectively.
Wang et al. (2016) assumed the material properties
following an exponential function along the beam length
and a power-law function though the thickness in the free
vibration analysis of BFGM Euler-Bernoulli beams.
Numerical investigation in the work showed that there is a
critical frequency at which the natural frequencies have an
abrupt jump. Nguyen et al. (2017) considered the forced
vibration of BFGM beams formed from four distinct
constituent materials whose volume fraction varying in both
the thickness and longitudinal directions by power
functions. A first-order shear deformable finite element
formulation was derived by the authors for computing the
dynamic response of the beams carrying a moving load.
Based on the classical hairbrush hypothesis, Pydah and
Sabale (2017) presented an analytical model for static
bending analysis of circular FGM beams with material
properties varying smoothly along tangential and radial
directions. Karamanli (2017) studies bending behavior of
BFGM sandwich beams by using the quasi-3D shear
deformation theory and the symmetric smoothed particle
hydrodynamics method. The generalized DQM has been
employed by Shafiei and Kazemi (2017), Shafiei et al.
(2017) to study buckling and vibration of porous BFGM
nano/micro beams, respectively. Based on a quasi-3D
theory, Trinh et al. (2018) studied free vibration of BFGM
mirobeams by assuming the material properties to vary
exponentially along both longitudinal and thickness
directions.

In this paper, the free vibration analysis of tapered
BFGM beams using a finite element procedure is presented.
The beams are considered to be formed from four distinct
constituent materials whose volume fraction varying in the
thickness and longitudinal directions by power-law
functions. A first-order shear deformable finite element
model using hierarchical functions to interpolate displace-
ment field is derived and employed in the analysis. To
improve the accuracy and efficiency of the finite element
formulation, the shear strain is constrained to constant and
the exact variation of the cross-sectional profile is employed
to evaluate the element stiffness and mass matrices.
Validation of the model is confirmed by comparing the
numerical results of the present work with the published
data. A parametric study is carried out to highlight the
effects of the material distribution and taper ratio of
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Case A
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Fig. 1 Geometry and coordinate system of FGM beams for
different tapered cases

vibration characteristics. The influence of the aspect ratio
on the frequencies of the beams is also examined and
discussed.

2. Tapered BFGM beam

An FGM beam with rectangular cross section and length
of L is considered. The beam is assumed to be
longitudinally tapered in three following taper cases

CaseA: A(x)zpb(l—a%), |(x)=|0(1—a%)
CaseB: A(x):Ab(l—an, |(x):|0(1—afj 1)

CaseC: A(x)=Ab(1—aE) : I(x)=|o(1—afj

C1

C1

where A(x) and I(x) are, respectively, the area and inertia
moment of cross section; Ag and |y are the area and moment
of inertia of the section at the left end (x = 0), respectively;
0 < a <1 is the taper ratio. The beam become uniform when
o = 0. The three tapered cases are illustrated in Fig. 1,
where the Cartesian coordinate system (X, y, z) is chosen
such that the x-axis is on the mid-plane and z-axis directs
along the thickness direction.

The beam material is assumed to be formed from two
ceramics, referred to as ceramic 1 (C1) and ceramic 2 (C2),
and two metals, referred to as metal 1 (M1) and metal 2
(M2), whose volume fraction varies in both the thickness
and longitudinal directions according to

welid] ]
w33 ()
sueli-(3o3) (2
(o) )

where n, and n, are the material grading indexes, which
dictate the variation of the constituent materials along the x
and z directions, respectively. It can be seen from Eq. (2)
that the left and right lower sides, corresponding to (x =0, z
= -h/2) and (x = L, z = -h/2), contain only M1 and M2,
respectively, whereas the corresponding upper two sides,
according to (x = 0, z = h/2) and (x = L, z = h/2) are,
respectively, pure C1 and C2. The variation of the volume
fraction of C1 and C2 in the x- and z-directions according to
Eqg. (2) is depicted in Fig. 2 for various values of the
material grading indexes n, and n,.
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Fig. 2 Variation of volume fraction of ceramics in the longitudinal and thickness directions
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Effective material properties P such as the elastic
modulus and the mass density are evaluated according to

p :Vc1Pc1 +chPcz +VM1PM1 +VM ZPMZ (3)

where Py, P, Py and Py, denote the properties of the C1,
C2, M1 and M2, respectively.
Using Eqg. (2), one can rewrite Eq. (3) in the form

P(x2)= {( S PMl)(;JF;an+PM1H1_(EJHX}
[l 3]

It is evident that Eq. (4) deduces to the effective material
properties of a unidirectional transverse FGM beam if n, =
0, or if C1 is the same as C2, and M1 is identical to M2. In
addition, if n,= 0, Eqg. (4) results in the effective material
properties of an axially FGM beam formed from C1 and
C2.

Based on the first-order shear deformation theory, the
axial displacement, u,(X, z, t), and transverse displacement,
us(X, z, t), at any point of the beam are given by

(4)

u, (X, z,t) =u(x,t) — z6(x,t)

Ug (X, Z,t) =w(x,t) ©)
where z is the distance from the mid-plane to the
considering point; u(x,t) and w(x,t) are, respectively, the
axial and transverse displacements of the point on the mid-
plane; 8(x,t) is the cross-sectional rotation.

The axial strain (ey) and the shear strain (yy,) resulted
from Eq. (4) are of the forms

Exx = u,x - Ze,x'

6
Ve = Vv,x -0 ( )
where and hereafter, a subscript comma is used to indicate
the derivative of the variable with respect to the spatial
coordinate x.
The constitutive relation for the BFGM beam based on
Hooke’s law is of the form

GXX = E(X’ Z)8XX’

z-XZ = G(X’ Z) 7/)(2

where oy and 1, are the axial and shear stresses,
respectively; E(x,z) and G(x,z) are, respectively, the Young’s
modulus and shear modulus, and they are functions of both
the spatial coordinates, x and z.

The strain energy of the beam (U) resulted from (6) and
(7) is as follows

(")

j.f (Gxxgxx+sz)/xz)dAdX

0 A(x)
:EJ [AL2-2A,0,0, + A0 ®
0

+y A, (W,x - 6)2}

where  is the shear correction factor, chosen by 5/6 for the
beams with rectangular cross section considered herein; Ay,
Ap, Axp and Az are, respectively, the extensional,
extensional-bending coupling, bending rigidities and shear
rigidity, which are defined as

(Ail’Au:Azg)(X,Z):A.(I‘)E(X,Z)(llz,zz)dA,
Ag(x,2)= [ G(x2z)dA ©)

A(X)

with the cross-sectional area A(X) is defined in Eq. (1).
Using Eqg. (4), one can rewrite the beam rigidities in (9)
as follows

As(xz)= AT~ (AT clmz)(zj”j

A,(x,2)= Clel_( cm1 _ C2M2( j

Ay (%,2) = AGH— (A czmz( j
&

A.:,s(xyz): C31M1_( CiM1 _ czMz ]

(10)

where A{HML ASIML D ASIMI and ASAML are the rigidities
of the unidirectional transverse FGM beam formed from C1
and M1; A§$EM2) AG2M20 AG2M2 and  ASEM2 are the
rigidities of the transverse FGM beam composed of C2 and
M2. As can be clearly seen again from Eq. (10) that the
rigidities of the present BFGM beam degenerate to that of
the unidirectional FGM beam if n, = 0 or the two ceramics
and two metals are identical. Since Aj'™™', AZ?M? are
functions of z only, explicit expressions for these rigidities
can easily be obtained (Nguyen et al. 2017).

The Kinetic energy for the beam (T) resulted from Eq.
(5) is of the form

T——j J p(x, z)(u + U, )dAdx
OA(x)

(11)

L

= %I[IH(UZ F W)= 21,06+ 1,,6° | dx
0

where an over dot is used to indicate the differentiation with
respect to time variable t, and Iy, lyp, 1, are the mass
moments, defined as

(Ll 1y ) = j p(x,2)(L2,2°)dA 12)

A(x)

The mass moments can be also written in the form

IﬁZMZ)(%j ,

|122M2)(%j " ’ (13)

IZCZZMZ)(%j

cim1 ciM1
|11(X,Z)=|11 _(Ill -

ciM1 ciM1
|12(X’Z):|12 _(Ilz -

_ jCcim1 CiM1
|22(X,Z)—|22 _(Izz -
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with IG™M' (i, j = 1, 2) denote the mass moments of the
unidirectional FGM beams formed from C1 and M1, and
I5*M? are the corresponding mass moments of the beam
formed from C2 and M2, respectively.

Equations of motion for the BFGM beam can be
obtained by applying Hamilton’s principle to Egs. (8) and
(11), and they have the following forms

;0 - Ilze ( )X

|y, W— ‘//|:A33 (W '9):| =0 (14)

I U - |229 ( )X
+w&4wx—®=o

It is necessary to note that the coefficients of the above
differential equations are functions of both x and z, and thus
a closed-form solution is difficult to obtain. A finite element
model is developed herein to solve Eq. (14).

3. Finite element model

This section derives the finite element formulation,
namely the stiffness and mass matrices for a beam element
with length of |. A first-order shear deformable finite beam
formulation can be formulated using linear functions with
reduced integration technique to avoid the shear locking
(Cook et al. 2002). The formulation derived from the linear
functions is, however slow convergence. Convergence of a
first-order finite element formulation can be improved by
using the higher-order polynomials to interpolate the
displacement field as shown by Nguyen et al. (2017). The
finite element formulation derived from the higher-order
polynomials, however has a drawback. Since the
coefficients of the polynomials are determined from the
element boundary conditions, related to nodal values of the
variables, totally new shape functions have to be re-
determined whenever the mesh refinement is made. A finite
element formulated from the hierarchical functions, in
which the higher-order shape functions contain the lower-
order ones, enables to overcome the above drawback
(Zienkiewicz and Taylor 1997). The hierarchical functions
have been employed previously by Nguyen and Bui (2017)
to formulate a unidirectional FGM Timoshenko beam
element, and they are used herein to derive stiffness and
mass matrices for the BFGM beam element. For one-
dimensional beam, the hierarchical functions are of the
forms (Zienkiewicz and Taylor 1997)

1
N, ==(1-¢), N, ==(1 ,
=509 N = (1e8) "
Ny =(1-£%). Nu=¢(1-¢7)

where & =2 % — 1 is the natural coordinate.

In the first-order shear deformable finite element beam
model, a quadratic variation of the rotation should be
chosen to represent a linearly varying bending moments

along the element. With the shear strain given by Eq. (6),
interpolation functions for the transverse displacement w
should be chosen one order higher than that of the rotation
6. In this regard, the displacements and rotation can be
interpolated as follows

1 1
= E(l—f)u1 + E(1+ E)u,,

1 1 2
0=5(1-¢)0.+5(1+¢)0,+(1-£7)6, )

1(1 E)w, +1(1+§)w +(1-£)w,

+E(1-&)w,

where uy, Uy, 04, 05, 63, Wy, ..., Wy are nine unknown values of
the variables. Noting that 5, w; and w, are not values of the
variables at the nodes.

The efficiency of the finite element formulation can be
improved by constraining the shear strain 7, to constant,
and the number of the unknown values reduces from nine to
seven (Nguyen and Bui 2017). Substituting 6 and w from
Eq. (16) into expression for y,, in Eq. (6), one gets

6 4 1 1
Va :(_TW“ +93j§2 _[TW3 —591 +56’zj5
(17)

+H(W2 —W, +2w, ) —%(91 +0,+ 293)}
By constraining y,, to constant, one gets
I I
w,=—(6,-6,), and w, =—6, (18)
8 6
Using (18), one can be rewrite Eq. (16) in the form

1 1
=5 (1=8u + {1+ Sy,

0= 2(1 5)9+2(1+§)9 +(1-£)8,,
1

—Sl-w (L,

Ly e |z
+5(l=E)G-0)+ g £(-)e,

(19)

and the shear strain y,, is now of the form

7)(1:%(WZ_Wl)_%(01+02)_§03 (20)

The finite element formulation in the present work is
formulated from seven unknown values uy, Uy, Wy, Wo, 64, 6
and 65 with the interpolation scheme defined by Eg. (19).
The vector of unknown values for a generic beam element
is given by

d={uw 6 6 u, w, 6, (21)

where u;, w; and 6; (i = 1, 2) is the displacements and
rotations at nodes 1 and 2, but 6; is not a nodal rotation.
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Noting that the order of the unknown for the element vector
is not necessary as that of Eq. (21).

The interpolation (19) can be written using the vector of
unknown values as

u=N,d, 6=N,d, w=N,d (22)
with
N,={N,0O 0 0 N, 0 0}
N,={0 0 N, N, 0 0 N,}

(23)

are the matrices of interpolation functions for u, 8 and w,
respectively.

With the interpolation scheme (22), the strain energy of
the beam in Eq. (8) can be written in the form

u :%Zdid, with k =k, +k,, +K,+Ks  (23)

i=1

where ne is total number of the elements; Kk is the element
stiffness matrix; Ky, K. Kgp and kg are, respectively, the
element stiffness matrices stemming from the axial
stretching, axial stretching-bending coupling, bending and
shear deformation. Using Eg. (10), one can write these
matrices Ky, K.g, Kgg and K in the following forms

2 +1)"
kuu:_J‘NI,5|: c11|v|1_ c;zmz[é j :lNu,e;d‘:Z’

19 2
27 +1)™
kuez_TJ.NI,g“IZ 2= szm(_fz j }Ne,fdéz,
-1
2 ¢ +1\"
koo =7 ] N;,{ i age( £11] }N%d;, (25)
-1

I b 2 T T CiM1
kss :E:[(I_NW@ - NU |:(//A33

-y ?mﬁ(égg]}(%ng—Ngjdé

notations A$2M12 = A{IML — A{2M2,
C12M12 _ 4C1M1 C2M?2
AZZ - AZZ - AZ

C12M12 _
N
A33 =

where
A%Ml —AfZZMZ,
ASIML — AS2ZM2Z have been used. In order to improve the
accuracy of the finite element formulation, the exact
variation of the cross-sectional profile is employed to
evaluate the stiffness matrices in Eq. (25).

Similarly, the Kinetic energy (11) can be written in the
form

’

1 fe . 3
T==d'md,
2; (26)
with m=m, +m_,, +m,+m,,
in which

| F +1\™
muu:EJ.NI[thMl—'ﬁuMQ(—gZ J i|Nud§' 27

-1

1 n,
mWW:IEJ'NIVIlecllm_llcllelz[éZ;'lJ j|NWd§’

-1

1 ny
mw=—%INIPEW—ﬁ¥WTé§3)}Nﬂw, 27)
il
1 n,
M,y :IEJ‘N;|:|2(:21M1_ |§212M12[§;‘1j }Ngdé‘
|

are, respectively, the element mass matrices resulted from
the axial and transverse translations, axial translation-
rotation coupling and cross-sectional rotation. Eq. (27) has
been written by using Eq. (13) and notations I{{2M12 =
JEIML _ pe2M2 - C12M12 — [CIM1 _ [C2M2 gnqg [C12M12 —
IGMY — [$2M2 The exact variation of the cross-sectional
profile is also employed to compute the element mass
matrices in Eq. (27).

Using the derived stiffness and mass matrices, the
equations of motion for the free vibration analysis can be
written in the form

)

MD +KD=0 (28)

where D, M and K are the global nodal displacement
vector, mass and stiffness matrices, obtained by assembling
the corresponding element vector and matrices over the
total elements, respectively.

Table 1 Properties of constituent materials of BFGM beam
(Nguyen et al. 2017)

Material Role E(GPa) p (kg/m®) )
Steel (SUS304) M1 210 7800 0.3
Aluminum (Al) M2 70 2702 0.23
Alumina (AlL,O;)  C1 390 3960 0.3
Zirconia (ZrO,) Cc2 200 5700 0.3

Assuming a harmonic response for the free vibration,
Eqg. (28) leads to

(K—*M)D=0 (29)

with  is the circular frequency, and D is the vibration
amplitude. Eq. (29) leads to an eigenvalue problem, which
can be solved by the standard method (Cook et al. 2002).

4. Numerical results and discussion

Numerical investigations are carried out in this Section
to study the effects of the material distribution and the
tapered ratio on vibration characteristics of the BFGM
beam. To this end, the beam is assumed to be formed from
stainless steel (SUS304), aluminum (Al), alumina (Al,O3)
and zirconium oxide (ZrO,) with the material properties
given in Table 1. Otherwise stated, an aspect ratio L/hg = 20
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Table 2 Comparison of the fundamental frequency parameter of tapered unidirectional axial FGM beam with the

result of Shahba et al. 2011) (n, = 2)

Taper ratio «

B.C. Case Source 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
B Shahba et al. (2011) 3.9956  4.0640 4.1438 4.2393 43571 45090 4.7180 5.0371
Present 3.9955  4.0638  4.1434 4.2386 43560 4.5074  4.7154  5.0330
oF c Shahba et al. (2011) 4.2384  4.4565 4.7121  5.0178 53931 58695 6.5009  7.3787
Present 42382 44560 4.7113 50164 53909 58660 6.4952  7.3696
B Shahbaetal.(2011) 7.2921  6.8975 6.4653 59879 54540 4.8448 41244  3.2016
Present 7.2913 6.8963  6.4635 59854 54503 4.8394 41159  3.1858
55 c Shahba et al. (2011) 7.2245 6.7764 6.2755 5.7118 5.0709 4.3295 3.4452 2.3193
Present 72235 6.7748 6.2730 57082 50655 4.3215 3.4326  2.2958
B Shahbaetal.(2011) 12.2126 11.9172 11.5739 11.1706 10.6896 10.1036 9.3634  8.3590
Present 12,2114 11,9155 11,5715 11.1670 10.6843 10.0950 9.3483 8.3253
cc c Shahba et al. (2011) 12.2429 11.9737 11.6683 11.3199 10.9200 10.4579 9.9207 9.3010
Present 12.2416 11.9718 11.6653 11.3153 10.9129 10.4466 9.9015 9.2639

Table 3 Comparison of the fundamental frequency parameter y; of S-S uniform BFGM beam with the result of

Nguyen et al. (2017)

Ny

k& Source 0 1/3 172 5/6 1 4/3 3/2 2
0 Nguyenetal. (2017)  3.3018  3.7429  3.9148 41968  4.3139 45118 45956  4.8005
Present 33018  3.7428 39146  4.1966  4.3137 45116 45954  4.8003
U3 Nguyenetal. (2017)  3.1542 35050  3.6305  3.8252  3.9022  4.0277  4.0792  4.2009
Present 31542 35049  3.6304  3.8250  3.9021  4.0275  4.0790  4.2007
U2 Nguyenetal. (2017)  3.1068  3.4285  3.5397  3.7087  3.7745  3.8805 3.9236  4.0245
Present 31068  3.4284 35396  3.7085  3.7744  3.8803  3.9234  4.0243
5/6 Nguyenetal. (2017)  3.0504  3.3296 34206  3.5548  3.6059  3.6869  3.7194  3.7947
Present 3.0504  3.3295 34205 35546  3.6057  3.6867  3.7192  3.7945
1 Nguyenetal. (2017)  3.0359  3.2984  3.3819  3.5035  3.5495  3.6219  3.6508  3.7177
Present 3.0359  3.2983  3.3818  3.5034 35493  3.6217  3.6507  3.7176

pzL*Ag

is employed in all the computations reported below. Three
types of boundary conditions (B.C.), namely clamped at x =
0 and free at x = L (C-F), simply supported at both end (S-
S), and clamped at both ends (C-C) are considered. In order
to facilitate the discussion, the frequency parameters

2
defined as u; = (l)l-L?/p,\4l/E,./,1 with o; is the i natural
frequency; pu,, Ey, are the elastic modulus and mass
density of Al is introduced herewith.

4.1 Accuracy and convergence studies

The accuracy of the finite element model is shown by
comparing the first frequency parameter of a tapered
unidirectional axial FGM beam with the results of Shahba
et al. (2011) in Table 2. The frequency parameter in the
table is obtained for the beam formed from Al and ZrO,
Io

with a length L = ,
0.014¢

and it is defined according to

Shahba et al. (2011) as g = , Where pz and E; are,

Ezly
respectively, the mass density and Young’s modulus of
ZrO,. Table 3 compares the fundamental frequency
parameter of a S-S uniform BFGM beam with the results of
Nguyen et al. (2017). Very good agreement between the
frequency parameters obtained in the present work with that
of Shahba et al. (2011) and Nguyen et al. (2017) is seen
from Tables 2 and 3. Noting that both the referenced papers
employed the first-order shear deformable beam elements
with super convergent shape functions derived by
Kosmatka (1995) to interpolate the transverse displacement
and rotation in evaluating the fundamental frequency.

The convergence of the derived finite element
formulation in evaluating the frequency parameter of a
simply supported tapered BFGM with various values of the
grading indexes and tapered ratio is illustrated in Table 4.

The convergence of the present formulation is achieved
by using 30 elements, which is almost the same as that of
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Table 4 Convergence of the formulation in evaluating frequency parameter u,0f S-S tapered BFGM
beam (case C)

a  Grading indexes

Number of elements (ne)

10 15 20 25 30 35 40
ny=n,=1/2 3.5401 3.5398 3.56397 3.5396 3.5396 3.5396 3.5396
0 ny=n,=5/6 3.5553 3.5549 3.5548 3.5547 3.5546 3.5546 3.5546
n=n,=1 3.5500 3.5496 3.5494 3.5493 3.5493 3.5493 3.5493
ny=n,=1/2 3.1423 3.1420 3.1419 3.1418 3.1418 3.1418 3.1418
0.2 ny=n,=5/6 3.1491 3.1487 3.1486 3.1485 3.1484 3.1484 3.1484
ny=n,= 3.1428 3.1423 3.1422 3.1421 3.1420 3.1420 3.1420
ny=n,=1/2 2.1602 2.1597 2.1596 2.1596 2.1596 2.1596 2.1596
0.6 ny =n, = 5/6 2.1482 2.1476 2.1474 2.1473 2.1472 2.1472 2.1472
ng=n,=1 2.1389 2.1383 2.1381 2.1380 2.1379 2.1379 2.1379
ny=n,=1/2 1.0178 1.0162 1.0154 1.0151 1.0149 1.0149 1.0149
0.9 ny =n, = 5/6 0.9930 0.9912 0.9904 0.9900 0.9898 0.9898 0.9898
ny=n,= 0.9818 0.9800 0.9791 0.9787 0.9785 0.9785 0.9785

the element using Kosmatka’s shape functions (Kosmatka
1995) reported by Shahba et al. (2011). In this regards, a
mesh of 30 elements is employed in the computations
reported below.

4.2 Effect of material distribution

A BFGM beam of case B tapered type with a taper ratio
a = 0.5 is considered in this subsection. Tables 5-7 list the
fundamental frequency parameter u, of the C-F, S-S and C-
C beams for various values of the grading indexes n, and n,,
respectively. The effect of the material distribution defining
through the grading indexes n, and n, on the frequency
parameter is clearly seen from the tables. At a given value
of n,, the tables show an increase of y; by increasing the
longitudinal index n,, regardless of the boundary conditions.

Examining the table in more detail one can see that the
variation of the parameter y with the increase of index n,,
however depends on the value of the index n,, and this
increase is less significant for the beam associated with a
higher index n,. For example, when increasing n, from 0 to
2, 1y increases 42.19% for the C-F beam associated with n,
= 0.2, but this parameter increases only 39.74% and 36.9%
for the beam having n, = 1 and n, = 2, respectively.

Table 5 Fundamental frequency parameter of C-F beam
with various grading indexes

Ny
nz 0 02 05 1 12 15 2

0 12825 1.4527 1.5965 1.7253 1.7582 1.7966 1.8422
0.2 12445 1.4181 1.5587 1.6767 1.7048 1.7358 1.7695
05 1.2066 1.3868 1.5255 1.6331 1.6562 1.6799 1.7021
1 11792 1.3689 1.5064 1.6030 1.6210 1.6372 1.6478
12 11756 1.3681 15051 15983 16149 1.6289 1.6363
15 11743 1.3701 1.5062 1.5951 1.6098 1.6211 1.6246
2 11781 1.3772 15116 15945 1.6067 1.6145 1.6130

The boundary conditions also play an important role on
the dependence of x; with the longitudinal index. The
frequency parameter u increases 19.53% and 18.73%,
respectively, for the S-S beam and C-C beam with n, = 1
when increasing ny from 0 to 2, which is much lower
comparing to that of the C-F beam. The increase of the
frequency parameter can be explained by the higher content
of the ceramics for a beam associated with a higher index

Table 6 Fundamental frequency parameter of S-S beam
with various grading indexes

Ny
& 0 02 05 1 12 15 2

0 23869 25653 2.7789 3.0465 3.1319 3.2426 3.3901
0.2 23161 2.4686 2.6424 2.8493 2.9131 2.9943 3.1005
0.5 2.2457 2.3725 25085 2.6623 2.7084 2.7664 2.8412
1 21945 2.2945 2.3940 2.5011 2.5326 2.5721 2.6230
1.2 21877 2.2795 2.3688 2.4638 2.4917 2.5267 2.5720
15 21855 2.2665 2.3429 2.4234 2.4471 2.4770 2.5159
2 21925 2.2583 2.3177 2.3801 2.3988 2.4226 2.4541

Table 7 Fundamental frequency parameter of C-C beam
with various grading indexes

Ny
& 0 02 05 1 12 15 2

0 54376 6.0099 6.5160 7.0321 7.1834 7.3750 7.6277
0.2 52779 5.8078 6.2309 6.6122 6.7145 6.8391 6.9964
05 51191 5.6104 5.9531 6.2119 6.2726 6.3422 6.4251
1 50034 54571 57196 5.8663 5.8913 5.9157 5.9406
1.2 4.9880 5.4301 5.6697 5.7865 5.8026 5.8159 5.8271
15 4.9826 5.4087 5.6194 5.7004 5.7060 5.7064 5.7020
2 4.9979 5.4000 55725 5.6088 5.6016 5.5870 5.5644
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Fig. 4 Variation of the first four natural frequencies with grading indexes of S-S beam

ny, as can be seen from Eg. (2), and this leads to higher
rigidities of the beam. The mass moments of the beam with
a higher index ny are also larger, but with the material data
in Table 1, the increase of the rigidities by increasing ny is
more significant than that of the mass moments, and this
explains for the increase of the frequency by increasing the
index n,. The effect of the index n, on the frequency
parameter is, however opposite to that of the index n,, and
the frequency parameter decrease by the increase of
n,, regardless of the boundary condition. The change of the
parameter u; by the change of n, is also dependent on the
index n,, and the decrease of u; by increasing n, is more
significant for the beam with a higher index n,. The
decrease of the parameter u; by the increase of n, can also
be explained by the more significant decrease of the
rigidities comparing the increase of the mass moments for

the beam associated with a higher index n,. Among the three
boundary conditions considered herein the C-F is the most
sensitive to the change of the material grading indexes and
the C-C beam is the least sensitive to the change of these
parameters.

Figs. 3-5 depict the variation of the first four frequency
parameters with the grading indexes ny and n, of the C-F, S-
S and C-C beams, respectively. The variation of the second,
third and fourth frequency parameter with the material
grading indexes, as can be seen from the figures, is similar
to that of the first frequency parameter, that is they also
increase with increasing n, and decrease when increasing n,,
regardless of the boundary conditions. The variation of the
frequencies with the grading indexes in the figures guides to
design a tapered BFGM beam with desired frequencies by
appropriately choosing the material grading indexes.
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The first four mode shapes for the transverse displace-
ment of the simply supported BFGM beam are illustrated in
Fig. 6 for various values of the grading indexes n, and n,.
As can be seen from the figure that the flexural mode
shapes of the BFGM beam are different from that of the
conventional transverse FGM beam, and the first mode is
no longer symmetric with respect to the mid-span of the

beam. The effect of the grading indexes which define the
material distribution on the flexural mode shapes of the
BFGM beam is clearly seen from the figure.

4.3 Effect of taper ratio and taper case

The taper ratio versus the fundamental frequency
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Table 8 Frequency parameter y, of case B tapered C-F beam with different aspect ratios

Lhy n, I
0 02 05 1 12 15 2
0 11455 13118 14461 15596 15875 16193 16564
05 10798 12565 13858 14789 14975 15157 15315
0 1 10555 12417 13695 14519 14658 14770 14823
15 10508 12429 13692 14442 14550 14618  1.4606
10535 12489 13735 14429 14513 14550 14494
> 12526 14177 15577 16838 17162 17541  1.7992
05 11804 13546 14888 15933 16150 16391  1.6610
05 1 11537 13367 14693 15626 15801 15958  1.6063
15 11486 13371 14679 15535 15677 15787 15821
11517 13431 14721 15517 15635 15710  1.5696
11719 13435 14815 15973 16255 16576  1.695
05 11031 12859 14194 15150 15340 15524 15682
0 1 10780 12711 14035 14885 15027 15140  1.5192
15 10735 12731 14043 14818 14928 14997 14982
10768 12801 14007 14815 14901 14937 14877
10 12764 14455 15885 17167 17495 17878  1.8333
05 12012 13802 1518 16249 16479 16715  1.6936
05 1 11739 13623 14987 15046 16126 16286  1.6392
15 11690 13633 14983 15865 16011 16123 16158
11727 13702 15034 1585 15978 16055  1.6040
11771 13497 14884 16047 16329 16651  1.7025
05 11076 12916 14260 15220 15411 15596  1.5754
0 1 1.0824 1.2768 1.4102 1.4956 1.5099 1.5213 1.5264
15 10779 12790 14111 14892 15002 15071  1.5055
10813 12861 14167 14890 14977 15013  1.4952
15 12800 14509 15944 17231 17559 17943  1.8399
05 12052 13851 15236  1.6309 16541 16777  1.6999
05 1 11778 13672 15044 16008 16188 16350  1.6456
15 11730 13684 15041 15929 16076 16188 16223
2 11767 13754 15095 15922 16044 16122 16106

parameter of the BFGM beam with n, = 0.5 and different
values of n, is depicted in Figs. 7-9 for the C-F, S-S and C-
C beams, respectively. As can be seen from the figures, the
variation of the frequency parameter with the taper ratio is
governed by the boundary condition and the taper case as
well. While the frequency parameter of the C-F beam
increases by increasing the taper ratio, that of the S-S and
C-C beams decreases with the increase of the taper ratio,
regardless of the taper case. For a given boundary
condition, the dependence of the frequency parameter upon
the taper ratio « is, however significantly influenced by the
taper case. The rate of the variation of x; with « is the most
significant for the type C of the C-F and S-S beams, while
that is occurred for the type B of the C-C beam.

4.4 Effect of aspect ratio

The effect of the aspect ratio L/hy on the frequencies of

the frequency of the BFGM beams is illustrated in Tables 8
and 9, where the fundamental frequency parameters of the
C-F and S-S beams are, respectively, given for different
values of the aspect ratio and the grading indexes. The
frequency parameter x4 is increased with an increase of the
aspect ratio, regardless of the grading indexes and the
boundary condition. A careful examination of the tables
shows that the effect of the aspect ratio on the frequency of
the tapered beam is less significant than that of the uniform
beam. For example, with n, = 1 and n, = 1 the frequency
parameter of the uniform C-F beam increases 3.01% when
increasing the aspect ratio from 5 to 15, while that of
tapered C-F beam with o = 0.5 increases only 2.44%. The
effect of the aspect ratio on the frequency is also influenced
by the boundary condition, and the increase of the
fundamental frequency of the S-S beam is more significant
than that of the C-F beam, regardless of the grading indexes
and the taper ratio. The effect of the aspect ratio obtained in
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Table 9 Frequency parameter x, of case B tapered S-S beam with different aspect ratios

Lhy n, I
0 02 05 1 12 15 2
0 31157 33872 36942 40608 41740 43179 45048
05 29395 31436 33465 35507 36201  3.6937  3.7843
0 1 28706 30413 31957 33460 33868 34356  3.4946
15 28545 30020 31250 32402 32705 33065  3.3496
28502 29880 30896 31796 32031 32310  3.2643
> 23076 24821 26876 29420 30240 31290  3.2688
05 21747 22978 24274 25726 26159 26704  2.7406
05 1 21246 22213 23154 24156 24449 24817 25291
15 21142 21925 22643 23388 23607 23882  2.4242
21191 21828 22382 22054 23124 23341  2.3630
32613 35422 38666 42585 43800 45346 47355
05 30705 32820 34977 37276 37932 38733  3.9718
0 1 30001 31765 33414 35050 35499 36037  3.6688
15 29866 31383 32711 33969 34307 34709 35193
y 29950 31266 32358 33360 33627 33943 34323
23702 25479 27507 30248 31093 32187  3.3646
05 22308 23569 24916  2.6435 26890 27463  2.8200
05 1 21799 22792 23775 24832 25142 25531 26033
15 21705 22510 23264 24057 24290  2.4583  2.4966
21771 22425 23011 23624 23807  2.4040 24349
32911 35740 39020 42092 44224 45794  4.7832
05 30072 33102 35285 37620  3.8287 39101  4.0104
0 1 30264 32040 33711 35376 35834 36383  3.7047
15 30136 31661 33008 34200 34636 35048 35542
30228 31550 32658 33682 33955 34280 34670
15 23825 25608 27739 30408 31260 32363 33835
05 22418 23684 25041  2.6574 27034 27611  2.8356
05 1 21907 22905 23807 24964 25278 25671  2.6178
15 21816 22625 23386 24187 24424 24721 25108
2 21885 22541 23134 23755 23940 24177 24491

this subsection shows the ability of the finite element model
developed in this paper in modeling the shear deformation
effect on the frequencies of the BFGM beams.

5. Conclusions

An efficient finite element model has been formulated
and employed to study the free vibration of BFGM beams.
The model has been derived by using the hierarchical
functions to interpolate the displacements and rotation of
the beams. To improve the efficiency and accuracy of the
element model, the shear strain was enforced to constant
and the exact variation of the cross-sectional profile was
employed to compute the element stiffness and mass
matrices. Numerical investigations revealed that the finite
element model proposed in the present paper is efficient,
and it is capable to give accurate natural frequencies of
BFGM beams by using a small number of the elements. A

parametric study has been carried out to illustrate the effect
of the material distribution, taper ratio and boundary
conditions on the vibration characteristics. The obtained
numerical results showed that the dependence of the
fundamental frequency upon the taper ratio is significantly
influenced by the taper type and the boundary conditions of
the beams. The present results are of benefit to optimum
design of tapered BFGM beams. It should be noted that the
finite element model in the present paper was derived for
the beams with the three tapered cases, and more efforts are
necessary to make for dealing with BFGM beams with
more complicated variation of cross section.
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