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1. Introduction 

 

The behavior of steel beams used in the passage of high 

openings has been the subject of many studies over the last 

30 years. Stiffeners are used to prevent unwanted sudden 

deformations of steel beams. Based on the experimental and 

theoretical examinations, it has been observed that the 

stiffeners increase the strength of steel beams subjected to 

patch loads, or concentrated loads (Fig. 1) (Bergfelt 1979, 

1983, Carretero and Lebet 1998, Dogaki et al. 1990, Dubas 

and Tschamper 1990, Galea et al. 1987, Graciano 2002, 

2003, 2005, Graciano and Edlund 2003, Graciano and 

Johansson 2003, Graciano and Lagerqvist 2003, Janus et al. 

1988, Johansson and Lagerqvist 1995, Lagerqvist and 

Johansson 1996, Marković and Hajdin 1992, Roberts and 

Newark 1997, Roberts and Rockey 1979, Rockey et al. 

1978, Salkar 1992, Shimizu et al. 1987, Walbridge and 

Lebet 2001, Yang and Lui 2012, Kim et al. 2018). In order 

to account for the effect of shear reinforcement on the 

behavior of steel beams under a patch load, a correction 

factor obtained by regression is multiplied by the strength 

value of beams without shear. However, some studies have 

shown that other parameters that are not taken into account 

have significant effect on the strength of steel beams. Many 

of the suggestions presented in the literature are based on 

empirical formulations obtained by regression, most of 

which are based on the multiplication of the stiffness of un-

stiffened webs with a coefficient. 
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In this study, a new model is developed by using 

experimental data on the strength of steel beams with 

longitudinal stiffeners. This experimental data obtained 

from the literature is modelled using a new method, support 

vector machines (SVM), and the prediction performance of 

this model is compared with the existing formulations and 

experimental results. In the proposed SVM model, unlike 

existing design formulations, the effect of all parameters on 

the steel beam strength is accounted for. 

 

 

2. Steel girders subjected to patch loading 
 

Steel beams are often exposed to patch load, which is 

directly related to steel beam design. Therefore, the 

determination of final patch load is important in terms of 

cost and safety. During the construction of bridge, the patch 

load can freely circulate in the cranes and bridge bodies, 

making vertical bracing plates non-functional. Especially in 

large-span, bridge girder is placed close to flange portion 

pressurizing longitudinal stiffeners. Thus, the purpose is to 

increase the resistance of steel body subjected to shear 

and/or bending and to prevent early damage which may 

occur accordingly (Graciano 2002, Graciano and 

Lagerqvist 2003). 

 

2.1 Experimental studies 
 

A number of studies have been carried out to examine 

the behavior of longitudinally stiffened steel girders 

subjected to patch load. (Bergfelt 1979, 1983, Carretero and 

Lebet 1998, Dogaki et al. 1990, Dubas and Tschamper 
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1990, Galea et al. 1987, Janus et al. 1988, Marković and 

Hajdin 1992, Rockey et al. 1978, Salkar 1992, Shimizu et 

al. 1987, Walbridge and Lebet 2001). Details and sample 

numbers of test specimens are listed in Table 1. 

 

2.2 Models for patch loading resistance of steel 
girders 

 
2.2.1 Regression models – Model I 
Many researchers (Bergfelt 1979, Janus et al. 1988, 

Marković and Hajdin 1992) have used the method of 

multiplying the strength of the un-stiffened girders with a 

coefficient to find the strength of the stiffened girders. In 

general, this coefficient is considered to be a function of the 

position of the stiffened girder. In this section, a model 

proposed by Lagerqvist and Johansson and based on the 

strength of the un-stiffened girders is presented. (Johansson 

and Lagerqvist 1995, Lagerqvist and Johansson 1996). 

Accordingly, the strength of the un-stiffened girders 

subjected to the patch load (Fro) is expressed as follows 

 

)(yro FF   (1) 

 

Here Fy is the yield strength and the expression is 

 

ywywy ltfF   (2) 

 

 

 

 

ly, the effective loading length is calculated as 

 

)1(2 21 mmtsl fsy   (3) 

 

The unitless parameters m1 and m2 are calculated using 

the following formulas 
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For beams λ < 0.5, m2 = 0 
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where Fcr is the buckling load. 

The buckling coefficient kf is calculated as 
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Fig. 1 Schematic view of longitudinally stiffened webs 

Table 1 Summary of experimental data 

References Number of experiments a/hw bl/hw bl/tw γs 

(Rockey et al. 1978) 2 1.0 0.2 80 88-301 

(Bergfelt 1979) 11 0.75-3.24 0.2 52-84 88-336 

(Bergfelt 1983) 6 1.5-4.08 0.20-0.35 50-83 144 

(Galea et al. 1987) 2 1.40 0.20-0.35 44-55 132 

(Shimizu et al. 1987) 1 1.0 0.20 33 44 

(Janus et al. 1988) 101 1.0-2.0 0.1-0.5 12-125 3-247 

(Dubas and Tschamper 1990) 24 1.76-2.48 0.15-0.2 39-53 133-178 

(Dogaki et al. 1990) 2 1.0 0.2 56 14-26 

(Salkar 1992) 2 1.0 0.2 40 216 

(Carretero and Lebet 1998) 6 1.31-2.21 0.20-0.38 27-50 55-169 

(Walbridge and Lebet 2001) 5 1.43 0.1-0.18 15-25 73-98.5 
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Many correction coefficients based on the relation of the 

effect of the sheeting plate with the position of the plate 

have been proposed. (Bergfelt 1979, Janus et al. 1988, 

Marković and Hajdin 1992). Graciano (2003), on the other 

hand, stated that the flange-to-web thickness ratio and 

flange-to-web yield strength ratios are also effective in 
strength (Graciano 2003). Graciano (2003) expressed the 

resistance of the longitudinally-stiffened steel girders (Frl) 

in the following way 

 

srorl fFF   (8) 

 

Here, the correction coefficient fs is calculated by the 

regression analysis as follows 
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And Fro can be found using Eqs. (1)-(9). 

This model is only applicable for cases where the 

cantering plate is placed at a distance bl ≤ 0.3hw. 

 

2.2.2 Collapse mechanism model – Model II 
Roberts and Rockey (1979) developed a model to 

estimate the resistance of un-stiffened steel girders with a 

slender profile and exposed to patch loading. This model is 

based on the draw line mechanism, which consists of three 

flow lines on the web and four plastic hinges on the flange. 

(Fig. 2) (Graciano 2005). The BS 5400 Part 3 regulations 

applicable to patch loading have been obtained based on 

work by Roberts and Rockey (1979). This model was later 

modified by Roberts and Newark (1997) based on flow 

lines‟ α = 25tw positions α = 20twfyw / fyf. Thus, it is bounded 

by 2α position of the flow lines in the web, which is 

approximately equal to 40 times the web thickness. It has 

 

 

 

 

also been experimentally observed that steel beams 

subjected to patch loads and with rigid bending plates 

exhibit similar collapse mechanisms (Graciano 2005). 

The model proposed by Roberts and Newark was later 

improved by Graciano and Edlund (2003). Fig. 3 shows the 

fracture mechanism provided by this model for 

longitudinally stiffened girders. The position (a) of the flow 

lines is restricted by the rigid stiffener plate at the rigid 

portion of the loaded flange. In this collapse model, the 

middle portion of the underlying flow line may form at the 

junction of the stiffener plate, as well as on the loaded panel 

(Fig. 3) (Graciano 2005). 
 

2.2.3 Post-critical strength approach – Model III 
This method is developed by Lagerqvist and Johansson 

(1996) depending on the critical post-thrust resistance of the 

steel girders and is applied by controlling the stability with 

buckling curves. In this context, Graciano and Johansson 

(2003) have developed a model based on the design 

philosophy of Eurocode 3 Part 1.5. The goal in this model is 

to include the longitudinal stiffener effect, which is not 

present in earlier Eurocode versions, in the calculation. 
 

2.3 Design approach in BS5400 
 

In BS 5400 Part 3, the design approach is based on the 

regression analysis by Markovic and Hajdin (1992), and the 

ultimate resistance of steel girder subjected to patch load Frl 

is determined as follows 
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where correction coefficient is fs 

 

)/(7.028.1 wls hbf   (11) 

 

Fig. 2 Collapse mechanism proposed by Roberts and Rockey (1979) 

 

Fig. 3 Modified collapse mechanism for longitudinally stiffened girder (Graciano 2005) 
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In this formula fs coefficient is between 1.0 and 1.21. 

In addition to these models, resistance of steel girders 

exposed to patch loads is also modelled by methods such as 

artificial neural networks, fuzzy logic, genetic programming 

and regression (Cevik 2007, Cevik et al. 2010, Fonseca et 

al. 2003a, b, 2007). 

In this study, resistance of longitudinally stiffened steel 

girders subjected to patch loads is modelled with a new 

approach namely, support vector machines, and the 

proposed model is compared with the existing models. 
 

 

3. Support vector machines 
 

Support vector machines (SVM) were first developed by 

Boser et al. (1992) is an artificial intelligence learning 

method developed for solving classification problems. 

However, researchers have begun to use SVM to solve 

regression problems and have called this method Support 

Vector Regression (SVR). 

In addition to its robust numerical basis in statistics 

learning theory, SVMs have performed extremely well in 

many applications such as text analysis, face recognition, 

image processing and bioinformatics. This fact proves that 

SVMs are one of the most modern approaches in machine 

learning and data mining, along with some other 

computational methods such as neural networks and fuzzy 
systems (Wang 2005). 

 

3.1 Support vector regression (SVR) 
 

In SVR, the objective is to obtain a function that 

estimates the real output values by a maximum deviation of 

ε and to obtain two hyper planes parallel to this function. 

The distance between these hyper planes should be minimal 

(Chen et al. 2004). 

For a given set of training data in SVR, the main 

purpose is to obtain a function with maximum difference 

from the exact found targets for all the training data, and at 

the same time, is at most flat i.e., we do not focus on errors 

as long as they are less than a certain amount, but any 

deviation larger than this amount is not acceptable (Chen et 

al. 2004), The (linear) ε-insensitive loss function L(x, y, f) is 

described as 
 

 

(12a) 

 

 

 

(a) Quadratic (b) Linear 

Fig. 4 The form of linear and quadratic ε-insensitive loss 

function for zero and non-zero ε 

where f is a real-valued function on a x and the quadratic ε-

insensitive loss is defined by 

 

 
(12b) 

 

Fig. 4 illustrates the form of linear and quadratic ε-

insensitive loss function for zero and non-zero ε. 

The loss function L(y, f(x, ω)) determines the perfor-

mance of accuracy. Performing linear regression in the 

high-dimension feature space by the use of ε-insensitive 

loss function, SVM attempts to decrease model complexity 

by performing the minimization of ||ω||2. By introducing 

(non-negative) slack variables 𝜉𝑗 , 𝜉𝑖
∗𝑖 = 1,…𝑛 

 

,    
(12c) 

 

to determine the deviation of training data outside ε -zone. 

Following formulation is utilized for the minimization of 

SVM regression 
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The solution of this optimization problem can be found 

by transforming it into the dual problem 

 

+ b
 

subject to
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where nsv is the number of support vectors (SVs), ai
* and aj 

are the Lagrange multipliers and K(xj, x) is a kernel function 

and b is the bias term. Generalization capability (accuracy 

of estimation) of SVM is dependent on a proper setting of 

meta-parameters C, ε and the kernel parameters. Currently 

available software applications enable users to manually 

define the meta-parameters of support vector regression 

(Cherkassky and Ma 2002). 

The model complexity and the degree, to which 

deviations larger than ε are tolerated, are controlled by a 

parameter C controls in optimization formulation. 

Parameter ε describes the width of ε -insensitive zone, 

which is utilized to fit the training data. Value of ε can affect 

the number of support vectors used to form the regression 

function. On the other hand, greater ε -insensitive values 

cause more „flat‟ predictions. Although in different ways, 

both C and ε values affect model complexity (flatness) 

(Cherkassky and Ma 2002). 

While there are many kernel functions used in machine 

learning, four different kernel functions are used in this 

study. These functions are: 
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Polynomial function 
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Radial-based function 
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Sigmoid function 
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where xi and x, are the training and test inputs, respectively, 

σ is the Gaussian kernel function and d is the polynomial 

degree of kernel function. 

Previously, SVM has been used in several applications 

e.g., modelling concrete strength, corrosion, structural 

safety and self-compacting concrete properties as well as 

other subject areas (Camoes and Martins 2017, Kundapura 

and Hegde 2017, Ozcan et al. 2017, Mirhosseini 2017), 

Ç evik et al. has carried out a review study summarizing the 

works carried out using support vector machines in 

structural engineering (Ç evik et al. 2015). Zhang and Song 

(2012) employed SVM to predict the residual mechanical 

characteristics of fly ash concrete specimens exposed acidic 

environment. Yang et al. (2014) investigated the mechanical 

properties of corroded concrete and performed tests on 

specimens under repeated loads. 

Deflection and maximum crack with parameters were 

predicted using least squares support vector machines (LS-

SVM). Cao et al. (2013) presented a predictive SVM based 

model for elastic modulus of SCC. Also, a SVM based 

approach was implemented for structural reliability analysis 

by Li and Lu (2007). 
 

 

4. Numerical application 
 
4.1 Modelling patch loading resistance of 

longitudinally stiffened steel girders with SVM 

 
 

Table 3 Statistics of training and testing sets 

 Model 
Mean experimental-

to-predicted ratio 

Std. 

deviation 

Coefficient 

of variation 

Training 

data 

Model I 1.07 0.147 0.138 

Model II 1.15 0.226 0.197 

Model III 1.26 0.197 0.157 

BS5400 1.52 0.245 0.161 

SVM 

(N-P ) model 
1.00 0.054 0.054 

Testing 

data 

Model I 1.10 0.148 0.134 

Model II 1.17 0.227 0.194 

Model III 1.25 0.199 0.160 

BS5400 1.51 0.263 0.175 

SVM 

(N-P ) model 
0.99 0.053 0.054 

 

 
 
The main purpose of this study is to assess the 

feasibility of SVM approach in predicting the patch loading 

resistance of longitudinally stiffened steel girders. For this, 

an entensive experimental database was created using 

experiments available in literature as summarized in Table 

A.1. Database consists of 162 experimental data. Input 

parameters include geometrical and mechanical parameters 

(a, hw, tw, tf, bf, fyf, fyw, ss, tst, bl, bst) of steel girders. The 

cross-sectional view of the steel girders subjected to the test 

is shown in Fig. 1. Support vector regression models were 

created using a software named DTREG (Sherrod 2008). A 

cross-validation test (v-fold cross validation) was used to 

avoid over-fitting problems, and randomly selected 25% of 

the data was used as the testing set. Control variables (e.g., 

epsilon/Nu, gamma, cost) were selected by the program 

based on a grid search generated using predetermined 

ranges for each variable. Entries and statistical results for all 

SVM models are presented in Table 2. 

Although the statistical indicators suggest the high 

estimation capacity of produced models, high generalization 

capability is also required for the validation of a model. 

Table 2 Inputs and statistical values of developed SVM models 

SVM model Model type Kernel function Epsilon/Nu Gamma Cost R2 

E-R Epsilon-SVR Radial basis 0 0.11112 55555.6 0.994 

E-P Epsilon-SVR Polynomial 0 0.0909 11111.1 0.997 

E-S Epsilon-SVR Sigmoid 0.3333 0.0909 1 0.927 

E-L Epsilon-SVR Linear 0 0.0909 11111.1 0.943 

N-R Nu-SVR Radial basis 1.00E-06 0.0909 100000 0.946 

N-P* Nu-SVR Polynomial 0.1111 0.0909 22222.2 0.996 

N-S Nu-SVR Sigmoid 0.1111 0.0909 1 0.937 

N-L Nu-SVR Linear 0.4444 0.0909 1 0.95 

E-R Epsilon-SVR Radial basis 0 0.11112 55555.6 0.994 

E-P Epsilon-SVR Polynomial 0 0.0909 11111.1 0.997 

E-S Epsilon-SVR Sigmoid 0.3333 0.0909 1 0.927 
 

* Selected model 
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Generalization capability implies the competence of the 

model in estimating the results for any given data different 

than the one used as input. 

Among eight models, polynomial function based models 

with epsilon-SVR (E-P) and Nu-SVR (N-P) types exhibited 

the best performance in terms of correlation coefficient (R2) 

and root mean squared error (RMSE). N-P model was 

selected for parametric analyses despite the statistical 

indicators, due to the deficiencies in preliminary assessment 

of parametric analysis of E-P model. Table 3 summarizes 

the performance statistics of all models for training and 

testing sets. 
 

 

5. Parametric analysis 
 

A Matlab program using a given database to generate 

parametric data was utilized. Experimental data with 11 

input parameter (a, hw, tw, tf, bf, fyf, fyw, ss, tst, bl, bst) was 

introduced to program and 3 points were generated for each 

input parameter, thus, 311 = 177147 rows of data were 

generated for this study. Program code uses the minimum 

and maximum values of each input and generates 

predetermined number of points within this interval. Later, 

the generated data were scored using produced SVM model 
 

 

 

 

and the outputs were analyzed through ANOVA analysis, 

using main effect plots, interaction plots and 3D surface 

plots. 

Main effect graphs are useful tools to evaluate the effect 

of each input on the output parameter. Interaction and 

surface plots show the combined effect of any two 

parameters on the output, thus these plots are useful to 

assess the generalization capability of the proposed model. 

 

 

6. Results and discussion 
 

Statistical norms were used for the evaluation of 

produced models. These norms are correlation ratio (R2) and 

root mean squared error (RMSE), whose formulations are 

given in Eqs. (14)-(15). Also, mean experimental-to-

predicted ratio, standard deviation and coefficient of 

variation (CoV) were also used for evaluation of the models. 
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Fig. 5 Comparison of test results versus corresponding SVM predictions 

 

Fig. 6 Experimental/predicted ratio comparison of SVM and BS5400 
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where oi is the experimental value of ith data, ti is the 

predicted value of ith data, N is the number of data used for 

 

 

 

 

 

 

training and testing of SVM model. 

Among the generated models, Nu-SVR model with 

polynomial function (N-P), which has the highest 

estimation capacity was selected for further inspection. Fig. 

5 shows the correlation between the estimated values and 

the actual experimental data. The correlation ratio (r-square, 

R2), whose ideal value is 1, was found to be 0.995 and 0.997 

 

Fig. 7 Experimental/Predicted ratio comparison of SVM and Model I 

 

Fig. 8 Experimental/Predicted ratio comparison of SVM and Model II 

 

Fig. 9 Experimental/predicted ratio comparison of SVM and Model III 
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Fig. 11 Surface plot of Fpred. vs thickness of web and  

height of web 

 

 

for testing and training data, respectively. Therefore, this 

confirms the high predictive performance of the SVM 

model in estimating the patch load resistance of 

longitudinally stiffened webs. 

Further inspection was carried out for testing the 

validity of proposed model by comparing the mean 

experimental-to-predicted ratio of current and proposed 

models as illustrated in Figs. 6-9. BS5400 model estimates 

are quite conservative with an average ratio of 1.517 and 

the large scattering of data is evident. Model I, Model II and 

Model III, on the other hand, have conservative estimations 

as well as un-conservative results at a moderate level, with 

less scattering compared to BS5400 model. The 

performance of proposed SVM model is further validated 

and it predicts experiment results with much higher 

accuracy and very less scattering. 

Fig. 10 shows that input variables, except for web panel 

length (a), have increasing effect on patch load resistance. 

Web thickness (tw) appears to be the most influential 

 

 

 

Fig. 12 Surface plot of Fpred. vs thickness of flange 

and width of flange 

 

 

 

Fig. 13 Surface plot of Fpred. vs height of web and 

yield stress of web 

 

 

parameter whereas the flange thickness (tf) has a relatively 

lower influence. Mechanical properties (i.e., yield stress of 

web, fyw and yield stress of flange, fyf) have an increasing 

 

Fig. 10 Influences of input parameters on Fpred. 
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tendency on patch load resistance. 

Figs. 11-13 shows 3D surface plots generated using 

ANOVA analysis. The smooth shape of plots illustrates that 

the parameter effects on patch load resistance is acceptable 

since no fluctuation is apparent in any of the graphs. This 

further confirms the generalization capability of proposed 

model. 

 

 

7. Conclusions 
 

This paper gives a contribution towards the 

implementation of support vector machines (SVM) 

approach in predicting the test results of a complex 

problem, i.e., the resistance of longitudinally stiffened webs 

subjected to patch loading. It is aimed to explore the 

feasibility of SVM in estimating the patch load resistance of 

steel beams with longitudinal stiffeners. SVM has been 

successfully applied to solve many engineering problems 

before (Ç evik et al. 2015, Zhang et al. 2016). For the 

solution of this problem, support vector machines (SVM) 

method is used for the first time in the literature. For the 

modelling process, a database (Table A.1) is created with 

the experimental results available in the literature, and 

multiple SVM models are developed using this database. 

Among these models, the model with the highest correlation 

ratio (R2 = 0.996, CoV = 0.169) and better parametric study 

results is selected for further analysis. The effect of each 

parameter on the patch load resistance are studied and 

interpreted. In addition, the results of available design 

models are analyzed, and these results are compared against 

the predictions of SVM model. Following conclusions can 

be drawn based on these findings: 

 

 Predicted values are significantly close to actual test 

results both for training and testing data. SVM 

model with Nu-SVR model type and polynomial 

kernel function exhibits the best prediction 

performance. 

 The model proposed by BS5400 overestimate the 

experimental results with a large scattering of data. 

Predictions of Model I, Model II and Model III 

(proposed by other researchers) have relatively less 

scatter. Proposed SVM model, however, has the 

lowest scattering of data (mean predicted-to-

experimental ratio of 1.00) and the estimations 

closely agree with experimental values. 

 Parametric study confirms that the proposed SVM 

model has generalization capability; thus, the model 

can give accurate results not only for given 

experimental database but also for different inputs 

within the experimental limits. 

 SVM models have high applicability and reliability 

in estimating the patch load resistance of steel 

girders with longitudinal stiffeners, can give results 

in significantly short time and with low error rates. 

 Machine learning methods may provide a promising 

alternative for complex problems (e.g., prediction, 

classification and optimization) in various 

disciplines of civil engineering. 
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