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Abstract. In this research, experimental tensile test and manufacturing of carbon nanotube reinforced composite beam
(CNTRC) is presented. Also, bending, buckling, and vibration analysis of CNTRC based on various beam theories such as
Euler-Bernoulli, Timoshenko and Reddy beams are considered. At first, the experimental tensile tests are carried out for CNTRC
and composite beams in order to obtain mechanical properties and then using Hamilton’s principle the governing equations of
motion are derived for Euler Bernoulli, Timoshenko and Reddy theories. The results have a good agreement with the obtained
results by similar researches and it is shown that adding just two percent of carbon nanotubes increases dimensionless
fundamental frequency and critical buckling load as well as decreases transverse deflection of composite beams. Also, the
influences of different manufacturing processes such as hand layup and industrial methods using vacuum pump on composite
properties are investigated. In these composite beams, glass fibers used in an epoxy matrix and for producing CNTRC, CNTs are
applied as reinforcement particles. Applying two percent of CNTs leads to increase the mechanical properties and increases
natural frequencies and critical buckling load and decreases deflection. The obtained natural frequencies and critical buckling
load by theoretical method are higher than other methods, because there are some inevitable errors in industrial and hand layup
method. Also, the minimum deflection occurs for theoretical methods, in bending analysis. In this study, Young’s and shear
modulli as well as density are obtained by experimental test and have not been used from the results of other researches. Then
the theoretical analysis such as bending, buckling and vibration are considered by using the obtained mechanical properties of
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this research.

Keywords:
industrial method using vacuum pump

bending, buckling, vibration analysis; carbon nanotube reinforced composite beam; hand layup method;

1. Introduction

According to the new studies, researches have shown
that composites can be achieved to better functions by
adding reinforcement particles like carbon nanotubes
(CNTs). Carbon nanotube reinforced composite (CNTRC)
due to their superior mechanical properties such as high
strength to weight ratio are widely used in different modern
industries including aerospace, shipping, automobile
manufacturing and civil engineering. In particular, bending,
buckling, and vibration analysis is very important because
these structural elements may experience different
mechanical loading so analysis of CNTRC and composite
considering experimental study promises new opportunities
for design of high-performance mechanical systems.

Recently many investigations about composite and
CNTRC materials have been done by researchers that are
stated as follows:
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Apuzzo et al. (2017) studied free vibrations of Euler-
Bernoulli nano beams using stress-driven nonlocal integral
model. Fundamental natural frequencies that are evaluated
according to the stress-driven nonlocal integral model
(SDM), are compared with results of the Eringen
differential method and the gradient elasticity theory. Jin et
al. (2016) investigated vibration and damping analysis of a
sandwich beams with face sheets of laminated composite
and a viscoelastic core with general boundary conditions.
They also showed the effects of some parameters like layer
number, ply configuration, thickness, and modulli ratios on
the natural frequency and loss factor. Goncalves et al.
(2017) worked on buckling and free vibration analysis of
shear flexible sandwich beams. They created a framework
to analyze free vibration and linear buckling of sandwich
beams using a microstructure-dependent Timoshenko beam
model. Their results demonstrated that the microstructure-
dependent beam can calculate with good accuracy the
natural frequencies and critical buckling loads. Emam and
Nayfeh (2013) presented the non-linear response of a fixed—
fixed buckled beam to a primary resonance excitation. Their
results demonstrated that the first mode may or may not be
activated when the third mode is directly excited. Pagani
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and Carrera (2017) by using Carrera unified formulation
(CUF), presented governing nonlinear equations of low- to
higher-order beam theories for laminated composite beams.
They employed Lagrange expansion of primary variables in
order to confirm kinematics description and also to provide
an accurate meso-scale, beam models with independent
unknowns at the layer level, in a layer-wise (LW) sense.
Their numerical results for post-buckling of symmetric
cross-ply beams are in a good agreement with this method.
Li et al. (2017) considered bending, buckling and vibration
analysis of an inhomogeneous beam which consist of two
constituent and its properties vary through the length.
Applying appropriate values of the power-law index, the
mechanical behavior can be controlled. Their results
showed natural frequencies and critical buckling load can
be increased by increasing material length scale parameter
or by decreasing nonlocal parameter. Nguyen et al. (2017)
studied lateral buckling thin walled functionally graded
(FG) beam. Using finite element method, the governing
equation of equilibrium was formulated. It is concluded that
buckling of thin walled FG is under control of load height
level. Chen et al. (2017) considered nonlinear free vibration
and postbuckling of FG graphene reinforced nanocomposite
beams. Von karmén type nonlinearity and Timoshenko
beam theory are used to obtain the governing equations.
Their results showed that graphene platelets (GPLs) can
effectively increase reinforcing effect on porous beams.
They achieved highest beam stiffness by symmetric
distribution pattern of internal pores and GPL nanofillers.
Zhang et al. (2017) investigated the effective elastic
constant of a sandwich beam with honeycomb-corrugation
hybrid core by use of homogenization method. It can be
concluded from the results that face sheet thickness has the
greatest effect on frequency parameter and inclination angle
of corrugated member does not change the frequency
parameter. Gholami and Ansari (2017) studied nonlinear
postbuckling of thick and moderately thick rectangular
piezoelectric-piezomagnetic  nanoplates  with  various
boundary conditions under the magneto-electro-thermo-
mechanical loading, their results showed that the
mechanical postbuckling strength as well as critical
buckling load of nanoplates are significantly influenced by
the nonlocal parameter, external applied voltage and applied
magnetic potential. Zhu et al. (2017) investigated buckling
analysis of Euler—Bernoulli beams, they used nonlocal
Eringen’s model. Their analytical solutions confirmed that
the nonlocal effect reduces the buckling loads. The nonlocal
integral model that is used here has a consistent softening
effect. It is also understood that the effect could be second
order and first-order; it depends on the boundary conditions.
Lee and Lee (2017) illustrated free vibration analysis of
functionally graded beams (FGB) using an exact transfer
matrix expression. This method can be applied as a great
tool to obtain the mode shapes and natural frequencies for
sort of problems in which material characteristics such as
the elastic modulus and density are changed continuously
along the height direction of the beam cross-section. Orun
and Guler (2017) studied buckling analysis of thin-walled
beams under combined loading. They investigated different
ratios of hole diameter to reinforcement width (d/w), the

aspect ratio of the web plate (a/b) and also ratios of
reinforcement height to web plate thickness (h/t). Their
results showed required force and energy to buckle a
structure with hole reinforcement is much higher than the
one without reinforcement. Piana et al. (2017) illustrated
the natural frequencies and critical buckling load of a thin-
walled open profile characterized by a slightly non-
symmetric cruciform cross-section, experimentally and
compared their results with numerical results. Their
numerical results confirmed experimental results. Using the
time-dependent boundary element method, Scuciato et al.
(2017) presented the dynamic analysis of Euler-Bernoulli
beams. Their work is based on the application of a linear 9
method (or 6-Yu method), which assumes a linear time
variation to the rotation, displacement, shear force and
bending moment in the time interval. This version adopts
linear time behavior for all variables that concerns with
beam analysis in each intervals of time. Emam and Eltaher
(2016) investigated the buckling and postbuckling of
composite beams in hydrothermal environment. The
material properties are assumed to be temperature
dependent and moisture-dependent. The results depicted
that the temperature has a profound contribution to the
buckling and postbuckling behavior. The buckling load
decreases and the postbuckling amplitude increases by
increasing the temperature. Also, the moisture variation has
a minimal effect on the change of the material properties,
the bucking load and the postbuckling response.

Hadi and Yuan (2017) investigated experimentally on
composite beams reinforced with glass fiber reinforced
polymer (GFRP) I-beam and steel bars. Their proposed
composite had ductile behavior because of the existence of
the tensile steel bars. By replacing GFRP bars and steel
bars, the brittle failure of GFRP bars caused lack of ductility
of the beam and both the ultimate load and stiffness were
decreased. Their results also showed that the ultimate load
is controlled by the I-beam and the tensile steel bars govern
the yield point of the composite beams. Zhong et al. (2017)
studied reinforced bamboo scrimber composite (RBSC) and
compared it’s bending properties with un-reinforced beam.
Their results proved that the reinforcement and the bamboo
elements could form a composite cross-section firmly. The
bending stiffness of the RBSC beams and ultimate load
capacities could be improved. Types of failure: shear
failure, a crack along the vertical or longitudinal direction
of bamboo element. Yang et al. (2017) considered bending
of FG nanobeams with simply supported boundary
conditions based on Timoshenko beam model. They are
assumed that material properties are varying along the
thickness direction. Their results showed that surface stress,
aspect ratio and gradient index affect the bending of FG
nanobeams. With an increase in the aspect ratio,
dimensionless deflection decreases. They concluded that the
gradient index has more effect on deep beams than shallow
ones. Gliszczynski and Kubiak (2017) investigated bending
load capacity that thin walled composite beams could bear.
Some results depicted that the applied failure criteria do not
predict correct estimation of the maximum values of failure
loads. The strength of the composite fibers is mainly
defined by load capacity of the structures. Vieira et al.
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(2017) demonstrated buckling analysis of thin-walled
structures by using higher order beam models. Their
obtained results of higher order beam and its comparison
with FEM proved this method’s efficiency and simplicity.
Because the beam model considers the in-plane flexure of
the cross-section, it can effectively consider local buckling.
Shaat et al. (2016) presented the vibration characteristics of
cracked nano beams made of nanocrystalline materials.
They applied a size-dependent on Euler-Bernoulli beam
model. It can be concluded from the results that the crack
strongly influences the beam fundamental frequency when
the crack is located at the fixed end of the cantilever beam
where a 4.2% decrease in the frequency is obtained and the
crack contribution decreases as the crack approaches the
beam free end.

Bandaru et al. (2016) studied mechanical behavior of
thermoplastic composites reinforced with two-dimensional
plain  woven homogeneous and hybrid fabrics of
Kevlar/basalt yarns were studied. Five types of composite
laminates were manufactured using compression molding
technique with polypropylene (PP) resin. Static tensile and
in-plane compression tests were carried out to evaluate the
mechanical properties of the laminates. The tension and in-
plane compression tests had shown that the composites with
the combination of Kevlar and basalt yarns present better
tensile and in-plane compressive behavior as compared to
their base composites. Petrone and Meruane (2017)
presented an investigation on the mechanical properties of a
composite panel made of unidirectional flax fibres
embedded in a polyethylene matrix (flax-PE). An initial set
of mechanical properties was identified by classical static
tests. Then, an experimental modal analysis was performed
in order to get information on natural frequencies and mode
shapes, which are related to the mechanical properties.
Mohammadimehr and Mehrabi (2017) investigated stability
and free vibration analysis of double-bonded micro
composite sandwich cylindrical shells that is reinforced by
CNT conveying fluid flow under mechanical load and
magneto-thermo loading. Their results showed that the
changes in temperature, magnetic intensity and CNT
volume fraction affected on behavior of micro composite
sandwich cylindrical shells. It is also can be concluded from
the results that in the presence of fluid flow, the
dimensionless natural frequencies reduce and as the face
sheets are very stiffer than foam cores, increasing the
thickness ratio leads to increase the natural frequencies and
stability of micro structures. Ghorbanpour Arani et al.
(2017b) studied nonlinear vibration behavior of viscoelastic
micro composite sandwich plates which integrated with
sensor and actuator. It could be concluded from the results
that by applying the positive voltage to the actuator layer,
frequency and stiffness of the system decreases and also
with increasing the volume fraction of CNTSs, the frequency
of the system increases because of the increasing of the
stiffness of the system. Filippi et al. (2014) used finite
elements and various displacement theories to study static
analyses of FG beams. The proposed approach can be used
to study different structures such as thin plates and
multilayered beams under several loadings and different
boundary conditions. Arefi and Zenkour (2017a) studied

vibration and magneto-electro-elastic bending analysis of a
three-layer nanobeam. They used Timoshenko beam model
as well as nonlocal relations to investigate the vibration and
bending analysis of sandwich nanobeam integrated with
piezomagnetic face sheets. Effect of some important
parameters such as nonlocal parameter and applied electric
and magnetic potentials on vibration and bending behavior
of nanobeam was studied. Strain gradient theory of micro-
structures and first-order shear deformation theory was used
to investigate vibration and bending analysis of a sandwich
microbeam with two integrated piezo-magnetic face-sheets
by Arefi and Zenkour (2017b). Their results indicated that
increasing the length scale parameters lead to increase in
natural frequencies and decrease in deflection. Arefi and
Zenkour (2016) presented nonlocal analysis of a sandwich
nanobeam integrated with the piezomagnetic layers, using
refined shear and normal deformation beam theory. Their
results illustrated that parameters such as temperature
rising, initial magnetic and potential and nonlocal parameter
have significant effect on the bending behavior of the
nanobeam. Arefi and Zenkour (2018) also, used higher-
order sinusoidal shear deformation theory and strain
gradient theory to derive the governing equations of electro-
elastic bending of a sandwich piezoelectric microbeam
resting on Pasternak’s foundation. Arefi and Zenkour
(2017c) investigated wave propagation, free vibration and
bending analyses of a sandwich microbeam integrated with
piezoelectric face-sheets resting on Pasternak foundation
subjected to electric potential. They used strain gradient
theory and Euler—Bernoulli beam theory to derive
governing equations. They studied the effect of different
parameters such as parameters of foundation, applied
voltage and material length scales.

In present paper, the experimental tensile test is used to
obtain the mechanical properties of carbon nanotubes
reinforced composite (CNTRC) beam and theoretical
bending, buckling, and vibration analysis is presented. The
mechanical properties like density and Young’s modulli are
obtained through the experimental tests thus the accurate
predictions of such composite beams can be significant
research objectives. Also, in this study, the influence of
different manufacturing processes such as hand layup and
industrial methods by vacuum pump on composite
properties is investigated. A complete analysis of bending,
buckling, and vibration analysis by applying different
theories such as Euler-Bernoulli, Timoshenko and Reddy is
done considering different length to width ratio for both
composite and nanocomposite beams. The governing
equations of motion are derived for mentioned theories by
using Hamilton’s principle. In these composite beams, glass
fiber is used in an epoxy matrix and for nanocomposite,
CNTs are applied as reinforcement particles. Also, in this
paper various processes are applied to produce composite
beams such as hand layup and an industrial method using
vacuum pump. Moreover, theoretical method of composite
and nanocomposite material is considered by extended
mixture and mixture rules, respectively. In this study
Young’s and shear modulli as well as density are obtained
by experimental tensile test and the results of other
researches aren’t used. Then the theoretical analysis such as
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bending, buckling and vibration are considered by using
obtained experimental material properties.

2. Material properties

There are two methods that are used for creating
composite in this study. One of them is “hand lay-up” and
the other is “industrial method” which vacuum bagging is
pplied.

In order to manufacture composite material in hand lay-
up method, fabric layers are manually placed into the mold
and the epoxy resin is applied between each layer of the
glass fabric to completely coat the layer. By using a small
roller, the air which are trapped, evacuated. The process is
done at room temperature and no curing process is done. By
uniform combining CNTs in epoxy resin and using the
mixture of resin/CNT as matrix of composite, CNTRC is
manufactured.

“Industrial method” is a fabricating method that uses
atmospheric pressure to squeeze the resin impregnated
layers together, forcing them to conform to the shape of the
mold. The equipments that are used including vacuum
pump, peel ply (type PA85 made by DIATEX company),
sealant tape (type LSM1310 made by DIATEX company),
bagging films (type PO120 made by DIATEX company),
glass fabric (type CLAN AF207 made by COLAN
company), epoxy resin (type EPR1080) and infusion mesh.

After lay-up is finished, the peel ply is applied over the
layers to create a clean surface and over the peel ply a layer
of infusion mesh is placed to assist the flow of resin across
and throughout the laminate during the resin infusion
process. Layers are sealed in an airtight vacuum bag and
epoxy resin is transferred by force of vacuum and pass
through the fabric layers. Like the previous method, the
process is done at room temperature and no curing is done.
Some of the advantages of this method are: no air trapped
and uniform resin distribution.

Composite material has been manufactured by 11 layers
glass fibers (type CLAN AF207 made by COLAN
company) as well as resin epoxy (EPR 1080).

In order to determine the material properties of
prototypes (composite and CNTRC beams) the Young’s

(a) ®)

Fig. 1 (a) Composite beams; (b) CNTRC beams made by
hand layup method before experimental tensile test

odulli is obtained by experimental tensile tests.

For Young’s modulus test, the composite sections are cut
to 90 degrees, for both without CNTs and the composite
beam reinforced by two percent CNTs as shown in Figs.
1(a) and (b), respectively.

The prototypes are made by hand layup method by
standard test ASTM D 3039 for tensile test which is 15 cm
for its effective length and 2.5 cm for its width and 2.5 mm
for its thickness. By applying Hooke’s, Young’s modulus
can be calculated.

For shear modulus test, the specimen is inserted into the
fixture according to ASTM D 3518 standard by placing two
train gages element, oriented at +45° to the loading axis, in
the middle of the specimen (away from the notches) and
along the loading axis, the shear response of the material
can be measured.

Figs. 2(a) and (b) show the failed prototype after
experimental tensile test that these composite and
nanocomposite reinforced by 2% CNT beams made by hand
layup method, respectively.

Figs. 3(a) and (b) depicts composite beams that are
made by industrial method before and after experimental
tensile test. Also Fig. 4 indicates the force versus axial
deflection for prototype 11 (test 1) made by industrial
method.

Table 1 shows mechanical properties including the shear
modulli and Young modulli of composite beams that are
made by Hand layup method.

Table 2 indicates mechanical properties such as the
shear and Young modulli of carbon nanotube reinforced
composite beams that are made by Hand layup method.

Table 3 illustrates mechanical properties and
experimental test results such as the shear and Young
modulli of composite beams that are made by industrial
method.

As illustrated in Tables 1-3, there is a significant
difference between Young’s modulus that are obtained from
hand lay-up made specimen and industrial method made
specimen, that’s because the process of producing. In
industrial method layers are covered by resin uniformly but
in hand lay-up method it could be non-uniform distribution
of resin, also a high dimensional accuracy is applied in

< | ‘ |
@ (b)

Fig. 2 The failed prototype after experimental tensile test
made by hand layup method (a) composite beam;
(b) nanocomposite beam
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Fig. 3 Geometry of five prototypes composite beam made by industrial method (a) before experimental tensile test;

(b) after experimental tensile test
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Fig. 4 Force versus axial deflection of composite beam made by industrial method for prototype 11(test 1) using Tensile test

Table 1 Mechanical properties of composite beams that are
made by Hand layup method

Properties E., (GPa) Gy, (GPa) p (kgim?)
Testl 7.5804 3.0815 1410
Test2 8.1745 3.3230 1410
Test3 8.1693 3.3209 1400

Table 2 Material properties of nanocomposite beams
reinforced by two percentage CNT that aremade by
Hand layup method

Properties E. (GPa) Gy, (GPa) p (kg/m®)
Testl 8.4214 3.3957 1410
Test2 8.2205 3.3147 1390
Test3 8.6104 3.4719 1400
Test4 8.5046 3.4293 1400

industrial method. Another reason related to the air trapped
between layers, in industrial method vacuum pump removes
the air and compress the layers over the mold to produce the
beam thus the produced beam has a better quality and it
causes to have better mechanical properties.

Average magnitude of mechanical properties with
different methods including composite Hand layup,
CNTRC hand layup and composite industrial is shown in
Table 4.

In order to determine the material properties of three
hase nanocomposite beam, the Halpin-Tsai equations are
sed. First, the Halpin-Tsai equations are applied to obtain
the mechanical properties of two-phase CNT/epoxy as
matrix. The two-phase properties are then applied to
compute the mechanical properties of three phase of carbon
nanotube reinforced composite using the rule of mixtures.
In this method, the properties of CNT/epoxy composites are
used as the properties of the matrix (Sharma and Shukla
2014).
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Table 3 Material properties of composite beams that are made by industrial method using vacuum pump

Properties Ej; (GPa) Gy, (GPa) p (kg/m®) Toughness (N.m/m°) Critical point Elongation (mm) Force (KN)

Elastic limit 0.22 6.36

Proportional limit 0.16 4.95

Maximum stress 0.77 16.49

11 (Testl) 23.43 9.524 1349 720.49 Eracture 0.77 16.48
Upper yield limit 0.31 7.82

Lower yield limit 0.31 7.82

Elastic limit 0.36 8.58

Proportional limit 0.38 8.91

Maximum stress 0.84 17.81

12(Test2) 21.51 8.743 1342 811.47 Eracture 0.84 1781
Upper yield limit 0.34 8.26

Lower yield limit 0.34 8.26

Elastic limit 0.18 4.93

Proportional limit 0.11 2.95

Maximum stress 0.66 14.74

13(Test3) 22.04 8.959 1344 539.67 Eracture 0.66 1474
Upper yield limit 0.27 7.03

Lower yield limit 0.27 7.03

Elastic limit 0.24 6.36

Proportional limit 0.19 5.10

Maximum stress 0.81 16.97

14(Test4) 21.11 8.581 1341 777.43 Eracture 081 16.97
Upper yield limit 0.29 7.67

Lower yield limit 0.29 7.67

Elastic limit 0.16 591

Proportional limit 0.11 4.75

Maximum stress 0.65 15.83

15(Test5) 23.52 9.560 1349 608.35 Eracture 0.65 15.83
Upper yield limit 0.21 7.10

Lower yield limit 0.21 7.10

Table 4 Average magnitude of three type of above Tables (composite Hand layup, CNTRC hand layup and composite

industrial methods)

Composite hand layup CNTRC hand layup Composite Industrial method
Properties  Ey (GPa) Gy, (GPa)  p(kg/m®)  Ey (GPa) Gy (GPa)  p(kg/m®)  Ey (GPa)  Gip (GPa)  p (kg/m?)
Average 7.9747 3.2418 1403 8.4392 3.4029 1400 22.322 9.0734 1345
1
CNT — d —
Pent =
Elnl, :§ l+2{ | } Epoxv (At) . [(pCN/ )X(M EPOX/ ):l_”_ 2
8 CNT + (y ) Peroxy Moy
EPOXY 2t
ECV where EJ%, Egpoxy and Ecyr denote Young’s modulus of
Ecpoxy matrix, epoxy and carbon nanotube and I, d, t are length,
x| 1- ) . . - .
ECV CNT [ —EPOXY diameter and thickness of CNT respectively. gy is volume
Ecroxy fraction of CNT that is given in Eq. (2).
(1) pent and pepoxy are density of CNT and epoxy, Mepoxy iS

ITI

CN

1 12 EEPOXY
8

- (/ t)

EC%EPOXY ( %t )
E
C,\VEPOXY ( (yt )

x| 1—

EPOXY

mass fraction of epoxy, and Mcyr is mass fraction of CNT.
VEeirer and V,,, are the CNT and matrix volume fractions
that are written as follows

V m +V Fiber — 1 (3)

The Poisson’s ratio is expressed as follows
(Mohammadimehr et al. 2017)
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Table 5 Material properties of CNTs (Mohammadimehr et
al. 2016), glass fiber, and epoxy resin

Properties E. (GPa) Gy, (GPa) p (kg/m®)
CNT 5646.6 19445 1400

Glass fiber 87 29.032 1510

Epoxy resin 15.47 5931 1100

Table 6 Geometric properties of CNTs

Diameter (nm) Length (nm) Thickness (nm)

30 10 25

V12 =V FTber ngef +V m Vm (4)
V Fiber :V F?ber (5)
w

V4 * Fiber

Fiber —
p iber :0 iber 6
WFiber+( Ao j_( A }NFiber ()
Prm Prm

The mixture rule is developed for mechanical properties
of fiber and matrix as follows (Mohammadimehr et al.
2018, Mohammadimehr and Mostafavifar 2016)

Ell = VFiber Fliber + Vm Elr?. (7)
p :V FiberpFiber +V m pm (8)
E
G — m
"2+ v) ©)

where Ey;, Gy, and p denote Young modulus, shear and
density coefficients, respectively.

Also, Table 5 shows the material properties including
Young’s and shear modulli as well as density of CNTs, glass
fiber, and epoxy resin.

Geometric properties of CNTs including
thickness and diameter are shown in Table 6.

Comparison between theoretical and experimental
results of a beam made by hand lay-up method is presented
in Table 7.

Substituting the material properties from Tables 5 and 6
in Egs. (1)-(9) and using Halpin-Tsai and a comparison of
experimental and the theoretical results of Young’s and
shear modulli as well as density for a nanocomposite beam
made by hand layup method is presented in Table 8. Also
using mixture rule a comparison of experimental and the
theoretical results of Young’s and shear modulli as well as
density for a composite beam made by an industrial method
using vacuum pump is shown in Table 9. The volume
fraction of fiber and epoxy resin are 37 and 63 percent,
respectively.

In Tables 7 and 8 show a remarkable difference between
theoretical and experimental amount, the reasons of this are
non-uniform distribution of resin in hand lay-up method,
and air trapped between layers. Theoretical results are
obtained by considering the ideal condition, that means
there is no error in producing process that’s why it has the
highest amount of Young’s modulus; while in Table 9,
theoretical and experimental results of Young’s and shear
modulli and density for a composite beam made of
industrial method are compared that it is shown the
difference between two methods is lower than Tables 7 and
8. In “Industrial method” is a fabricating method that uses
atmospheric pressure to squeeze the resin impregnated
layers together, forcing them to conform to the shape of the
mold. Thus, in this method, layers are sealed in an airtight

length,

Table 7 Comparing theoretical and experimental results of Young’s and shear modulli and density for

a composite beam made by hand layup

Theory Experimental test
i Eu (GPa) Gy, (GPa) p (kg/m?) Eu (GPa) Gy, (GPa) p (kg/m’)
Properties
23.0376 9.3649 7.9747 3.2418 1403

Table 8 Comparing theoretical and experimental results of Young’s and shear modulli and density for
a carbon nanotube reinforced composite beam made by hand layup method

Theory Experimental test
: Ew(GPa) G (GPa)  p(kg/m’)  Ewn(GPa) Gy (GPa)  p (kg/m’)
Properties
36.41 14.00 8.4392 3.4029 1400

Table 9 Comparing theoretical and experimental results of Young’s and shear modulli and density for
a composite beam made by industrial method

Theory Experimental test
. Eu (GPa) G1, (GPa) p (kg/m?) Eu (GPa) G1, (GPa) p (kg/m®)
Properties
23.0376 9.3649 22.322 9.0734 1345
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Fig. 5 Geometry of composite beam and coordinate system

vacuum bag and epoxy resin is transferred by force of
vacuum and pass through the fabric layers. Like the
previous method, the process is done at room temperature
and no curing is done. Some of the advantages of this
method are: no air trapped and uniform resin distribution.

3. Mathematical formulation

A straight uniform composite beam is shown in Fig. 5.
As it can be seen b, L and h are thickness, length and width
of the beam. In this beam deformation occurs at x-z plane
and the deformation in the y direction is neglected in this
approach.

The normal and shear stresses of the composite beam by
the generalized Hooke’s law are stated as follows (Goswami
and Becker 2015, Arani et al. 2017a)

Q 0
ox | | ~11 ex
{TXZ}_|: 0 szjH?/XZ} (10)

_ B
Qu=1" VipVal (11)
Q=G (12)

In this study, displacement fields for the composite
beam along the x, y and z direction are u, v and w that for
high order composite beam are defined as follows
(Mohammadimehr et al. 2016)

9.2, = Uy ) e 2 20

3

47
33 (l//( )+

+a, Ly(xt)+a

ow, (X, t)) 13)

v(X,y,z,t)=0
w(X, Y, z,t) =w,(x,t)

In this displacement fields, if a; =0, ¢y = a3 =0and a, =
o3 = 0 the Reddy, Timoshenko and Euler-Bernoulli theories
are obtained.

The strain-displacement relation for the composite beam
is considered as follows (Xu et al. 2017, Wattanasakulpong
et al. 2012, Mohammadimehr and Shahedi 2016)

o,

_u =Yoo,
P y oy (14)
B\NO 8u 5W

& :—:0, 7/

Z o Xz az x

3.1 The kinematic equations for composite beam

Substituting Eqg. (13) into Eqg. (14), the kinematic
equations for high order composite beam are obtained as
follows (Nayak et al. 2002, Zamani et al. 2014,
Mohammadimehr et al. 2016).

_auy(x.t) , 62W0(x,t)+0!Z oy (x,t)
X 6X 1 axz 2 5
- [az//(x 1) oW (x, t)j (1)
3h2 Ox ox?
— a\ND(th)
& = oz (16)
. :auo(x,t)_al[awo(x,t)ﬂ 87\N0(x,t)]
oz X ox 0z
+az[y/(x,t)+z —6W(§:’t)J (17
1272 (x t) NCE))
+ay(—5— e )( (x.t)+ j ™

To simplify the above equations €2, ky, Ky, ke, ¥ and
k'y, are defined as follows

& _ Oup(x,t)

o (18)
K = 167\/\/ (>2< 1) 61//(x,t) (19)
oX OX
, dw(x,t) , oW (1)
K= ( ox ox? j (20)
___ 4 oWy (x,t)
Kk, = aShz((//(X,t)+ Y j (21)
Ve =70 o (22)
k! :_%M:o (23)
OX 0z

By substituting Eqgs. (18)-(23) into Egs. (15)-(17) are
simplified as follows

g =&l +zk +2°%/ (24)
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:go :8\N0(x,t) _

% =4 For4

0 (25)

7/)(2 :}/:()Z +Zk):2 +sz)<2 (26)
3.2 Hamilton’s principle.

The total potential energy is written as follows
Fereidoon et al. (2015)

M=T -U +W) @7)

where T, U and W are the kinetic energy, the strain energy
and the work done due to the external force, respectively; in
this study external force for the vibration analysis of the
composite beam is equal to zero.

The variation of kinetic energy is considered as follows
(Ansari et al. 2017, Ebrahimi and Barati 2017, Arefi 2015)

OT = [ pUdu +V &V +wW Sw dV 28)
\v

where p is the density of the composite beam and «, v, w
are the velocities of the composite beam in x, y and z
directions, respectively; V is the volume of the beam.

Substituting Eq. (13) into Eqg. (28) is obtained the
following equation

T :II[[ Oih plz)dz J(Un (X, t)dug(x )

0 -0.5h
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9 h* 9 he
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oJ = é(o-x 55X +TXZ 5]/)(2 )dXdde (30)

where U is strain energy (Shao et al.2017, Ganapathi et
al.2017); o, and z,, are the normal and shear stresses and &,
and y,, denote normal, shear strains, respectively.

By substituting Egs. (10), (24), (25) and (26) into Eq.
(31) yields the following relation

U = [ (Qu(ef +2k, +2°K] ) (82 +2 5k, +2°0k)
Y (31)
+Q22 (}/Sz +z kaz )(5}/32 +z 25k><z ))dXdde

By solving the relation (31), the strain energy is

obtained as follows
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Table 10 Dimensionless fundamental natural frequency of an isotropic beam for three theories by the

present work and Koochaki (2011) Q=

ol 2(Ei)"-5 /h

2

h/L 0.01 0.0125 0.025 0.05 0.1
Euler-Bernoulli 2.985526 2.985232 2.982588 2.971688 2.931568
Euler-Bernoulli (present work) 2.986555 2.986486 2.985910 2.983612 2.974471
FSDT 2.986137 2.985827 2.983285 2.973193 2.934044
Timoshenko (present work) 2.986204 2.985938 2.983722 2.974922 2.940669
TSDT 29861380  2.9858280  2.9832858  2.9731941  2.9340570
Reddy (present work) 29861344 29858287  2.9832858 29731942  2.9340576

Table 11 Non-dimensional central deflection, W (0.5) x 10 for different values of k (power index of

w
FGM) and I/h = 5 using the obtained results by present work and (Li et al.2013) W = |—°)

k 0 0.5 10 100 10t
Li et al. (2013) (Method-1) 2.6252 4.0113 8.8830 12.792 14.251
Li et al. (2013) (Method-2) 2.3986 3.7001 8.0060 11.614 13.021
Present work 2.6935 3.8998 8.5327 13.106 14.622
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1
N :—.[O(fz(x)(’iwo(x,t))dx (33)
where W is external work and f is external force (Jacob et
al. 2002)

By substituting the Egs. (29), (32) and (33) in the
Hamilton’s principle, the equations of the motion for the
CNTRC beam are completely defined in Appendix A.

To solve the governing equations of motion, the
Navier’s solution is defined as follows (Mohammadimehr et
al. 2015, Ganapathi and Polit 2017, Naderi et al. 2014,
Mehrabian et al. 2005)

© nzx
Ug(x,t) =nzzluocoslie “* (34)
© nzx
w(x,t)= nZ:l‘PO cosILe “ (35)
o0 .
Wo(x,'[):nzﬂwosinme"”t (36)

4. Validation

For validation of this study, the results are compared
with other researches. In order to achieve this purpose,
dimensionless fundamental natural frequency of a beam is
compared with the obtained results by the references
Koochaki (2011). The material properties are assumed as
follows Koochaki (2011)

E, =380(GPa), E, =70(G Pa)
v,=03,v,=03k=0

p=380009 ), p,=2707(9/ )

(37)
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Fig. 7 The deflections of nanocomposite beams in various length to thickness ratio

The dimensionless fundamental natural frequency by the
present work for three theories (Euler-Bernoulli,
Timoshenko and Reddy beam models) are compared with
the presented results by Koochaki (2011) for various
theories (Euler-Bernoulli, first-order shear deformation
theory (FSDT), third-order shear deformation theory
(TSDT)) in Table 10. It is shown that the present work and
the obtained results by Koochaki (2011) have a good
agreement together for isotropic materials.

Table 11 shows non-dimensional central deflection, W
(0.5) x 10™ for different values of k (power index of FGM)
and I/h = 5 using the obtained results by present work and
Li et al. (2013) that have a good agreement with each other.

5. Numerical results

In this article, bending, buckling, and vibration analysis
of high order nanocomposite beam based on experimental
study is investigated. At first, the experimental tensile tests
carried out in order to obtain mechanical properties such as
density, shear and Young’s modulli and then using
Hamilton’s principle the governing equations of motion
have been derived for Euler Bernoulli, Timoshenko and
Ready theories. In this composite, glass fibers have been
used in epoxy matrix and for nanocomposite, CNTs have
been used as reinforcement particles by uniform
distribution.
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Fig. 9 The effect of adding two percent of CNTs in composite as reinforcement particles on (a) critical buckling load
I/h = 30; (b) deflection of beam I/h = 10; and (c) natural frequencies I/h = 10
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Also, the mechanical properties of composite and
CNTRC materials are illustrated in Table 4 made by hand
layup method.

Fig. 6 shows the critical buckling loads of CNTRC
beams in various length to thickness ratio and wave axial
numbers as well as considering different beam theories such
as Euler-Bernoulli, Timoshenko and Reddy. By increasing
axial wave numbers (mode numbers) and decreasing length
to thickness ratio the effect of considering more accurate
theories and critical buckling load increase. Also, the
critical buckling load for Euler-Bernoulli theory is higher
than that of for other theories. Thus, Timoshenko and
Reddy beam theories are softer than Euler-Bernoulli beam
theory. Also, for high aspect ratio (length to thickness ratio)
the obtained results by three beam theories are similar
together.

Using the obtained result made by hand layup method in
Table 4, Figs. 7-10 have been plotted.

Fig. 7 illustrates the deflections of CNTRC beams in
various length to thickness ratio by considering different
beam theories. The effect of considering various theories is
more significant in the central of the beam and Reddy and

Euler-Bernoulli beam theories result maximum and
minimum deflections, respectively. Increasing length to
thickness ratio leads to increase the central deflection. Also
increasing the aspect ratio, the effect of considering more
accurate theory enhances.

Fig. 8 depicts the natural frequencies of CNTRC beams
in various length to thickness ratio and modes as well as
different theories. By decreasing length to thickness ratio
and increasing axial wave numbers (mode numbers) the
influence of investigating more accurate theory and natural
frequencies increase. Also, Reddy and Euler-Bernoulli
theories result maximum and minimum natural frequencies
respectively.

According to Figs. 6-8, the influence of considering
more accurate theory is more significant for buckling and
vibration analysis rather than deflection.

Figs. 9(a), (b), and (c) show the effect of adding two
percent of CNTs as reinforcement particles inside
composite matrix based on Reddy beam theory. Considering
CNTs leads to increase the mechanical properties and
increases natural frequencies and critical buckling load and
decreases deflection. It can be seen that the stiffness of the
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carbon nanotube reinforced composite is higher than that of
composite structure which leads to enhance the natural
frequencies and critical buckling load and vice versa for
transverse deflection.

The influence of applying various processes such as
hand layup, industrial and theoretical methods on critical
buckling load, deflection of beam and natural frequencies is
shown in Figs. 10(a), (b) and (c). According to Figs. 10(a)
and (c), the natural frequencies and critical buckling load of
theoretical method are higher than other methods and vice
versa for deflection of beam in Fig. 10(b) because for
industrial and hand layup method we cannot made a perfect
composite beam with one hundred percent agreement by
theoretical investigation. Also, it is shown from this figures
that the results for industrial method by vacuum pump is
higher than that of hand layup method, because the
composite structure made by industrial method has the
minimum vacancy with respect to hand layup method.

Also Fig. 10(b) shows that the minimum deflection
occurs for theoretical methods, in bending analysis.

It can be seen that the obtained results by theoretical
(Reddy) composite beam and industrial composite beam are
near to each other; while these results are different from the
hand layup for composite and CNTRC beam. The reasons
of these results are non-uniform distribution of resin in hand
lay-up method, and air trapped between layers. Theoretical
results are obtained by considering the ideal condition
(Halpin-Tsai as well as rule of mixture), that means there is
no error is occurred in producing process that’s why it has
the highest amount of Young’s modulus; while in Table 9,
theoretical and experimental results of Young’s and shear
modulli and density for a composite beam made of
industrial method are compared that it is shown the
difference between two methods is lower than Tables 7 and
8. In “Industrial method” is a fabricating method that uses
atmospheric pressure to squeeze the resin impregnated
layers together, forcing them to conform to the shape of the
mold. Thus, in this method, layers are sealed in an airtight
vacuum bag and epoxy resin is transferred by force of
vacuum and pass through the fabric layers. Like the
previous method, the process is done at room temperature
and no curing is done. Some of the advantages of this
method are: no air trapped and uniform resin distribution.

As can be seen, in this case, the influence of applying
more accurate processes to produce composite structures is
more important than adding nano reinforcement particles.

6. Conclusions

In this article, the experimental tensile tests carried out
in order to obtain mechanical properties of composite and
CNTRC beam such as density, shear and Young’s modulli.
Then, using these properties, bending, buckling, and
vibration analysis of nanocomposite beam is investigated,
also, by using Hamilton’s principle the governing equations
of motion for Euler Bernoulli, Timoshenko and Reddy
theories are derived. In these composite beams, glass fiber
is used in an epoxy matrix and for CNTRC, CNTs are
applied as reinforcement particles. Also, in this paper
various processes are applied to produce composite beams

such as hand layup and an industrial method using vacuum
pump. Moreover, theoretical method of composite and
nanocomposite material is considered by extended mixture
and mixture rules, respectively.

Some obtained results of present research are stated as
follows:

(1) By increasing axial wave numbers (mode numbers)
and decreasing length to thickness ratio, the effect
of considering more accurate theories, the natural
frequency and critical buckling load increase. Also,
the critical buckling load for Euler-Bernoulli theory
is higher than that of for other theories. Thus, it is
concluded that Timoshenko and Reddy beam
theories are softer than Euler-Bernoulli beam
theory. Also, for high aspect ratio (length to
thickness ratio) the obtained results by three beam
theories are similar to each other.

(2) The effect of considering various theories is more
significant in the central of the beam and Reddy and
Euler-Bernoulli beam theories result maximum and
minimum  deflections, respectively. Increasing
aspect ratio leads to increase the deflection.

(3) The influence of considering more accurate theory
is more significant for buckling and vibration
analysis rather than bending.

(4) Employing two percent of CNTs leads to increase
the mechanical properties and increases natural
frequencies and critical buckling load and decreases
bending parameter. It can be concluded that the
adding CNTs leads to enhance stiffness of
nanostructure. Also, the influence of adding CNTs
are more significant in bending and buckling
analysis rather than vibration.

(5) The natural frequencies and critical buckling load of
theoretical method are higher than other methods
because for industrial and hand layup method we
cannot made a perfect composite beam with one
hundred percent agreement by theoretical
investigation. Also, the minimum deflection occurs
for theoretical methods, in bending analysis.

(6) As can be seen, in this case the influence of
applying more accurate processes to produce
composite structures is more important than adding
nano reinforcement particles.

Acknowledgments

The authors would like to thank the referees for their
valuable comments. Also, they are thankful to the Iranian
Nanotechnology Development Committee for their
financial support, the University of Kashan for supporting
this work by Grant No. 682561/3, and the ARKA SANAT
COMPOSITE Company for financial support by Grant NO.
972018/1.

References

An, X., Khoo, B.C. and Cui, Y. (2017), “Nonlinear aeroelastic
analysis of curved laminated composite panels”, Compos.



Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test... 419

Struct., 179, 377-414.

Ansari, R., Torabi, J. and Shojaei, M.F. (2017), “Buckling and
vibration analysis of embedded functionally graded carbon
nanotubereinforced composite annular sector plates under
thermal loading”, Compos. Part B: Eng., 109, 197-213.

Apuzzo, A., Barretta, R., Luciano, R., Marotti, D.E., Sciarra, F.
and Penna, R. (2017), “Free vibrations of Bernoulli-Euler nano-
beams by the stress-driven nonlocal integral model”, Compos.
Part B: Eng., 123, 105-111.

Arani, A.G., BabaAkbar-Zarei, H., Pourmousa, P. and Eskandari,
M. (2017a), “Investigation of free vibration response of smart
sandwich micro-beam on Winkler---Pasternak substrate exposed
to multi physical fields”, Microsyst. Technol., 24(7), 3045-3060.

Arani, A.G., Jafari, G.S. and Kolahchi, R. (2017b), “Nonlinear
vibration analysis of viscoelastic micro nano-composite
sandwich plates integrated with sensor and actuator”, Microsyst.
Technol, 23, 1509-1535.

Arefi, M. (2015), “Elastic solution of a curved beam made of
functionally graded materials with different cross sections”,
Steel and Composite Structures., 18(3), 659-672.

Arefi, M. and Zenkour, A.M. (2016), “A simplified shear and
normal deformations nonlocal theory for bending of
functionally graded piezomagnetic sandwich nanobeams in
magneto-thermo-electric  environment”, J. Sandw. Struct.
Mater., 18(5), 624-651.

Arefi, M. and Zenkour, A.M. (2017a), “Size-dependent vibration
and bending analyses of the piezomagnetic three-layer
nanobeams”, Appl. Phys. A, 123(3), 202.

Arefi, M. and Zenkour, A.M. (2017b), “Vibration and bending
analysis of a sandwich microbeam with two integrated piezo-
magnetic face-sheets”, Compos. Struct., 159, 479-490.

Arefi, M. and Zenkour, A.M. (2017c), “Transient analysis of a
three-layer microbeam subjected to electric potential”, Int. J.
Smart Nano Mater., 8(1), 20-40.

Arefi, M. and Zenkour, A.M. (2018), “Size-dependent electro-
elastic analysis of a sandwich microbeam based on higher-order
sinusoidal shear deformation theory and strain gradient theory”,
J. Intel. Mater. Syst. Struct., 29(7), 1394-1406.

Bandaru, A.K., Patel, S., Sachan, Y., Ahmad, S. and Alagirusamy,
R. (2016), “Mechanical behavior of Kevlar/basalt reinforced
polypropylene composites”, Compos. Part A, 90, 642-652.

Chen, D., Yang, J. and Kitipornchai, S. (2017), “Nonlinear
vibration and postbuckling of functionally graded graphene
reinforced porous nanocomposite beams”, Compos. Sci.
Technol., 142, 235-245.

Ebrahimi, F. and Barati, M.R. (2017), “Size-dependent vibration
analysis of viscoelastic nanocrystalline silicon nanobeams with
porosities based on a higher order refined beam theory”,
Compos. Struct., 166, 256-267.

Emam, S. and Eltaher, M.A. (2016), “Buckling and postbuckling
of composite beams in hygrothermal environments”, Compos.
Struct., 152, 665-675.

Emam, S.A. and Nayfeh, A.H. (2013), “Non-linear response of
buckled beams to 1: 1 and 3: 1 internal resonances”, Non-Linear
Mech., 52, 12-25.

Fereidoon, A., Eftekhari, D. and Yaghoobi, H. (2015), “Dynamic
behavior of piezoelectric composite beams under moving
loads”, J. Compos. Mater., 50, 899-916.

Filippi, M., Carrera, E. and Zenkour, A.M. (2015), “Static analyses
of FGM beams by various theories and finite elements”,
Composites Part B: Engineering, 72, 1-9.

Ganapathi, M. and Polit, O. (2017), “Dynamic characteristics of
curved nanobeams using nonlocal higher-order curved beam
theory”, Physica E: Low-dimens. Syst. Nanostruct., 91, 190-202.

Gholami, R. and Ansari, R. (2017), “A unified nonlocal nonlinear
higher-order shear deformable plate model for postbuckling
analysis of piezoelectric-piezomagnetic rectangular nanoplates

with various edge supports”, Compos. Struct., 166, 202-218.

Gliszezynski, A. and Kubiak, T. (2017), “Load carrying capacity
of thin-walled composite beams subjected to pure bending”,
Thin-Wall. Struct., 115, 76-85.

Goncalves, B.R., Karttunen, A., Romanoff, J. and Reddy, J.N.
(2017), “Buckling and free vibration of shear-flexible sandwich
beams using a couple-stress-based finite element”, Compos.
Struct., 165, 233-241.

Goswami, S. and Becker, W. (2015), “Analysis of sandwich plates
with compressible core using layerwise refined plate theory and
interface stress continuity”, J. Compos. Mater., 50, 201-217.

Hadi, M.N.S. and Yuan, J.S. (2017), “Experimental investigation
of composite beams reinforced with GFRP I-beam and steel
bars”, Constr. Build. Mater., 144, 462-474.

Jacob, G.C., Fellers, J.F., Simunovic, S. and Starbuck, J.M. (2002),
“Energy Absorption in Polymer Composites for Automotive
Crashworthiness”, J. Compos. Mater., 36, 813-850.

Jin, G., Yang, C. and Liu, Z. (2016), “Vibration and damping
analysis of sandwich viscoelastic-core beam using Reddy’s
higher-order”, Compos. Struct., 140, 390-409.

Koochaki, G.R. (2011), “Free Vibration Analysis of Functionally
Graded Beams”, Int. J. Mech. Aerosp. Ind. Mechatro. Manuf.
Eng., 5, 514-517.

Lee, JW. and Lee, J.Y. (2017), “Free vibration analysis of
functionally graded Bernoulli-Euler beams using an exact
transfer matrix expression”, Int. J. Mech. Sci., 122, 1-17.

Li, S.R., Cao, F.D. and Wan, Z.Q. (2013), “Bending solutions of
FGM Timoshenko beams from those of the homogenous Euler—
Bernoulli beams”, Appl. Math. Model., 37, 7077-7085.

Li, X, Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), “Bending,
buckling and vibration of axially functionally graded beams
based on nonlocal strain gradient theory”, Compos. Struct., 165,
250-265.

Mehrabian, A., Haldar, A. and Reyes-Salazar, A. (2005), “Seismic
response analysis of steel frames with post-North ridge
connection”, Steel Compos. Struct., Int. J., 5(4), 271-287.

Mohammadimehr, M. and Mehrabi, M. (2017), “Stability and free
vibration analysis of double-bonded micro composite sandwich
cylindrical shells conveying fluid flow”, Appl. Math. Model.,
47, 685-7009.

Mohammadimehr, M. and Mostafavifar, M. (2016), “Free
vibration analysis of sandwich plate with a transversely flexible
core and FG-CNTs reinforced nanocomposite face sheets
subjected to magnetic field and temperature-dependent material
properties using SGT”, Compos. Part B: Eng., 94, 253-270.

Mohammadimehr, M. and Shahedi, S. (2016), ‘“Nonlinear
magneto-electro-mechanical vibration analysis of double-
bonded sandwich Timoshenko microbeams based on MSGT
using GDQM”, Steel Compos. Struct., Int. J., 21(1), 1-36.

Mohammadimehr, M., Navi, B.R. and Arani, A.G. (2015), “Free
vibration ~ of  viscoelastic  double-bonded  polymeric
nanocomposite plates reinforced by FG-SWCNTSs using MSGT,
sinusoidal shear deformation theory and meshless method”,
Compos. Struct., 131, 654-671.

Mohammadimehr, M., Rostami, R. and Arefi, M. (2016), “Electro-
elastic analysis of a sandwich thick plate considering FG core
and composite piezoelectric layers on Pasternak foundation
using TSDT”, Steel Compos. Struct., Int. J., 20(3), 513-543.

Mohammadimehr, M., Akhavan Alavi, S.M., Okhravi, S.V. and
Edjtahed, S.H. (2017), “Free vibration analysis of
micromagneto-electro-elastic ~ cylindrical ~ sandwich  panel
considering functionally graded carbon nanotube-reinforced
nanocomposite face sheets, various circuit boundary conditions,
and temperature-dependent material properties using high-order
sandwich panel theory and modified strain gradient theory”, J.
Int. Mater. Syst. Struct., 29(5), 863-882.

Mohammadimehr, M., Okhravi, S.V. and Akhavan Alavi, S.M.



420 M. Mohammadimehr, A.A. Mohammadi-Dehabadi, S.M. Akhavan Alavi, K. Alambeigi, M. Bamdad, R. Yazdani and S. Hanifehlou

(2018), “Free vibration analysis of magneto-electro-elastic model”, Int. J. Eng. Sci., 116, 130-140.
cylindrical composite panel reinforced by various distributions
of CNTs with considering open and closed circuits boundary
conditions based on FSDT”, J. Vib. Control, 24(8), 1551-1569. cC

Naderi, A.A., Rahimi, G.H. and Arefi, M. (2014), “Influence of
fiber paths on buckling load of tailored conical shells”, Steel
Compos. Struct., Int. J., 16(4), 375-387.

Nayak, A.K., Moy, S.S.J. and Shenoi, R.A. (2002), “Free vibration
analysis of composite sandwich plates based on Reddy’s higher-
order theory”, Compos. Part B: Eng., 33, 505-519.

Nguyen, T.T., Thang, P.T. and Lee, J. (2017), “Lateral buckling
analysis of thin-walled functionally graded open-section
beams”, Compos. Struct., 160, 952-963.

Orun, A.E. and Guler, M.A. (2017), “Effect of hole reinforcement
on the buckling behaviour of thin-walled beams subjected to
combined loading”, Thin-Wall. Struct., 118, 12-22.

Pagani, A. and Carrera, E. (2017), “Large-deflection and post-
buckling analyses of laminated composite beams by Carrera
Unified Formulation”, Compos. Struct., 170, 40-52.

Petrone, G. and Meruane, V. (2017), “Mechanical properties
updating of a non-uniform natural fibre composite panel by
means of a parallel genetic algorithm”, Compos. Part A, 94,
226-233.

Piana, G., Lofrano, E., Manuello, A. and Ruta, G. (2017), “Natural
frequencies and buckling of compressed non-symmetric thin-
walled beams”, Thin-Wall. Struct., 111, 189-196.

Scuciato, R.F., Carrer, J.A.M. and Mansur, W.J. (2017), “The time-
dependent boundary element method formulation applied to
dynamic analysis of Euler-Bernoulli beams: the linear 4
method”, Eng. Anal. Bound. Elem., 79, 98-109.

Shaat, M., Khorshidi, M.A., Abdelkefi, A. and Shariati, M. (2016),
“Modeling and vibration characteristics of cracked nano-beams
made of nanocrystalline materials”, Mech. Sci., 115, 574-585.

Shao, D., Hu, S., Wang, Q. and Pang, F. (2017), “Free vibration of
refined higher-order shear deformation composite laminated
beams with general boundary conditions”, Compos. Part B:
Eng., 108, 75-90.

Sharma, K. and Shukla, M. (2014), “Three-phase carbon fiber
amine functionalized carbon nanotubes epoxy composite:
processing, characterisation, and multiscale modeling”,
Nanomater., p. 2. DOI: http://dx.doi.org/10.1155/2014/837492

Vieira, R.F., Virtuoso, F.B.E. and Pereira, E.B.R. (2017),
“Buckling of thin-walled structures through a higher order beam
model”, Comput. Struct., 180, 104-116.

Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M.
(2012), “Free vibration analysis of layered functionally graded
beams with experimental validation”, J. Mater. Des., 36, 182-
190.

Xu, X., Han, Q. and Chu, F. (2017), “Nonlinear vibration of a
rotating cantilever beam in a surrounding magnetic field”, Int. J.
Non-Linear Mech., 95, 59-72.

Yang, L., Fan, T.,, Yang, L., Han, X. and Chen, Z. (2017),
“Bending of functionally graded nanobeams incorporating
surface effects based on Timoshenko beam model”, Theor.
Appl. Mech. Lett., 7(3), 152-158.

Zamani, H.A., Bodaghi, M., Aghdam, M.M. and Salehi, M.
(2014), “Accurate damping analysis of viscoelastic composite
beams and plates on suppressive foundation”, J. Compos.
Mater., 49, 2187-2202.

Zhang, Z.J., Han, B., Zhang, Q.C. and Jin, F. (2017), “Free
vibration analysis of sandwich beams with honeycomb-
corrugation hybrid cores”, Compos. Struct., 171, 335-344.

Zhong, Y., Wu, G., Ren, H. and Jiang, Z. (2017), “Bending
properties evaluation of newly designed reinforced bamboo
scrimber composite beams”, Constr. Build. Mater., 143, 61-70.

Zhu, X., Wang, Y. and Dai, H.H. (2017), “Buckling analysis of
Euler-Bernoulli beams using Eringen’s two-phase nonlocal



Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test... 421

Appendix A
By substituting the Egs. (29), (32) and (33) in the

Hamilton’s principle, the equations of the motion for the
nanocomposite beam are completely defined in Appendix
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