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1. Introduction 

 

Optimization is widely used in civil and mechanical 

engineering, particularly in reinforced concrete (RC) 
structures (Aghaee et al. 2014, Fanaie et al. 2016, Madadi 

et al. 2018, Nasrollahi et al. 2018, Paknahad et al. 2018). 

RC optimization is influenced by structural criteria to 

estimate the structural capability against external forces 

with the goal of minimizing manufacturing and construction 

costs. To date, optimization process in the field of 

reinforced concrete beams has been widely performed using 

various types of methods such as metaheuristic optimizers 

(Shariati et al. 2010, Fanaie et al. 2012, Toghroli et al. 

2014, Awal et al. 2015, Kaveh and Shokohi 2015, Safa et 

al. 2016b, Shah et al. 2016, Korouzhdeh et al. 2017, 

Heydari and Shariati 2018), principal stress lines (Li and 

Chen 2010), strut and tie modelling (Chakrabarty 1992, 

Chetchotisak et al. 2014, Chae and Yun 2015, Long and Lee 

2015, Ardalan et al. 2017, Farzampour 2017, Joshaghani et 

al. 2017, Bahadori and Ghassemieh 2016), geometric 

design optimization (Sharafi et al. 2012), and artificial 

neural networks (ANNs) (Toghroli  et  al .  2014, 

Mohammadhassani et al. 2015, Mansouri et al. 2016, Safa 

et al. 2016a, b, Toghroli et al. 2016, Karamshahi et al. 
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2017, Khorramian et al. 2017, Mansouri et al. 2017, Zandi 

and Toghroli 2018). 

Furthermore, empirical (El Debs et al. 2005) and 

analytical approaches (Balaguru 1980, Barros et al. 2005, 

Nigdeli and Bekdas 2013, Bazzaz et al. 2014, Eskandari 

and Madadi 2015, Khorami et al. 2017a, b, Khorramian et 

al. 2017, Andalib et al. 2018, Shariat et al. 2018a, Wei et al. 

2018) has been used to obtain the optimal resistance, mass 

and cost of the beam with simple supports and cantilever 

beams. For instance, Balaguru (1980) developed an 

algorithm to calculate the optimum dimensions and the 

amount of reinforcement for a doubly reinforced 

rectangular beam based on the ultimate strength design 

using rectangular stress blocks for concrete to determine 

whether the use of a doubly reinforced section is more 

economical than a singly reinforced section for the same 

ultimate load capacity (Ozturk et al. 2012, Rahmanian et al. 

2014). However, it can be noticed that the optimization of 

RC beams should be considered as a nonlinear problem, 

where the presence of discrete and integer variables along 

with continuous variables increases the complexity of the 

optimization problem (Huedo et al. 2005). Therefore, 

efficient methods are better to be considered to solve this 

type of problems so that more accurate results can be 

anticipated. Lagrangian multiplier method (LMM) is 

revealed to be a capable approach in such engineering 

optimization problems (Fortin and Glowinski 2000, 

Bertsekas 2014). For instance, Barros et al. (2005) 

presented a model for the optimal design of RC beams by 
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Abstract.  This study conducts an optimization and sensitivity analysis on rectangular reinforced concrete (RC) beam using 

computational Lagrangian Multiplier Method (LMM) as programming optimization computer software. The analysis is 

conducted to obtain the minimum design cost for both singly and doubly RC beams according to the specifications of three 

regulations of American concrete institute (ACI), British regulation (BS), and Iranian concrete regulation (ICS). Moreover, a 

sensitivity analysis on cost is performed with respect to the effective parameters such as length, width, and depth of beam, and 

area of reinforcement. Accordingly, various curves are developed to be feasibly utilized in design of RC beams. Numerical 

examples are also represented to better illustrate the design steps. The results indicate that instead of complex optimization 

relationships, the LMM can be used to minimize the cost of singly and doubly reinforced beams with different boundary 

conditions. The results of the sensitivity analysis on LMM indicate that each regulation can provide the most optimal values at 

specific situations. Therefore, using the graphs proposed for different design conditions can effectively help the designer 

(without necessity of primary optimization knowledge) choose the best regulation and values of design parameters. 
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considering the stress–strain diagrams using Lagrangian 

multiplier method (LMM) and compared the results with 

other optimization models. They also developed the 

economic bending moment, the optimal area of steel and the 

optimal steel ratio between upper and lower steel for four 

different classes of concrete. 

Although there are different studies conducted on 

application of LMM in evaluation of engineering problems, 

there is still a significant need for effectively utilization of 

this method in investigation of RC beams in order to 

optimize various parameters affecting the design and cost of 

these structures. Sensitivity analysis is also established as 

an essential work to facilitate the decision making process 

in engineering problems (Ceranic and Fryer 2000, Shariat 

et al. 2018b), especially where different design regulations 

are available. Therefore, this study aims to perform an 

optimization and sensitivity analysis on the rectangular RC 

beams. Specifically, the minimum cost of design for both 

singly and doubly RC beams is obtained using LMM 

regarding to the specifications of three applicable 

regulations as ACI 318-14 (ACI 2014), British standard 

8110 (Standard 1985), and Iranian concrete regulation (ICS) 

(Tahouni 2005). In addition, a sensitivity analysis is 

conducted on the effective parameters such as length, width, 

and depth of RC beam, and area of reinforcement 

(Panjehpour et al. 2014). Further, various curves are 

developed that can be feasibly utilized in design of RC 

beams. Finally, numerical examples are represented 

according to the three regulations to better clarify the design 

steps. 

 

 

2. LMM principles based on ACI, BS, and ICS 
regulations 

 

The LLM is a numerical method which optimizes a 

multivariate formula under defined constraints. The area of 

LMM for constrained optimization confronted with a 

substantial transformation when the augmented Lagrangian 

functions and methods of multipliers were introduced by 

Hestenes and Powell (Bertsekas 2014). Later, various 

efforts were done for better understanding and improving 

the LMM properties. These efforts were further 

accompanied by the aids of fresh ideas based on exact 

 

 

penalty functions, resulting in a variety of fascinating 

methods utilizing Lagrange multiplier iterations to solve 

different optimization problems. 

In the LMM optimization, a multivariate objective 

function expressed as 
 

y = f x1, x2,… , xn  (1) 
 

Subjected to equality constraints of the form 
 

𝑔𝑖 x1, x2,… . , xm = 0  i = 1,2,… , m (2) 
 

Where n is the number of independent variables and m 

is the number of constraints; m must be less than n based on 

the problem. The following procedure can be applied to 

construct the unconstrained Lagrangian function L of the 

form 

L x1, x2,… , xn , λ1, λ2,… , λm  

= f x1, x2,… , xn +  λigi(x1, x2,… , xn )

m

i=1

 
(3) 

 

In order to solve the optimization issue, by taking the 

derivative of the function with respect to x and λ, the 

optimal values of x and λ are achieved 
 

   
 dL

dx k
=

df

dxk
+  λi

dgi

dxk
= 0,   

m

i=1

 (4) 

 

k = 1,2,… , n. (5) 
 

And 
 

dL

dxk
= gi = 0 , (6) 

 

i = 1,2,… , m. (7) 
 

Eqs. (8) and (9) are cost functions that need to be 

minimized: 

for a singly reinforced concrete beam 
 

L = Cc . b. d(1 + r) + Cs . ρ. b. d (8) 
 

for a doubly reinforced concrete beam 
 

L = Cc . b. d(1 + r) + Cs . (ρ + ρ′). b. d (9) 
 

 

Table 1 Ultimate design moment for all codes 

Code Beam Ultimate design moment Formula number 

BS 

Singly 

M = 0.87bd2fyρ(1 − 0.98
fy

fc
ρ) (Standard 1985) (12) 

ACI M = Asfy (d −
As fy

1.7fc b
) (ACI 2014) (13) 

ICS M = Asfy (d −
As fy

1.02fc b
) (Tahouni 2005) (14) 

BS 

Doubly 

M = 0.156bd2fc + bd2fc(0.87
fy

fc
ρ − 0.2)(1 − r) (Standard 1985) (15) 

ACI M = (Asdouble
− As

′ )fy (d −
ρfy

1.7fc
d) + As

′ fy d(1 − r) (ACI 2014) (16) 

ICS M = (Asdouble
− As

′ )fy (d −
ρfy

1.02fc
d) + As

′ fy d(1 − r)(Tahouni 2005) (17) 
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where Cs and Cc are the costs of steel and concrete per unit 

volume, ρ and ρ' are the tension and compression 

reinforcement ratios, b and d are the width and effective 

depth of the section, respectively, and r is the ratio of the 

reinforcement cover to the effective depth. Reinforced 

concrete beams of a rectangular section are primarily 

designed to resist the action of flexural bending, and both 

singly and doubly reinforced beams are classified in BS 

 

 

 

 

(Standard 1985), ACI (ACI 2014), and ICS (Tahouni 2005). 

To satisfy the desired flexural capacity, the functions of Eqs. 

(11) to (17), which are presented in Table 1, are considered 

as constraints on the main objective function. 

For all codes 
 

ρmin ≤ ρ ≤ ρmax  (10) 
 

q = Cs/Cc  (11) 

 

 

Table 2 Optimum reinforcement ratio, depth, and cost for BS code 

Code Beam Optimum conclusion Formula number 

BS 

Singly 

ρ
opt

=
1

q

1+r
+ 1.96

fy

fc

 (22) 

dopt =  
M

0.87 ρ
opt

b(1 − 0.98ρ
opt

fy

fc
)
 (23) 

Costopt =  qbdopt ρ
opt

+ bdopt (1 + r) CcL (24) 

Doubly 

ρ
opt

= 0.3445
fc

fy
− 0.3585

fc

fy

1

1 − r
+

1 + r

2q
 (25) 

dopt =  
M

fc  b(0.156 +  0.87ρ
opt

fy

fc
− 0.2 (1 − r)

 (26) 

Costopt =  qbdopt  2ρ
opt

− ρ
u
 + bdopt (1 + r) CcL (27) 

ρ
u

= 0.2314
fc

fy
  (28) 

 

Table 3 Optimum reinforcement ratio, depth, and cost for ACI code 

Code Beam Optimum solution Formula number 

ACI 

Singly 

ρ
opt

=
1

q

1+r
+

fy

0.85fc

 (29) 

dopt =  
M

 ρ
opt

fy b(1 − ρ
opt

fy

1.7fc
)
 (30) 

Costopt =  qbdopt ρ
opt

+ bdopt (1 + r) CcL (31) 

Doubly 

dopt =  
M

fc  b(ρ
u
 1 − ρ

opt

fy

1.7fc
 + ρ

opt
′ (1 − r)

 (32) 

ρ
opt
′ =

ρ
u

q 
ρu fy

0.425fc
−  3 + r  +  1 − r2 

2q(1 − r)
 

(33) 

Costopt =  qbdopt  ρ
u

+ 2ρ
opt
′  + bdopt (1 + r) Cc × L, (34) 

ρ
u

= 0.27
fc

fy
  (35) 
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3. Brief LMM formula for ACI, BS and ICS 
regulations 
 

According to the LMM, deriving the objective function 

represents the optimum reinforcement ratio and the 

optimum effective depth of RC beam on the basis of BS 

(Standard 1985), ACI (ACI 2014), and ICS (Tahouni 2005) 

regulations, which are presented in Tables 2, 3, and 4, 

respectively. For example, the procedure of calculation of 

LMM formula according to the ACI regulation for singly 

and doubly reinforcement beams is given below 

 

L ρ, R, λ =  ρq +  1 + t  R 

−λ[ρfy  1 −
ρfy

1.7 fc
 R2 − 1] 

(18) 

 

L ρ, R, λ =   ρu + 2ρ′ q +  1 + t  R 

−λ[[ρ 1 −
ρfy

1.7 fc
 +ρ′(1 − t)]R2 − 1/fy  

(19) 

 

R =  
b

M
 (20) 

 

t =
d′

d
 (21) 

 

By deriving from Eqs. (18) and (19) with respect to the 

three independent variables of ρ, R and λ, the optimal 

values of reinforcement ratio, depth, and cost are obtained, 

which are represented as Eqs. (29) to (42). 

By comparing the optimized solutions of singly and 

doubly reinforced beams for different values of the ratio of 

steel to concrete tension, we can identify the zones for a 

 
 

particular solution that give least-cost offers. By applying 

the boundary conditions of the reinforcement ratio and the 

equations obtained for the optimal reinforcement ratio for 

the three regulations, Eqs. (43) to (48) are defined toachieve 

a border point of singly and doubly reinforced beams with 

boundary conditions in accordance with the fixed data 

presented in Table 5. Over the defined range of the stress 

ratios (fy/fc) in Table 5, three distinct zones of optimum 

reinforcement ratios for all codes as well as the boundaries 

between these zones are depended on the values of the 

ratios q and r.  

Fig. 1 shows a graphical representation of these zones 

with q = 25 and r = 0.15. Zone 1 corresponds to a singly 
 

 

Table 5 Optimum boundary of beam 

Code Beam Optimum solution 
Formula 

number 

BS 

SRO 

fy

fc
= 0.422

q

1 + r
 (43) 

ACI 
fy

fc
= 0.396

q

1 + r
 (44) 

ICS 
fy

fc
= 0.57

q

1 + r
 (45) 

BS 

DRO 

fy

fc
= 2(

0.3585

1 − r
− 0.1135)

q

1 + r
 (46) 

ACI 
fy

fc
= 0.27

q(2.37 + r)

1 − r2
 (47) 

ICS 
fy

fc
= 0.27

q(1.94 + r)

1 − r2
 (48) 

 

 

 

Table 4 Optimum reinforcement ratio, depth, and cost for ICS code 

Code Beam Optimum solution Formula number 

ICS 

Singly 

ρopt =
1

q

1+r
+

fy

0.51fc

 (36) 

dopt =  
M

 ρopt fy b(1 − ρopt
fy

1.02fc
)
 (37) 

Costopt =  qbdopt ρopt + bdopt (1 + r) CcL (38) 

Doubly 

dopt =  
M

fc  b(ρu  1 − ρopt
fy

1.02fc
 + ρopt

′ (1 − r)
 (39) 

ρopt
′ =

ρuq 
ρu fy

0.255fc
−  3 + r  +  1 − r2 

2q(1 − r)
 

(40) 

Costopt =  qbdopt  ρu + 2ρopt
′  + bdopt (1 + r) CcL, (41) 

ρu = 0.27
fc

fy
  (42) 
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Fig. 1 Optimum reinforcement ratio for q = 25 and r = 0.15 

 

 

Table 6 Optimum zone points 

Code Beam Optimum solution 

BS 

SRO 

fy

fc
= 0.422

25

1 + 0.15
= 9.17 

ACI 
fy

fc
= 0.396

25

1 + 0.15
= 8.6 

ICS 
fy

fc
= 0.57

25

1 + 0.15
= 12.39 

BS 

DRO 

fy

fc
= 2  

0.3585

1 − r
− 0.1135 

25

1 + r
= 13.4 

ACI 
fy

fc
= 0.27

25 × (2.37 + r)

1 − r2
= 17.4 

ICS 
fy

fc
= 0.27

25 × (1.94 + r)

1 − r2
= 14.43 

 

 

 

reinforced section with the ratio of fy/fc between its lower 

bound value of 5 and the point of intersection of the 

boundary curve at 9.17, 8.6, and 12.39 for the BS, ACI, and 

ICS regulations, respectively. 

Zone 2 corresponds to a singly reinforced section with 

its optimum reinforcement ratio being set at the boundary 

value ρb for the range of fy/fc from 9.17 to 12.39, 8.6 to 

13.4, and 12.39 to 26.17 for the BS, ACI, and ICS 

regulations, respectively. Zone 3 corresponds to a doubly 

reinforced section with the ratio of fy/fc between the point of 

intersection of the boundary curve at 13.4, 29.07, and 26.17 

to the upper bound value of 25, 35, and 45 for the BS, ACI, 

and ICS regulations, respectively. The calculations of the 

optimum solutions are presented in Table 6. 

According to Fig. 1, by increasing the fy/fc ratio in 

singly reinforced beams (zones 1 and 2), the optimum ratio 

of reinforcements is decreased, but in doubly reinforced 

beams (zone 3), the curves have an increasing trend by 

increasing the fy/fc ratio. Similar results are also reported in 

the study of Ceranic and Fryer (2000) who indicated that in 

singly reinforced beams an increase in the material cost 

ratio leads to a corresponding reduction in the reinforce- 

 

Fig. 2 Optimum solution versus q for r = 0.15 

 

 

ment ratio. This reduction, however, can be compensated by 

an increase in the effective depth of the section while 

subjecting to a similar loading. Moreover, it can be 

observed that at zones 1 and 3, the BS and ICS regulations 

reveal similar behaviour, while at zone 2, the BS regulation 

provides lower optimum ratio of reinforcement. On the 

other hand, the ACI regulation is accompanied by the 

lowest optimum ratio of reinforcement at zone 3. Therefore, 

it can be concluded that the BS and ICS regulations can be 

better for the singly reinforced design than the ACI 

regulation, while the ACI regulation is better for the doubly 

reinforced design. Also, for singly reinforced design with 

boundary conditions, the BS regulation can be the best 

regulation, resulting in lower cost of the RC beam. The 

reason of these facts can be associated with a large constant 

coefficient of the BS and ICS regulations. The problem will 

be arised when the safety of the BS and ICS regulations at a 

constant fy/fc ratio for singly and doubly reinforced beam 

design is greater and lower than that of the ACI regulation, 

respectively. This is in agreement with results previous 
studies (Ceranic and Fryer 2000, Barros et al. 2005). 

The effect of varying the ratio of steel cost to concrete 

cost (q) on the stress ratio for all regulations for the singly 

and doubly reinforced concrete beams is depicted in Fig. 2, 

which can suggest an optimal solution and assist the 

designer. If the designer knows the price ratio of steel to 

concrete, parameter r, and the stress ratio, the type of beam 

(singly or doubly reinforced) that should be used can be 

determined under the minimum cost conditions. In this plot, 

these limits are shown for the BS, ACI, and ICS regulations. 

The above zone of these limits is the optimal section of a 

doubly reinforced section, the zone below this limit is the 

optimal section of a singly reinforced section, and within 

these limits, the optimized section of a singly reinforced 

section or boundary reinforcement can be found. 

According to Fig. 2, for material stress ratios beyond 30, 

which generally happens in Iran, the singly reinforced beam 

design is preferred, but because of the increases of depth of 

beam and doubts about the architectural design, it is 

worthwhile to find the percentage of increase in the cost of 

using double reinforced beams, which are used to increase 

the maximum bending capacity of the RC beam. 
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Fig. 3 Analysis of depth and reinforcement area versus cost 

 

 

4. Verifying LMM and standard methods 
 

To verify the Lagrange solution by the above assump-

tion, which always happens for the singly reinforced beam, 

it is better to compare regulation designs. An example is 

analyzed and compared, illustrating situations where the 

optimum solution is either a singly or doubly reinforced 

section. A rectangular beam with the width b = 300 mm is 

subjected to the maximum bending moment of 185 kN∙m. 

The material cost ratio q is set at 35, which depends on the 

costs of concrete (Cc) and steel (Cs) as 30 $/m3 and 1050 

$/m3; also, the characteristic strengths of steel and concrete 

are 240 and 30 N/mm2, respectively. An analysis of depth 

and reinforcement area versus cost is illustrated in Fig. 3. 

It can be observed that the optimum reinforced area as 

well as the minimum cost of all regulations for the singly 

reinforced beams and that, by reducing the depth of the 

beam and increasing the reinforcement area, the cost of the 

beam is reduced. Then, after entering into the doubly 

reinforced beam condition, the beam costs increase. In the 

other words, for any cost, there are two areas and depths as 

well, which are the optimum conditions. For example, for 

the cost of 7.03 $ under the ACI regulation there are 333, 

594, and 38 and 16 depths (mm) and total reinforced (cm2) 

 

 

are respectively. To specify the zone of the doubly and 

singly reinforced beams, Table 7 shows the zone areas as 

well as the optimum depths. By this analysis, it is clear that 

those points are belonging to the singly reinforced beam. 

This means that, in order to choose the best economical 

section under a certain moment and initial data of the 

problem, only the beams with tensile reinforcement should 

be selected. 

To make better use of optimum depth, the cost and area 

 

 

 
 

 
 

 

Fig. 4 Contour area of reinforcement versus cost for 

different depths of beams 

 

 

Table 7 Solution of boundary reinforced beam 

Code Beam calculation Boundary solution 

BS 

Boundary 

reinforced 

beam 

185 × 106 = 0.87 × 300 × d2 × 240 × ρ
𝑢

(1 − 0.98
240

25
ρ
𝑢

) 

ρ
u

= 0.2314
fc

fy
= 0.0241 

d = 398 mm 

As = 2878 mm2 

ACI 

185 × 106 = 300 × ρ
u

× d × 240(d −
ρ

u
× d × 240

1.7fc
) 

ρ
u

= 0.27
fc

fy
= 0.02813 

d = 347 mm 

As = 2931 mm2 

ICS 

185 × 106 = 300 × ρ
u

× d × 240(d −
ρ

u
× d × 240

1.02fc
) 

ρ
u

= 0.27
fc

fy
= 0.02813 

d = 371 mm 

As = 3134 mm2 
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reinforced for contour of the optimum depth are depicted in 

Fig. 4. According to this contour, an increase in the cost 

from 7 $ to 13 $ significantly increased the area reinforced. 

However, at a fixed cost, there are some areas reinforced, 

which depend on the depth. For example, when the cost is 

fixed at 8$ there are five reinforced content, which can be 

selected by the depths of the beam. In other words, in any 

design the known depths and total area reinforced can be 

used to find the optimum cost for different regulations. The 

LMM and regulation methods are defined above, but for 

comparison, a typical example is analyzed and compared 

for different regulations, illustrating situations where the 

optimum solution is either a singly or doubly reinforced 

section. 

The optimum solution is compared with the regulation 

design procedure specified in the BS, ACI, and ICS 

regulations by LMM. The obtained solutions are presented 

in Table 8. This table shows that the solutions obtained by 

the LMM are comparable with those of the manual method. 

This is in agreement with study of Adamu and Karihaloo 

(1994), who compared the continuum-type optimally 

criteria (COC) with discretized continuum-type optimally 

criteria (DCOC) using augmented Lagrangian method to 

obtain the minimum cost design of RC beams, and the 

results confirmed the effectiveness of LMM in such 

optimization problems. 

For better understanding the results, numerical examples 

(based on data released in (Ceranic and Fryer 2000)) are 

conducted and compared according to specifications of the 

three regulations. The results have shown that the all-

MATLAB code of LMM is correct and can be extended for 

sensitivity analysis of all regulations as well as various 

parameters, which have not been done previously. 

 

 

5. Numerical example 
 

In this section, assuming a constant width (b = 0.26 m), 

other effective parameters are evaluated and their optimum 

design values are calculated for a specific bending moment 

applied to cross section of RC beam. Specifically, 

significant parameters of structural design of beam like 

effective depth and area of reinforcement are obtained for 

singly, boundary and doubly RC beam according to various 

regulation constraints (Figs. 5-7). Further, in three examples 

different assumptions were considered to make the findings 

more obvious, where the optimum solutions for effective 

depth and area of reinforcement are obtained from the 

related figures. 

 

 

 

Fig. 5 Singly reinforced optimum solution 
 

 

 

Fig. 6 Boundary reinforced optimum solution 
 

 

 

Fig. 7 Doubly reinforced optimum solution 

Table 8 Optimum solution from Lagrange and manual method 

Beam Code 
Asopt

 mm2  

 LMM  

dopt  mm  

 LMM  

Costopt  
$

m
  

 LMM  

Asopt
 

 mm2  

dopt  

 mm  
Costopt  

$

m
  

Single 

BS 2635 405 6.41 2622 406 6.08 

ACI 2704 359 6.07 2415 357 5.74 

ICS 2448 413 6.29 2235 403 5.97 
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5.1 Design example 1 
 

A beam with a width of b = 260 mm is subjected to the 

maximum bending moment of 185 kN.m. The ratio r is 

taken as 0.15, material cost ratio q as 75 and Cc as 50 $/m3. 

Characteristic strength of concrete and steel are 30 and 460 

N/mm2, respectively. 

 

5.1.1 BS solution 
From Fig. 2, the optimum solution is shown to be a 

singly reinforced section (Ceranic and Fryer 2000). 

From Eqs. (22), (23), and (24) 
 

ρopt = 0.0105 

dopt = 448 mm 

Costopt = 0.2256Cc = 11.28 $/m 

 

5.1.2 ACI solution 
From Fig. 2, the optimum solution is shown to be a 

singly reinforced section. 

From Eqs. (29), (30), and (31) 

 

 

 

 

 

 

ρopt = 0.012 

dopt = 380.1 mm 

Costopt = 0.2025Cc = 10.12 $/m 

 

5.1.3 ICS solution 
From Fig. 2, the optimum solution is shown to be a 

singly reinforced section. 

From Eqs. (36), (37), and (38) 
 

ρopt = 0.0104 

dopt = 418 mm 

Costopt = 0.2092Cc = 10.46 $/m 

 

5.2 Design example 2 
 

The same design parameter values are used as in the 

previous example with the following exceptions. The 

material cost ratio q is 45, fc = 25 N/mm2. The results are 

presented in Fig. 6. 

 

 

 

 

 

Table 9 Optimum concrete and steel cost ratios for BS code 

Code Beam Material cost ratio Formula number 

BS 

Singly 

Cc

Ct
=

1

1 +
qρopt

(1+r)

 (51) 

Cs

Ct
=

1

1 +
1+r

qρopt

 (52) 

Doubly 

Cc

Ct
=

1

1 + q
(2ρopt −0.231

fc
fy

)

(1+r)

 
(53) 

Cs

Ct
=

2ρ
opt

− 0.231
fc

fy

2ρ
opt

− 0.231
fc

fy
+

(1+r)

q

 (54) 

 

Table 10 Optimum concrete and steel cost ratios for ACI code 

Code Beam Material cost ratio Formula number 

ACI 

Singly 

Cc

Ct
=

1

1 + qρ
opt

 (55) 

Cs

Ct
=

1

1 +
1

qρopt

 (56) 

Doubly 

Cc

Ct
=

1

1 + q
(2ρopt +0.27

fc
fy

)

(1+r)

 
(57) 

Cs

Ct
=

2ρ
opt

+ 0.27
fc

fy

2ρ
opt

+ 0.27
fc

fy
+

(1+r)

q

 (58) 
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5.3 Design example 3 
 

The design parameter values are as those specified in 

example 1 with the exception that the material ratio q is 25. 

Fig. 7 indicates that the optimum solution is a doubly 

reinforced section. 

Comparison of the results obtained for these examples with 

the results of Ceranic and Fryer (2000), it can be stated that 

the results are close to each other, verifying the model 

presented in this study for comparison of different 

regulations. 

 

 

6. Sensitivity analysis 
 

Sensitivity analysis is a technique which is used to 

determine how different values of an independent variable 

will impact a particular dependent variable under a given 

set of assumptions. This technique is used within specific 

boundaries that will depend on one or more input variables, 

such as the effect that changes in interest rates will have on 

a bond's price. Sensitivity analysis is a way to predict the 

outcome of a decision if a situation turns out to be different 

compared to the key prediction(s). The cost factors Cc/Ct 

and Cs/Ct for optimal solution conditions for unit length are 

introduced and presented in Tables 9-11 for the three 

regulations, where Cc, Cs, and Ct are the costs of concrete, 

reinforcement, and total materials, respectively. 

Three distinct zones have to be defined, depending on 

whether the beam has a singly reinforced, doubly 

reinforced, or boundary reinforcement ratio as the optimum 

solution. Because of this, the ratio boundary given by Eq. 

(28) must be equal to the optimum ratios given by Eqs. (22) 

and (25) that specify the lower and upper bound values of q 

for singly and doubly reinforced sections, respectively, for 

the BS regulation; in a similar way, the results can be 

obtained for other regulations and are given in Table 12. 

The associated curves according to Eqs. (51)-(62) are 

depicted in Fig. 8. The assumption of this figure is that 

fy = 240 MPa, fc = 30 MPa, and r = 0.15, but q is varied 

in ACI and ICS regulations, where a beam is doubly 

reinforced and the boundary section initial slope of the 

curve increases in the cost ratio of steel to concrete, the 

 

 

Table 12 Boundary solution for beam section 

Code Beam Boundary solution (q) 

BS 

SRO 

21.8 

ACI 23.23 

ICS 16.14 

BS 

DRO 

15.09 

ACI 11.5 

ICS 13.85 
 

 

 

 

Fig. 8 Percentage of material costs (fy = 240 MPa, 

fc = 30 MPa, r = 0.15) 

 

 

share of the concrete and steel costs increase and decrease, 

respectively, and in the singly reinforced section, these 

trends are reversed. 

The results indicate that the ACI regulation is better than 

the other regulations because the share of the cost of 

concrete and steel are closer to each other than in the other 

regulations. By increases of q, especially where the beam is 

doubly reinforced, the share of concrete and steel costs 

increase and then decrease; when the beam is singly 

reinforced or a boundary section, this share decreased, and 

ACI performed better for various q than the other 

regulations. 

Fig. 9 depicts the sensitivity analysis of the optimum 

Table 11 Optimum concrete and steel cost ratios for ICS code 

Code Beam Material cost ratio Formula number 

ICS 

Singly 

Cc

Ct
=

1

1 + qρopt
 (59) 

Cs

Ct
=

1

1 +
1

qρopt

 (60) 

Doubly 

Cc

Ct
=

1

1 + q
(2ρopt +0.27

fc
fy

)

(1+r)

 
(61) 

Cs

Ct
=

2ρopt + 0.27
fc

fy

2ρopt + 0.27
fc

fy
+

(1+r)

q

 (62) 
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Fig. 9 Sensitivity analysis of optimum reinforcement 

ratio and stress ratio versus optimum cost 

 

 
reinforcement ratio and stress ratio versus the optimum 

cost. As seen, increasing the strength of steels in a beam, 

leads to the decreased content of consumed steel, and 

because of the higher cost of steel compared to concrete, the 

total cost of design is decreased. Under constant conditions 

and equal stress ratios for the design of the desired beams 

according to the three regulations, the ICS regulation 

provides the lowest costs. According to the blue curve of 

the optimum ratio of reinforcement, initially the reductions 

in this proportion lead to lower costs and when the beam is 

closer to the conditions of doubly reinforced, the slope is 

increased, and the cost reduction growth is reduced further. 

When the beam is placed in doubly reinforced mode, 

initially the curve is too steep and increasing the 

reinforcements will not help much to reduce costs. But at 

higher reinforcement ratios, the slope decreases. For a 

constant reinforcement ratio, a comparison of the three 

regulations shows that the ACI regulation gives the most 

optimal results for singly reinforced sections, and the BS 

regulation gives the most optimal results for doubly 

reinforced sections. Also the intersection of the blue and red 

 

 

 

Fig. 10 Sensitivity analysis of ratio of optimum 

reinforcement and depth versus optimum cost 

curves for each regulation shows the minimum costs in the 

specified section for this stress. 

As shown in Fig. 10, the decrease in optimum depth 

leads to a cost reduction for both singly and doubly 

reinforced beams, but the slope of this curve in the doubly 

reinforced section is more than that for the singly reinforced 

section for a specified range of cost. 

In an overview of Fig. 10, we can understand that in the 

beams with only tensile reinforcements, by reducing the 

depth of the beam and the optimum reinforcement ratio, the 

total cost is lowered, and in the boundary between singly 

and doubly reinforced beams, it is accompanied with a 

sudden decrease of the optimum reinforcement ratio and 

increased depth of the beam. In doubly reinforced section, 

cost reduction corresponds to a decreased depth of the 

beam, increased slope, and higher optimal reinforcement 

ratio. 

To better use the situations in Figs. 9 and 10, both are 

depicted in Fig. 11, showing the relationship of the stress 

ratio, optimum area of reinforcement, and the optimum cost 

of the beam at constant amounts of m = 222 kN.m, q = 25 

and r = 0.15. The crossing of contours shows where the 
 

 

 

Fig. 11 Contour of optimum cost changes with different 

optimum areas of reinforcement of the beam and 

stress ratios 
 

 

 

Fig. 12 Optimum depth changes with different optimum 

area of reinforcement and cost of beam 
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Fig. 13 Sensitivity analysis of length of spans and stress 

ratio versus optimum depth 

 

 

optimal reinforcement and depth values are a certain value 

and which of the regulations has the minimized costs. 

Comparing each group of three contours with a constant 

design condition (including one contour each regulation) 

indicates that the ACI regulation typically provides the 

lowest optimum cost. For instance, at fy/fc = 8 and area of 

optimum reinforcement = 42 (cm2), the optimum cost 

obtained by BS, ACI, and ISC regulations are 7, 7.1, and 

6.6 ($/m), respectively, confirming the priority of ACI 

regulation in order to achieve the minimum design cost. 

Fig. 12 shows the relationship of the stress ratio, the 

optimum depth, and the optimal ratio of reinforcement at 

constant amounts of m = 222 kN.m, q = 25 and r = 0.15. By 

considering the fy/fc ratio and the optimum depth of beam, 

the optimum ratio of reinforcement can be obtained 

according to each regulation. It can be observed that at most 

cases the BS regulation provides lower ration of 

reinforcement, resulting in lower cost of the RC beam. For 

instance, for fy/fc = 26 and optimum depth = 39 cm, the 

optimum ratio of reinforcement is 3.35, 3.05, and 3.09% for 

ACI, BS, and ICS regulations, respectively. On the other 

hand, since the practical limitations in some cases may not 

allow the designer to choose high depths, utilization of the 

graphs of Fig. 12 can be valuable to obtain the optimum 

ratio of reinforcement at the desired optimum depth. 

Fig. 13 represents the sensitivity of optimum depth to 

the changes of length of spans and stress ratio. As seen, in 

beams under a linearly distributed load, the changes along 

the beam span are quite directly associated with the 

optimum depth changes in beams, so that the span-to–

optimal depth ratio is constant. Also, according to the left 

vertical axis, by increasing the stress ratios above 15, the 

slope of the curve increases. This means that the change to 

the optimal depth is reduced. In other words, the use of 

high-strength concrete or steel leads to increased and 

decreased depth changes, respectively. 

Fig. 14 represents the sensitivity of optimum cost to the 

changes of length of spans and optimum depth. As shown, 

in these beams which are under linearly distributed loads, 

the final optimum cost of beam has a nonlinear relationship 

with the beam length. In other words, from static point of 

view, it can be mentioned that by increasing the length 

twice, the final optimal cost of the beam increases four 

 

Fig. 14 Sensitivity analysis of length of span and optimum 

depth versus optimum cost 

 

 

 

Fig. 15 Sensitivity analysis of optimum cost and depth 

versus width of beam 

 

 

times. 

Fig. 15 represents the sensitivity of beam width to the 

changes optimum depth and optimum cost. It can be 

observed that the width of a beam can have a large impact 

on the final cost of the beam. Thus, in accordance with Eqs. 

(34) and (36), the final cost is directly proportional to the 

square root of the optimal beam width; the optimal depth is 

inversely proportional to the square root of the beam width; 

and by reducing the width of the beam, beam depth 

increases. 

Fig. 16 represents the sensitivity of ratio of optimum 

reinforcement to the variations of q and fy/fc. Accordingly, 

one can see that, for the beams of either only tensile or 

compressive and tensile reinforcements, with the increase of 

the cost of steel to concrete, there is a reduction of the 

reinforcement, and instead, under constant loading 

conditions, this reduction increases the optimized depth of 

the beam. On the right vertical axis, the curve consists of 

two distinct categories of singly and doubly reinforced 

beams. For the curve associated with the beam with only 

tensile reinforcement that is below the curve fracture, by 
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Fig. 16 Sensitivity analysis of cost ratio and stress ratio 

versus ratio of optimum reinforcement 
 

 

increasing the stress ratio, we are faced with a decreased 

optimum ratio of reinforcements. After this amount, the 

greater the increase in the costs ratio, the greater the 

increase in the optimum ratio of reinforcements. However, 

by a comparison of the curves for the three regulations for a 

specified proportion of the costs, the ICS and BS 

regulations give more optimal values for the reinforcement 

ratio. In other words, for singly reinforced sections, for a 

certain ratio of costs, the BS regulation gives the most 

optimal results, whereas for higher values in doubly 

reinforced sections, the ACI and ICS regulations give more 

optimal results. 
 

 

7. Conclusions 
 

This study presents an optimization and sensitivity 

analysis on rectangular reinforced concrete (RC) beam 

using LMM to obtain the minimum design cost for both 

singly and doubly RC beams based on the specifications of 

the ACI, BS, and ICS regulations. The concluding points of 

this study can be summarized as follows: 
 

 The results indicate that instead of complex 

optimization relationships, the LMM can be used to 

optimize and minimize the cost of singly and doubly 

reinforced beams under flexural bending moment 

with different boundary conditions. 

 The minimum cost of singly RC beams is directly 

related to the optimum ratio of reinforcements, but it 

is inversely proportional to the doubly reinforced 

beams. 

 The minimum cost of RC beams, whether singly or 

doubly reinforced, is directly related to the optimal 

depth. 

 The sensitivity of lowering the depth to cost 

reduction for doubly reinforced beams is more than 

that for singly reinforced beams. 

 The overall results from the sensitivity analysis on 

LMM indicate that each regulation can provide the 

most optimal values at specific situations. Therefore, 

using the graphs proposed for different design 

conditions can effectively help the designer (without 

necessity of primary optimization knowledge) 

choose the best regulation and values of design 

parameters, leading to the minimum cost of RC 

beam. 

 These graphs can also be utilized for novel materials 

and composites to precisely determine the effective 

parameters on cost function of these materials at 

each ACI, BS, and ICS regulations. 
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