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1. Introduction 

 

With the development in construction techniques of 

building structures, increasingly innovative large-span 

bridges, large-span spatial structures (Xiong et al. 2017) 

and super high-rise structures (Luo et al. 2015) have 

appeared. In order to satisfy the economy and security 

requirements of these structures, steel-concrete composite 

members have been proposed. Steel-concrete composite 

members can appropriately utilise the material properties of 

the steel and concrete (Xian et al. 2017, Xiong et al. 2016). 

Therefore, numerous steel-concrete composite joints (Jiang 

et al. 2017), columns (Huang et al. 2016, Zhang et al. 

2018), beams (Ding et al. 2018) and shear walls 

(Elmatzoglou and Avdelas 2017) have been designed. As an 

important component of composite structures, the steel-

concrete composite beam has become increasingly popular, 

with a large number of studies having reported on its 

flexural behaviour (Pathirana et al. 2016, Liu et al. 2017), 

dynamic behaviour (Henderson et al. 2015), reinforcement 

methods (Subhani et al. 2018, El-Zohairy et al. 2017, 

Karam et al. 2017) and numerical simulation (Katwal et al. 

2018, Lou et al. 2016, Goncalves 2018). Following the 

research on traditional steel-concrete composite beams, the 

innovative steel-concrete composite truss beam (SCCTB), 

which is commonly composed of a steel truss and concrete 

slab, has received significant attention in recent years. The 

SCCTB offers numerous advantages, such as steel savings, 
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favourable load-bearing behaviour, and high space 

utilisation. As a result, the SCCTB has been applied 

extensively to large-span bridges, spatial structures and 

high-rise structures globally, including the Kleve-Emmerich 

Bridge (Germany), Tsing Ma Bridge (Hong Kong, China), 

Wuxi Grand Theatre (China) and Willis Tower (America). 

The composite action of the SCCTB is achieved by 

connecting the steel truss and concrete slab with shear 

connectors. In fact, the shear connectors could be deformed 

with a finite stiffness, resulting in the development of 

interfacial shear slip between the steel truss and concrete 

slab (Liu et al. 2016). This interfacial shear slip may have a 

significant influence on the SCCTB mechanical behaviour. 

Therefore, progress has been made by various researchers 

in understanding the SCCTB connection behaviour. Yin et 

al. (2017) investigated the SCCTB connection behaviour 

for bridge applications by means of an experimental study 

and finite element analysis, and found that the connection 

exhibits an excellent load-bearing capacity, with sufficient 

safety factors and satisfactory ductility. According to 

experimental and numerical results, Machacek and Cudejko 

(2013) and Machacek and Charvat (2017) presented the 

longitudinal shear distribution along an interface between 

the steel and concrete parts of the SCCTB, from the elastic 

phase until plastic collapse, and observed that the nonlinear 

distribution of the longitudinal shear depends significantly 

on the rigidity of the shear connection and densification of 

the shear connectors above the truss nodes. Lai et al. (2017) 

developed a finite beam element method program for the 

SCCTB natural vibration frequency and indicated that shear 

deformation has an important effect on the SCCTB high-

order natural vibration frequency. Jiang et al. (2018) 
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proposed an analytical method for calculating the SCCTB 

natural frequency, and found that the influence of the 

interface slip stiffness and shear deformation on the SCCTB 

natural frequency could not be neglected. 

Hence, to obtain the precise deflection of the SCCTB, 

the partial shear interaction of the shear connectors should 

be considered. In recent years, numerous researchers have 

proposed various methods for calculating the deflection of 

the steel-concrete composite beam. Amadio et al. (2012) 

investigated the steel-concrete composite beam deflection 

using accurate finite element models, and proposed a simple 

design criterion that considers the serviceability limit state 

and connection flexibility. Taking into account the shear lag 

effect of the steel-concrete composite deck, Zhu et al. 

(2015) proposed prediction formulae for the effective width 

and applied a simplified analytical method of a composite 

continuous I-girder deck for the design process, based on a 

general beam element model. Based on higher-order beam 

theory, Wen et al. (2018) developed an exact analytical 

model for accurate prediction of the flexural response of 

two-layered composite beams with partial shear 

interactions. Song et al. (2018) reported on a residual 

deflection analysis in the negative moment regions of steel-

concrete composite beams, and provided fatigue design 

recommendations. Uddin et al. (2018) presented a 

geometrically nonlinear inelastic analysis of steel-concrete 

composite beams with partial interaction using higher-order 

beam theory. However, available design methods for the 

SCCTB deflection are limited, resulting in significant 

obstruction of its application and development. 

SCCTBs are generally used in engineering structures 

with larger span-to-height ratios. In order to satisfy the 

serviceability limit state, a practical design method for the 

SCCTB deflection is required. Studs belonging to the 

flexible shear connectors are used extensively in the 

SCCTB. Therefore, the shear slip effect corresponding to 

the shear stiffness and uplift effect corresponding to the 

axial stiffness of the stub connectors should be considered. 

Moreover, the shear effect of the steel truss may have a 

significant influence on the SCCTB deflection. This study 

investigated the influence of the shear slip, uplift and shear 

effects on the SCCTB deflection at the serviceability limit 

state. Considering these effects, practical formulae for 

estimating the SCCTB deflection under five different 

loading types were developed. Moreover, in order to verify 

the reliability of the proposed formulae, flexural tests were 

carried out on three SCCTB specimens. 

 

 

2. Theoretical derivation of the uplift force 
 

2.1 Basic assumptions 
 

The steel truss and concrete slab are two different 

composite parts of the SCCTB. As the SCCTB is loaded, a 

deflection difference and slip deformation appear between 

the steel truss and concrete slab, leading to the generation of 

a vertical uplift force and horizontal shear force. Numerous 

researchers have discussed the shear force (Wen et al. 

2018). In this section, the formulae for estimating the uplift 

force are derived. Prior to providing the theoretical 

derivations, three basic assumptions are made, as follows. 
 

(1) The force between the steel truss and concrete slab 

is fully transferred by the stud connectors. 

Therefore, the compressive force and friction of the 

interface between the steel truss and concrete slab 

are ignored. 

(2) The stud connectors can be replaced by continuous 

elastic material. Thereby, the vertical uplift and 

horizontal shear forces are indirectly proportional to 

the deflection difference and slip deformation 

between the steel truss and concrete slab, 

respectively. Moreover, the concentrated uplift force 

is replaced by the distributed uplift force.  

(3) For the serviceability limit state, the steel truss and 

concrete slab remain in the elastic phase. As a 

result, they assumed as two types of continuous 

elastic materials. When the SCCTB operates at the 

serviceability limit state, the steel truss and concrete 

slab obey the plane cross-section assumption and 

basic bending theory; however, their curvatures 

differ. 
 

2.2 Theoretical formulae of the uplift force 
 

The uplift force of the simply supported SCCTB 

considering five different loading types was derived based 

on the differential and equilibrium equations. The five 

loading types included a concentrated load at the middle of 

the beam span P1, two concentrated loads at the 1/3 beam 

span P2, a uniformly distributed load q, a concentrated load 

at any position of the beam span P3 and two concentrated 

loads at a symmetrical position of the beam span P4, as 

illustrated in Fig. 1. A finite length dx of the simply 

supported SCCTB, and its corresponding deformation and 

internal force, are plotted in Fig. 2, where b1 is the distance 

 

 

 

Fig. 1 Five different loading types 
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from the centroidal axis to the concrete slab bottom; b2 is 

the distance from the centroidal axis to the concrete slab 

top; h1 is the distance from the centroidal axis to the steel 

truss top; h2 is the distance from the centroidal axis to the 

steel truss bottom; Nc is the axial force applied to the 

concrete slab; Ns is the axial force applied to the steel truss; 

Mc is the bending moment acting on the concrete slab; Ms is 

the bending moment acting on the steel truss; Vc is the shear 

force applied to the concrete slab; Vs is the shear force 

applied to the steel truss; r is the distributed uplift force 

applied to the continuous elastic material used to replace the 

stud connectors; u is the distributed shear force applied to 

the continuous elastic material used to replace the stud 

connectors; S is the slip deformation between the steel truss 

and concrete slab; and w is the deflection difference 

between the steel truss and concrete slab. 
 

2.2.1 A concentrated load at the middle of the 
beam span 

The detailed derivation for the uplift force of the simply 

supported SCCTB subjected to a concentrated load at the 

middle of the beam span P1is expressed as follows. 

Assumption (2) yields 
 

( )v s c vR pr k y y k w   
 (1) 

 

( )v
s c

k
r y y

p
 

 
(2) 

 

where R is the uplift force applied to a single stud 

connector; p is the longitudinal spacing of the stud 

connectors; kv is the axial stiffness of the stub connectors; ys 

is the deflection of the steel truss; and yc is the deflection of 

the concrete slab. 

The second derivative of Eq. (2) is 
 

2 22

2 2 2
( )v s ck d y d yd r

dx p dx dx
 

 
(3) 

 

According to the basic theory of the mechanics of 

materials, Eq. (3) can be transformed into Eq. (4). 
 

2

2
( )v c s

c c s s

k M Md r

dx p E I E I
 

 
(4) 

 

 

where Ec is the elastic modulus of concrete; Ic is the 

moment of inertia of the concrete slab cross-section with an 

effective width; Ms is the bending moment acting on the 

steel truss; Es is the elastic modulus of steel; and Is is the 

moment of inertia of the steel truss cross-section. 

Hence, the second derivative of Eq. (4) is 
 

2 24

4 2 2

1 1
( )v c s

c c s s

k d M d Md r

dx p E I dx E I dx
 

 
(5) 

 

Ignoring the higher-order derivative terms, the moment 

equilibrium equation for the left-section centroid of the 

concrete slab (Fig. 2) can be expressed as 

 

1c cV dx udxb dM 
 (6) 

 

Therefore, the first derivative of Eq. (6) is 

 
2

12

c cd M dV du
b

dx dx dx
 

 
(7) 

 

Meanwhile, a similar derivation to that of Eq. (7) can be 

applied to Eq. (8),and the moment equilibrium equation for 

the left-section centroid of the steel truss (Fig. 2) can be 

expressed as 
2

12

s sd M dV du
h

dx dx dx
 

 
(8) 

 

According to the force equilibrium conditions of the 

concrete slab and steel truss, Eqs. (9) to (11) can be 

obtained. 

cdV
r

dx
 

 
(9) 

 

sdV
r

dx


 
(10) 

 

dN
u

dx


 
(11) 

 

where N = Ns = Nc. 

Combining Eq. (5) with Eqs. (7) to (11), Eq. (12) can be 

derived. 

 

Fig. 2 Deformation and internal force of a finite length dx 
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4 2

4 2
0

d r d N
mr n

dx dx
  

 
(12) 

 

where the expressions of m and n are provided in Appendix 

1. 

According to Eq. (12), in order to obtain the distributed 

uplift force r, the solution of the axial force N(x) should 

first be derived. Assumption (2) yields 
 

lQ pu k S 
 (13) 

 

where Q is the shear force applied to a single stud connector 

and kl is the shear stiffness of the stub connectors. 

Hence, the derivative of Eq. (13) is 
 

lkdu dS

dx p dx


 
(14) 

 

Based on the deformation compatibility condition of the 

steel truss and concrete slab, Eq. (15) is obtained 
 

/ s cdS dx     
 (15) 

 

Combining Eq. (14) with Eqs. (11) and (15), Eq. (16) is 

obtained 
2

2
( )l

s c

kd N

dx p
  

 
(16) 

 

According to the basic theory of the mechanics of 

materials, Eq. (16) can be transformed into Eq. (17). 
 

2

1 12

1 1
( ) ( )l l s c

c c s s s s c c

k k M Md N
N h b

dx p E A E A p E I E I
   

 
(17) 

 

According to the bending moment equilibrium condition 

of the SCCTB, Eq. (18) can be obtained 
 

s cM M M NH  
 (18) 

 

where M is the external bending moment applied to the 

SCCTB and H is the distance from the centroid of the steel 

truss cross-section to the centroid of the concrete slab cross-

section, as illustrated in Fig. 2. 

Combining Eq. (18) with Eq. (4), Eqs. (19) and (20) can 

be derived. 
 

2

2( )

c s s

c c c c s s v c c s s

M E I p d r M NH

E I E I E I k dx E I E I


 

   
(19) 

 
2

2( )

s c c

s s c c s s v c c s s

M E I p d r M NH

E I E I E I k dx E I E I


  

   
(20) 

 

Hence, combining Eq. (17) with Eqs. (19) and (20), Eq. 

(21) is obtained 
 

2 2

2 2

d N d r
aN f gM

dx dx
  

 
(21) 

 

where the expressions of a, f and g are provided in 

Appendix 1. 

By combining Eq. (12) with Eq. (21) and d2M / dx2 = 0, 

the differential equation for the distributed uplift force r is 

derived in Eq. (22) 
 

6 4 2

6 4 2
0

d r d r d r
A B Cr

dx dx dx
   

 
(22) 

 

where the expressions of A, B and C are provided in 

Appendix 1. 

According to the differential equation in Eq. (22), the 

solution for the distributed uplift force r can be derived, as 

expressed in Eq. (23). 
 

1 1

1 2 3 4

5 6

( ) ( cos sin )

( cos sin )

x x x

x

r x C e C e C x C x e

C x C x e

  



 

 





   

   

(23) 

 

where Ci (i = 1, 2, 3,…) represent the constants that can be 

determined by the boundary conditions; 1 is the real root of 

the characteristic equation; and  and are the real and 

imaginary parts of the complex root of the characteristic 

equation, respectively. 

Eq. (23) is complex; for practical application, the 

approximate solution for the distributed uplift force is 

proposed. It is found that, when f  0, f/a  0 and f/g  0, 

and d2N / dx2 and d2r /dx2 are the same order of magnitude. 

Therefore, Eq. (21) is approximately equivalent to Eq. (24). 
 

2

2

d N
aN gM

dx
 

 
(24) 

 

The axial force N(x) comprises the general solution 

N1(x) and particular solution N2(x), and N1(x) is expressed 

as follows 

1 7 8( ) ax axN x C e C e 
 

(25) 

 

The bending moment applied to the right-hand segment 

of the simply supported SCCTB is 
 

1( ) ( )
2 2

P L
M x x 

 
(26) 

 

Therefore, N2(x) is 
 

2 ( )
g

N x M
a


 

(27) 

 

The first boundary condition is that the axial force 

applied to the steel truss and concrete slab at the support 

position of the simply supported SCCTB is zero, as 

illustrated in Eq. (28). The second boundary condition is 

that the slip deformation between the steel truss and 

concrete slab at the middle of the simply supported SCCTB 

is zero owing to the symmetrical characteristic, as 

illustrated in Eq. (29). According to the boundary 

conditions, the constants C7 and C8 can be determined, as 

expressed in Appendix 2. Therefore, N(x) is derived, as 

expressed in Eq. (30). 
 

2

2
2

2

0, 0L
x

L
x

d N
N

dx



 

 

(28) 
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0

0
x

dN

dx 



 
(29) 

 

1 1( )
2 (1 ) 2 (1 )

ax ax

aL aL

Pg Pg g
N x e e M

aa a e a a e




  

   
(30) 

 

By combining Eq. (12) with Eq. (30), r(x) can be 

obtained, as expressed in Eqs. (31) to (33). The axial force 

r(x) comprises the particular solution r1(x) and general 

solution r2(x). 

 

1 2( ) ( ) ( )r x r x r x 
 (31) 

 

1 1
1 2
( )

2 (1 ) 2 (1 )

ax ax

aL aL

Pg Pgna
r x e e

m a a a e a a e





 
   

     

(32) 

 

2 9 10 11 12( ) ( cos sin ) ( cos sin )x xr x C x C x e C x C x e        
 (33) 

 

The third boundary condition is the equilibrium 

condition of the concrete slab under a vertical force, as 

expressed in Eq. (34). 

 
2

1

0
( )

2

L P
r x dx  

 
(34) 

 

According to the three aforementioned boundary 

conditions, the real part and imaginary part  of the 

complex root of the characteristic equation, and constants 

C9~C12, can be solved, as expressed in Appendix 1 and 2, 

respectively. 

The aforementioned derivations can also be applied to 

calculating the distributed uplift force of the simply 

supported SCCTB subjected to the other four loading types. 

 

2.2.2 Two concentrated loads at the 1/3 beam span 
For the distributed uplift force of the simply supported 

SCCTB subjected to two concentrated loads at the 1/3 beam 

span P2, the SCCTB can be divided into a pure bending 

segment, and two bending and shear segments. 

For the bending and shear segment 

 

1 13 142
( ) ax axna

r x C e C e
m a

   
   

(35) 

 

2 15 16 17 18( ) ( cos sin ) ( cos sin )x xr x C x C x e C x C x e        
 (36) 

 

where the expressions of the constants C13 to C18 are 

provided in Appendix 2. 

For the pure bending segment 

 

1 19 202
( ) ax axna

r x C e C e
m a

   
   

(37) 

 

2 21 22 23 24( ) ( cos sin ) ( cos sin )x xr x C x C x e C x C x e          (38) 

 

where the expressions of the constants C19 to C24 are 

provided in Appendix 2. 

2.2.3 Uniformly distributed load 
For the distributed uplift force of the simply supported 

SCCTB subjected to the uniformly distributed load q 

 

1 2 2

2 2

( ) ( )
ax ax

L L
a a

na gq e e q ng
r x l

m a a m a
e e






   


  

(39) 

 

2 25 26 27 28( ) ( cos sin ) ( cos sin )x xr x C x C x e C x C x e          (40) 

 
where the expressions of l and the constantsC25 to C28 are 

provided in Appendix 1 and 2, respectively. 

 

2.2.4 A concentrated load at the any position 
of the beam span 

For the distributed uplift force of the simply supported 

SCCTB subjected to a concentrated load at the any position 

of the beam span P3 

 

29 30 12

1

31 32 22

, 0

( )

,0

ax ax

ax ax

na
C e C e L x

m a
r x

na
C e C e x L

m a





         
 
     

    

(41) 

 

2 33 34 35 36( ) ( cos sin ) ( cos sin )x xr x C x C x e C x C x e          (42) 

 
where the expressions of the constants C29 to C32 are 

provided in Appendix 2. However, the precise expressions 

of C33 to C36 in Eq. (42) are very complex; therefore, they 

are omitted in this paper. 

 

2.2.5 Two concentrated loads at the symmetrical 
position of the beam span 

For the distributed uplift force of the simply supported 

SCCTB subjected to two concentrated loads at the 

symmetrical position of the beam span P4, the SCCTB can 

be divided into a pure bending segment, and two bending 

and shear segments. 

For the bending and shear segment 

 

1
1 37 382
( ) ,

2 2

ax ax Lna L
r x C e C e x

m a

     
   

(43) 

 

2 39 40 41 42( ) ( cos sin ) ( cos sin )x xr x C x C x e C x C x e        
 (44) 

 
where the expressions of the constants C37 to C42 are 

provided in Appendix 2. 

For the pure bending segment 

 

1
1 43 442
( ) ,0

2

ax ax Lna
r x C e C e x

m a

     
   

(45) 

 

2 45 46 47 48( ) ( cos sin ) ( cos sin )x xr x C x C x e C x C x e        
 (46) 

 
where the expressions of the constants C43 to C48 are 

provided in Appendix 2. 
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3. Theoretical derivation of the deflection 
 

Compared to the achievements of the traditional steel-

concrete composite beam, the state of research in the 

SCCTB field currently remains under development. 

Moreover, theoretical studies on the SCCTB deflection are 

limited. In fact, the shear slip, uplift and shear effects may 

significantly affect the SCCTB deflection. 

 

3.1 Basic assumptions 
 

In order to derive the formulae for the SCCTB 

deflection, five basic assumptions are made, as follows. 

 

(1) The formulae for calculating the SCCTB deflection 

are suitable for the steel truss and concrete slab in 

the elastic state, and the influence of concrete cracks 

is ignored. 

(2) The influence of the geometrical nonlinearity of the 

steel truss on the SCCTB deflection is 

inconspicuous in its elastic state; hence, the 

geometrical nonlinearity of the steel truss is 

ignored. 

(3) In the deflection calculation, the effective width of 

the concrete slab is considered. 

(4) The shear resistance of the concrete slab and steel 

truss chords is omitted. The shear is only resisted by 

the steel truss braces; therefore, the shear effect 

plays an important role in the deflection calculation. 

(5) The concrete is considered in compression only. 

Moreover, creep may significantly influence the 

mechanical behaviour of the concrete and is a long-

term effect. In order to consider the creep effect, Ic 

is redefined as the moment of inertia of the concrete 

slab cross-section with half of the effective width 

(GB 50017-2017). 

 

In general, the deflection of the SCCTB, yd, which 

considers the shear slip, uplift and shear effects, can be 

expressed by 
 

1 2 3 4d d d d dy y y y y   
 (47) 

 

where yd1 is the deflection of the traditional steel-concrete 

composite beam with full shear interaction caused by the 

bending moment; yd2 is the additional SCCTB deflection 

caused by the shear slip effect; yd3 is the additional SCCTB 

deflection caused by the uplift effect; and yd4 is the 

additional SCCTB deflection caused by the shear effect. 

 

3.2 Determination of yd1 
 

The composite action of the traditional steel-concrete 

composite beam is realised by connecting two different 

material layers with shear connectors. Theoretically, if the 

shear connectors are rigid, full composite action can be 

achieved. In this case, the benefits of the composite action 

can be demonstrated in full when no slip deformation or 

deflection difference appears at the interface, which is 

referred to as full shear interaction. Meanwhile, the concrete 

is considered in compression only. For the creep effect, Ic is 

redefined as the moment of inertia of the concrete slab 

cross-section with half of the effective width. Therefore, for 

the traditional steel-concrete composite beam with full 

shear interaction, the curvature F of the deformed steel 

truss is equal to that of the deformed concrete slab, as 

expressed in Eq. (48). 
 

c s c s
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c c s s c c s s
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(48) 

 

The shear connectors exhibit infinite stiffness. Thus, 1/kl 

= 0 and 1/kv = 0, leading to 1/a = 0 and f/a = 0. As a result, 

Eq. (21) can be simplified as 
 

g
N M

a
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(49) 

 

By defining EI = EcIc + EsIs, and combining Eq. (48) 

with Eqs. (18) and (49), Eqs. (50) and (51) are obtained. 
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For the simply supported SCCTB subjected to a 

concentrated load at the middle of the beam span P1, the 

maximum deflection (Eq. (52))can be obtained based on the 

basic theory of structural mechanics and Eq. (50). 
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For the simply supported SCCTB subjected to two 

concentrated loads at the 1/3 beam span P2, the maximum 

deflection (Eq. (53)) can be obtained based on the basic 

theory of structural mechanics and Eq. (50). 
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2
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(53) 

 

For the simply supported SCCTB subjected to a 

uniformly distributed load q, the maximum deflection (Eq. 

(54)) can be obtained based on the basic theory of structural 

mechanics and Eq. (50). 
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(54) 

 

For the simply supported SCCTB subjected to a 

concentrated load at any position of the beam span P3, the 

maximum deflection (Eq. (55))can be obtained based on the 

basic theory of structural mechanics and Eq. (50). 
 

2 2

3 1 2
1

3
d d
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(55) 

 

For the simply supported SCCTB subjected to two 

concentrated loads at a symmetrical position of the beam 
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span P4, the maximum deflection (Eq. (56)) can be obtained 

based on the basic theory of structural mechanics and Eq. 

(50). 
3 23

4 1 1
1

24 48 16
d d

P L PLLL
y y

EID

 
    

   
(56) 

 

3.3 Determination of yd2 
 

As only the shear slip effect is considered, the axial 

stiffness of the shear connectors kv is infinite, while the 

shear stiffness of the shear connectors kl is finite. Therefore, 

1/kv = 0, leading to f = 0 and f/a = 0. As a result, Eq. (21) 

can be simplified as 

 
2

2

1 d N g
N M

a dx a
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(57) 

 

By combining Eq. (48) with Eqs. (18), (51) and (57), 

Eq. (58) is obtained 
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(58) 

 

In order to solve Eq. (58), the quadratic integral must be 

implemented. The solution to yd is illustrated in Eq. (59). 
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(59) 

 

For the simply supported SCCTB subjected to a 

concentrated load at the middle of the beam span P1, 

according to the boundary conditions (Eqs. (60) and (61)) as 

well as Eqs. (26) and (30), the maximum deflection can be 

derived as expressed in Eq. (62). 
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Similar derivations can be applied to calculate the 

deflection of the simply supported SCCTB subjected to the 

other four loading types. 

For the simply supported SCCTB subjected to two 

concentrated loads at the 1/3 beam span P2, the maximum 

deflection is expressed as 
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For the simply supported SCCTB subjected to a 

uniformly distributed load q, the maximum deflection is 

expressed as 

2
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(64) 

 

For the simply supported SCCTB subjected to a 

concentrated load at any position of the beam span P3, the 

maximum deflection is expressed as 
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For the simply supported SCCTB subjected to two 

concentrated loads at a symmetrical position of the beam 

span P4, the maximum deflection is expressed as 
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3.4 Determination of yd3 
 

When both the shear slip and uplift effects are 

considered, the differential equation for the deflection of the 

simply supported SCCTB is expressed as 
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By combining Eq. (67) with Eqs. (12), (20) and (21), 

Eq. (68) is obtained. 
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(68) 

 

According to the derivations in Sections 3.2 and 3.3, Eq. 

(68) can be changed as follows 
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Based on the boundary conditions (Eqs. (60) and (61)), 

the deflection of the simply supported SCCTB can be 

expressed as 
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For the simply supported SCCTB subjected to a 

concentrated load at the middle of the beam span P1, the 

following is derived 
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F For the simply supported SCCTB subjected to two 
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concentrated loads at the 1/3 beam span P2, the following is 

derived 
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For the simply supported SCCTB subjected to a 

uniformly distributed load q, the following is derived 
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For the simply supported SCCTB subjected to a 

concentrated load at any position of the beam span P3, the 

following is derived 
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For the simply supported SCCTB subjected to two 

concentrated loads at a symmetrical position of the beam 

span P4, the following is derived 
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3.5 Determination of yd4 
 

The shear is only resisted by the steel truss braces. 

Therefore, in the derivation of yd4, the contributions of the 

steel truss chords and concrete slab are ignored. Moreover, 

the deformation of the braces may add to the SCCTB 

deflection and the shear effect can also not be ignored. 

According to the basic theory of structural mechanics (Long 

et al. 2012), the additional SCCTB deflection caused by the 

shear effect can be calculated, as expressed in Eq. (76). 
 

1
4

1

n
i i i

d

i s i

F F l
y

E A


 

(76) 

 

 

where Fi is the axial force of the ith brace under the external 

load; F1i is the axial force of the ith brace under the unit load 

applied to the position with maximum deflection; li is the 

length of the ith brace; and Ai is the area of the ith brace. 
 

3.6 Practical design method 
 

It can be observed that the formulae for calculating yd2 

and yd3 are complex. As 𝑒− 𝑎𝐿 ≈ 0 and 𝑒−𝑎𝐿 ≈ 0, the 

corresponding formulae can be simplified. The formulae for 

calculating the SCCTB deflection are listed in Table 1. 

The formulae listed in Table 1 are mainly derived based 
on the differential, equilibrium and deformation compati-

bility equations. However, the solutions to these equations 

differ owing to the varying loading types. Therefore, a 

practical design method (Eqs. (76) to (79)) is proposed to 

provide an effective and convenient tool for designers to 

estimate the SCCTB deflection. 

For the deflection yd1, the formulae for the SCCTB 

under five different loading types can be simplified as 
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where  is a constant related to the loading types and can be 

determined by the basic theory of structural mechanics; and 

Md is the bending moment at the position corresponding to 

the maximum deflection. 

For the deflection yd2, the formulae for the SCCTB 

under five different loading types can be simplified as 
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where i is the amount of concentrated loads; and Li is the 

distance between the loading position of Pi and the position 

corresponding to the maximum deflection. 

For the deflection yd3, the formulae for the SCCTB 

under five different loading types can be simplified as 
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Table 1 Formulae for calculating the deflection of the SCCTB 

Loading types yd1 yd2 yd3 yd4 
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where LA and LB are the distances between the supports and 

position corresponding to the maximum deflection; and VA 

and VB are the vertical reaction forces of the supports. 

For the deflection yd4, this additional SCCTB deflection 

under five different loading types is calculated using the 

same formula as Eq. (76). 
 

 

4. Experimental results and validation 
 
In order to validate the reliability of the proposed 

formulae, an experimental program was carried out on the 

flexural response of three SCCTB specimens with different 

stud connector distributions. In the following section, the 

test specimen dimensions and parameters, material 

properties, measured points, test setup and instrumentation, 

test procedure and phenomena, and a comparison of the 

theoretical and experimental results are described in details. 
 

4.1 Specimens 
 

The degree of shear connection was the main factor in 

the experimental program; therefore, three SCCTB 

specimens were designed for the flexural tests. The 

dimensions of the SCCTB specimens are plotted in Fig. 3. 

The square pyramid structure was selected for the steel 

truss in order to obtain sufficient lateral stiffness. The steel 

truss height and span were 500 and 4000 mm, respectively. 

A circular tube was selected for the steel member to obtain 

improved stability performance. The upper chord, bottom 

chord and brace dimensions were 423, 705 and 324 

mm2, respectively. These members were connected by 

means of a fillet weld. The concrete slab thickness and 

width were 80 and 1500 mm, respectively. Two pieces of 

reinforcement grid were placed at the top and bottom of the 

concrete slab. A longitudinal reinforcement with a 6 mm 

nominal diameter and 100 mm spacing, and transverse 

reinforcement with a 6 mm nominal diameter and 150 mm 

spacing were adopted for the reinforcement grid. Stud 

connectors with a diameter of 13 mm and design strength of 

215 MPa were used to connect the steel truss and concrete 

slab. Three stud connector distributions were designed, 
 

 

as listed in Table 2, where k is the shear interaction factor 

and equal to the ratio of ns to nr; nr is the critical amount of 

stub connectors between the full and partial shear 

interaction; and ns is the actual amount of stub connectors. 

The critical amount of stub connectors between the full and 

partial shear interaction was 34. The SCCTB specimens are 

illustrated in Fig. 4. 

 

4.2 Materials 
 

The steel members were manufactured from Q345B 

steel (the nominal yield strength of which is 345 MPa). 

Three tensile coupons were directly and randomly cut from 

the bottom chords. Moreover, three reinforcement coupons 

with a 60 mm length and 6 mm nominal diameter were 

designed. Tensile coupon tests were conducted to determine 

the mechanical properties of the steel members and 

 

 

Table 2 Three distributions of the stud connectors 

No. Span / mm k ns p 

SCCTB1 4000 0.88 30 300 

SCCTB2 4000 1.0 34 250 

SCCTB3 4000 1.24 42 200 
 

 

 

 

Fig. 4 SCCTB specimens 

 

 

 
 

 

Fig. 3 Dimensions of the SCCTB specimens 
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Table 3 Material properties of the steel members and 

reinforcement bars 

Material Tensile coupon 
fy 

/ MPa 

fu 

/ MPa 
Elongation 

Steel members 

Coupon 1 432.4 535.7 0.292 

Coupon 2 438.3 537.6 0.287 

Coupon 3 440.4 542.4 0.283 

Mean 437.0 538.6 0.287 

Reinforcement 

bar 

Coupon 1 414.0 559.1 0.322 

Coupon 2 406.9 548.5 0.318 

Coupon 3 396.3 544.9 0.315 

Mean 405.7 550.8 0.318 
 

 

 

Table 4 Material properties of the concrete 

Concrete cube fcu,0 / MPa fc / MPa Ec / MPa 

Cube 1 34.9 23.3 31306 

Cube 2 35.2 23.5 31389 

Cube 3 34.8 23.3 31278 

Mean 35.0 23.4 31324 
 

 

 

reinforcement bars. The measured yield strength fy, ultimate 

strength fu and elongation of the steel members and 

reinforcement bars are listed in Table 3. 

Ordinary concrete of C30 strength grade was selected as 

the concrete slab material. The mix proportion of the 

concrete was cement to sand to coarse aggregate to water = 

1:1.6:3:0.5. In order to obtain the concrete mechanical 

properties, three concrete cubes with dimensions of 150  

150  150 mm were designed and compressive concrete 

cube tests were conducted. The measured properties of 

these concrete cubes are displayed in Table 4. 

 

4.3 Measured points 
 

The linear variable differential transducers (LVDTs) 

used are illustrated in Fig. 5. Vertical LVDTs were located 

at the 1/8, 1/4, 3/8, 1/2, 5/8, 3/4 and 7/8 positions along the 

SCCTB specimen length to measure the deflection. Vertical 

LVDTs were placed on the concrete slab bottom surface and 

steel truss upper chord of the steel truss. Moreover, two 

vertical LVDTs were placed on the SCCTB specimen 

supports to obtain their displacement. A total of 16 vertical 

LVDTs were required for each flexural test. 

 

4.4 Test setup and instrumentation 
 

A self-balancing reaction frame was designed for the 

experimental studies on the SCCTB flexural response. All 

of the SCCTB specimens were installed in the same test 

setup, as illustrated in Fig. 6. A concentrated load was 

applied in the middle of the concrete slab by means of a 

1000 kN hydraulic jack. Two rods were placed at the two 

ends of the SCCTB specimens to simulate the hinged 

supports. 

 

Fig. 5 LVDTs 

 

 

 

(a) Hinged support 

 

 

(b) A self-balancing reaction frame 

Fig. 6 Test setup of the SCCTB specimens 

 

 

4.5 Test procedure and deformation phenomena 
 

Following installation of each SCCTB specimen and the 

measuring equipment, the test equipment was checked by 

means of trial loading. A preload, which was 10 to 20% of 

the ultimate load, was applied to ensure that these SCCTB 

specimens and the test equipment were operating correctly. 

The ultimate load was initially estimated according to the 

finite element results. Once everything had been examined, 

the tests were started. The load increment was 20 kN/min 

when the SCCTB specimens were in the elastic phase. For 

each loading level, the load was required to be sustained for 

3 min to record stable data. The test was conducted under 

force control at the beginning of the loading process. When 

the deformation of the SCCTB specimens increased rapidly, 

the behaviour of the SCCTB specimens entered the 

nonlinear region. At this time, the force control was 
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changed to displacement control, until failure of the SCCTB 

specimens occurred. The displacement increment was 5 

mm. 

The deformation phenomena of the SCCTB specimens 

roughly progressed through three phases, as follows. (1) At 

the beginning of the loading process, the deformation of the 

SCCTB specimens was inconspicuous, signifying the 

elastic phase. (2) As the load increased, the behaviour of the 

SCCTB specimens entered the nonlinear region, leading to 

rapid development in their deformation. (3) When the load 

increased to approximately 85% of the ultimate load, cracks 

appeared on the bottom surface of the concrete slab. The 

cracks initially appeared in the middle area of the concrete 

slab corresponding to the truss joint. Subsequently, cracks 

also appeared in the connection area of the stub connectors. 

The amount of cracks increased with the increase in the 

 

 

 

Fig. 7 Cracks at the bottom of the concrete slab 
 

 

 

Fig. 8 Cracks at the edge of the concrete slab 
 

 

 

Fig. 9 Final deformation of the SCCTB specimens 

load. Finally, the cracks expanded and ran through the 

concrete slab, as illustrated in Figs. 7 and 8. The final 

flexural deformation of the SCCTB specimens is illustrated 

in Fig. 9. 

 

4.6 Load-deflection curves 
 

The load-deflection curves of the SCCTB specimens are 

plotted in Fig. 10. When the load was smaller than 200 kN, 

the load-deflection curves of the specimens exhibited a 

linear response and were very close, indicating that the 

SCCTB specimens remained in the elastic phase. As the 

load increased, the load-deflection curves separated. It can 

be observed that the stiffness of specimen SCCTG1 

decreased most rapidly with the lowest ultimate load of 

385.6 kN, while specimen SCCTG3 exhibited the largest 

ultimate load of 408.7 kN. Therefore, the distribution of the 

stud connectors had an effect on the SCCTB mechanical 

behaviour. The stiffness and ultimate load of the SCCTB 

increased with an increase in the shear interaction factor k. 

 

4.7 Comparison of theoretical and experimental 
results 

 

The deflection of the SCCTB specimens obtained from 

the proposed formulae was validated by means of the 

experimental results, as presented in Table 5. The load 

corresponding to the deflection listed in Table 5 is 120 kN. 

It can be observed that: (1) the deflection obtained from 

both the proposed formulae and experimental results 

exhibited an obvious decrease with an increase of the shear 

interaction factor k; (2) the average deviation of the 

deflection between the theoretical and experimental results 

was 3.6%; and (3) the experimental deflection was smaller 

than the theoretical deflection. Consequently, strong 
 

 

 

Fig. 10 Load-deflection curves 

 

 

Table 5 Deflection of the SCCTB specimens 

No. 
Test 

(mm) 

Formulae (mm) 
Deviation 

yd1 yd2 yd3 yd4 yd 

SCCTB 1 11.92 4.73 1.16 0.86 5.62 12.37 3.6% 

SCCTB 2 11.65 4.73 1.05 0.63 5.62 12.03 3.2% 

SCCTB 3 11.43 4.73 0.98 0.56 5.62 11.89 3.9% 

Mean       3.6% 
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agreement was demonstrated in the validation of the 

proposed formulae against the representative experimental 

results. Therefore, the formulae proposed in this paper can 

be used to predict the SCCTB deflection with confidence 

and safety. 
 

 

5. Conclusions 
 

The uplift force of the stud connectors was derived 

based on the differential and equilibrium equations. 

Subsequently, considering the shear slip, uplift and shear 

effects, a practical design method was developed for 

calculating the deflection in the serviceability limit state of 

the SCCTB under five different loading types. In order to 

validate the practical design method, flexural tests were 

carried out on three SCCTBs. It is found that the 

distribution of the stud connectors could affect the 

mechanical behaviour of the SCCTB. The stiffness and 

ultimate load of the SCCTB increased with an increase in 

the shear interaction factor. The proposed formulae were 

calibrated by means of the experimental results, and provide 

an effective, acceptable and convenient method for 

designers to calculate the maximum deflection of a simply 

supported SCCTB. 
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Notation 
 

 Explanation 

P1 A concentrated load at the middle of the beam span 

P2 Two concentrated loads at the 1/3 beam span 

P3 A concentrated load at any position of the beam span 

P4 
Two concentrated loads at a symmetrical position of the 

beam span 

q A uniformly distributed load 

b1 
The distance from the centroidal axis to the concrete slab 

bottom 

b2 
The distance from the centroidal axis to the concrete slab 

top 

h1 
The distance from the centroidal axis to the steel truss 

top 

h2 
The distance from the centroidal axis to the steel truss 

bottom 

Nc The axial force applied to the concrete slab 

Ns The axial force applied to the steel truss 

Mc The bending moment acting on the concrete slab 

Ms The bending moment acted on the steel truss 

Vc The shear force applied to the concrete slab 

Vs The shear force applied to the steel truss 

r 
The distributed uplift force applied to the continuous 

elastic material used to replace the stud connectors 

r1(x) The particular solution of r 

r2(x) The general solution of r 

u 
The distributed shear force applied to the continuous 

elastic material used to replace the stud connectors 

S 
The slip deformation between the steel truss and concrete 

slab 

w 
The deflection difference between the steel truss and 

concrete slab 

R The uplift force applied to a single stud connector 

p The longitudinal spacing of the stud connectors 

kv The axial stiffness of the stub connectors 

ys The deflection of the steel truss 

yc The deflection of the concrete slab 

Ec The elastic modulus of concrete 

Es The elastic modulus of steel 

Ic 
The moment of inertia of the concrete slab cross-section 

with an effective width 

Is The moment of inertia of the steel truss cross-section 

N N = Ns = Nc 

Q The shear force applied to a single stud connector 

kl The shear stiffness of the stub connectors 

M The external bending moment applied to the SCCTB 

H 
The distance from the centroid of the steel truss cross-

section to the centroid of the concrete slab cross-section 

Ci 
The constants that can be determined by the boundary 

conditions 

1 The real root of the characteristic equation 

 
The real part of the complex root of the characteristic 

equation 

 
The imaginary part of the complex root of the 

characteristic equation 

yd 
The deflection of the SCCTB, which considers the shear 

slip, uplift and shear effects 

yd1 

The deflection of the traditional steel-concrete composite 

beam with full shear interaction caused by the bending 

moment 

yd2 
The additional SCCTB deflection caused by the shear 

slip effect 

yd3 
The additional SCCTB deflection caused by the uplift 

effect 

yd4 
The additional SCCTB deflection caused by the shear 

effect 

F 
The curvature of the deformed steel truss and deformed 

concrete slab 

Fi The axial force of the ith brace under the external load 

F1i 
The axial force of the ith brace under the unit load 

applied to the position with maximum deflection 

li The length of the ith brace 

Ai The area of the ith brace 

 A constant related to the loading types 

Md 
The bending moment at the position corresponding to the 

maximum deflection 

Li 
The distance between the loading position of Pi and the 

position corresponding to the maximum deflection 

LA 
The distance between the support A and the position 

corresponding to the maximum deflection. 

LB 
The distance between the support B and the position 

corresponding to the maximum deflection. 

VA The vertical reaction force of the support A 

VB The vertical reaction force of the support B 
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where the expressions of 1~6 are given in Appendix 3. 
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