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1. Introduction 

 
Thin-walled plate type structures made of orthotropic 

materials constitute very important structural components in 
many engineering applications, especially in aerospace, 
mechanical and civil industries. For efficient design 
purposes there is a need to introduce holes or cutouts into 
these structures. The presence of these cutout openings 
changes the stress distribution within these perforated 
structures and thereby results in variations in the internal 
stress distributions. Under excessive compressive loading 
these plate structures will undergo buckling instability 
which results in loss of structural stiffness and thereby 
reduction in the load bearing capacity of the structure 
(Leissa 1987, Zhang and Yang 2009, Larsson 1987), 
Nemeth 1988). 

In this paper, we study linear buckling of a thin 
orthotropic rectangular plate that contains a single 
circular/elliptical cutout. The plate is simply supported at all 
four edges and subjected to uniform uniaxial in-plane 
compressive edge loads. Our aim is to employ a formal 
optimization algorithm to obtain the true optimal design 
parameters (e.g., location and orientation) of the cutout and 
maximize the critical buckling load. 

We note that the existing literature (see below for a brief 
literature review) does talk about the influence of cutout 
position on the critical buckling load of orthotropic plates. 
However, to the best of our knowledge, no work seems to 
adopt a formal optimization scheme for determining the 
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optimal location parameters in orthotropic plates that 
maximize the critical buckling load. 

A common observation in the studies reported in the 
literature is that the location and orientation of cutout within 
the structure have been chosen first and then the buckling 
load has been obtained (Qablan et al. 2009, Narayana et al. 
2013). In contrast to that, in this work, we have developed 
an optimization scheme for obtaining the optimal location 
and orientation of the cutout within a perforated orthotropic 
plate for maximum critical buckling load. The perforated 
plate is first modeled parametrically in finite element 
analysis software ANSYS for buckling load calculation and 
then these buckling results were coupled with a MATLAB 
optimization routine to find the true optimal cutout 
parameters. We note that for the computation of critical 
buckling load of the plate, with cutout at some arbitrary 
position, a finite element solution is only viable as the 
analytical solution in this case is either unavailable or 
intractable. Therefore, the novelty of the present work lies 
in the development of the MATLAB optimization scheme 
that interacts with the ANSYS buckling computation for 
orthotropic plate in each iteration and produces the optimal 
cutout position as final outcome of this optimization run. 

Optimization study for the buckling of an isotropic plate 
having a single circular cutout has been published recently 
by one of the authors of this article (Jana 2016). In this 
paper, the study has been extended to the optimal design of 
both circular and elliptical cutouts within the orthotropic 
plates. We have considered both symmetric cross-ply 
(0°/90°)2𝑠𝑠 and angle-ply (30°/−60°)2𝑠𝑠 laminated plates. 
The study shows that the optimal position of cutout for the 
maximum buckling load has great dependence on the 
material properties, laminate sequence, geometrical 
parameters of the plate, and on the size of the cutouts. 
These optimal results are reported in this paper, using tables 
and graphs, for a number of plate geometries and cutout 
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sizes. The results reported here are important from a design 
point of view and will be useful in the design of orthotropic 
plate against buckling failure. 

 
 

2. Related prior work 
 
The literature on buckling of rectangular plates is rich. 

Many studied are exclusively confined to isotropic plates 
(Komur and Sonmez 2008, Komur 2011, Seifi et al. 2017, 
Jana 2016). And several others discuss buckling behavior of 
orthotropic rectangular plates but without any cutout 
(Darvizeh et al. 2002, Aktas and Balcioglu 2014, 
Altunsaray and Bayer 2014, Lopatin and Morozov 2014, 
Baseri et al. 2016). However, we consider optimal design of 
cutouts within orthotropic plates and briefly review the 
relevant literature pertaining to the work presented in this 
article. Larsson (1987) used finite element method (FEM) 
to investigate the influence of a central circular hole on the 
buckling and post-buckling behaviour of square orthotropic 
plates subjected to uniaxial and biaxial compression. 
Nemeth (1988) studied experimentally the buckling 
behaviour of orthotropic rectangular symmetric angle-ply 
laminates with a circular cutout. Qablan et al. (2009) and 
Narayana et al. (2013) considered square/rectangular 
cutouts and performed multiple FEM analyses in ANSYS 
by positioning the cutout in some selected locations in order 
to find the location effect of the cutout on the buckling 
behavior of the orthotropic plates. Lin and Kuo (1989) 
studied the effects of circular cutouts on the critical 
buckling of symmetrically or anti-symmetrically laminated 
composite plates subjected to in-plane static loadings. They 
have used nine-node Lagrangian finite element technique 
for computing the critical loads. Lee et al. (1989) studied 
the buckling behaviour of an orthotropic plate, either with 
or without a central circular cutout. They investigated the 
influence of material orthotropy of the laminated plate on 
the buckling load by using finite element method. Srivatsa 
and Murty (1992) used classical lamination theory and FEM 
to obtain critical buckling load of laminated fibre reinforced 
plastic (FRP) square panel. They studied the effect of 
various design parameters including lay-up sequence, fibre 
orientation, cut out size, and different boundary conditions. 
Jain and Kumar (2004) used FEM to study the post-
buckling response of symmetric square plate having a 
central cutout subjected to uniaxial compression. 
Ghannadpour et al. (2006) studied the buckling behaviour 
of rectangular symmetric cross ply laminates by using finite 
element analysis. They focused on the effect of a central 
cutout on the buckling performance of a rectangular plate. 
Mohammadi et al. (2006) investigated the effect of 
eccentric circular cutout on the pre-buckling and post-
buckling stiffness of laminated composite plates. They also 
computed the effective width of compression loaded 
laminated composite plates based on non-linear finite 
element analysis. Baltaci et al. (2006) studied using FEM 
the buckling behaviour of laminated composite circular 
plates with circular hole and subjected to uniform radial 
load. Baba (2007) investigated numerically and 
experimentally the effect of various influencing parameters 

such as boundary condition, cutout shape, length-to-
thickness ratio and ply orientation on the buckling 
behaviour of composite plates under in-plane edge 
compression. Baba and Baltaci (2007) used ANSYS to 
study the buckling behavior of symmetrically and anti-
symmetrically laminated orthotropic plates with a central 
cutout. They also validated their results using experiments. 
Onkar et al. (2007) presented a stochastic finite element 
formulation which is based on the mean centered first order 
perturbation technique for analyzing the buckling behavior 
of laminated composite plate with circular cutout and 
having uncertain material properties. Zhong and Gu (2007) 
developed an exact buckling solution of simply supported 
symmetric cross-ply laminated orthotropic rectangular 
plates under linearly varying in-plane load. They used finite 
element analysis in ABAQUS to verify their result. Anil et 
al. (2007) used a ‘simple higher order shear deformation 
theory’ to incorporate the effect of pre-buckled stress on the 
stability analysis of composite laminated plates with and 
without rectangular cutouts under in-plane compressive 
loading. Komur et al. (2010) used finite element analysis in 
ANSYS to study the buckling characteristics of laminated 
composite plate with a centrally located elliptical/ circular 
cutout. They calculated the buckling load for different 
cutout sizes and their orientations. Kumar and Singh (2010) 
studied, using FEM, the effect of flexural boundary 
condition on buckling and post-buckling characteristics of 
laminated composites with cutout under uniform edge 
loads. The FEM formulation they used is based on the first 
order shear deformation theory along with the incorporation 
of geometric non-linearity. Rajanna et al. (2016) used finite 
element analysis to study the buckling behavior of 
perforated laminated panel subjected to uniform and 
nonuniform in-plane edge loads. 

We now review some literatures that discuss 
optimization in composite plates. Walker (1999) studied the 
optimal design of symmetrically laminated rectangular plate 
with central circular cutouts for maximum buckling load. 
The author determined the fibre orientations optimally with 
the effect of bending-twisting coupling included. Spallino 
and Rizzo (2002) presented a multi-objective optimization 
based on Evolution Strategies to optimize the laminate 
sequence in the laminated composite structures. Adali et al. 
(2003) investigated the optimal design of symmetrical 
laminated composite plates subjected to biaxial compressive 
load. The author used anti-optimization approach to 
optimize ply angle for maximum buckling load. Sivakumar 
et al. (1998) used genetic algorithm (GA) to design an 
orthotropic plate in the presence of elliptical cutouts for 
optimum free vibration response. Zehnder and Ermanni 
(2006) introduced a methodology for the global 
optimization of real-world laminated composite structures 
using evolutionary algorithms. The authors validated their 
methodology by optimizing the stiffness of a sailing boat 
for a given weight and cost limits. Paluch et al. (2008) 
developed a procedure to combine finite element analysis 
and genetic algorithm to optimize composite structures with 
variable thickness. Topal and Uzman (2007) used modified 
feasible direction (MFD) method for optimum design of 
laminated composite plates with central circular hole to 
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maximize buckling load. They considered fibre orientations 
as design variables. Sharma et al. (2014) used 
Muskhelishvili’s complex variable approach to optimize the 
laminate stacking sequence of perforated orthotropic plate 
subjected to in-plane edge loading. 

From the above literature survey, we conclude that study 
towards finding the true optimal position of circular/ 
elliptical cutout within an orthotropic plate has not been 
reported yet. In the literature, it has been observed that the 
position of the cutout has not been considered as the design 
variable for the optimization studies. In most of these 
studies, the position of the cutout is chosen first and then 
the effects of the cutout on the buckling behaviour of the 
orthotropic plate have been studied. Therefore, in this paper, 
our objective is to develop a novel optimization technique 
that employs an iterative procedure for selection of the 
position of the cutout by using a widely accepted 
optimization algorithm such that the true optimal position of 
the cutout is obtained. The optimization routine is 
developed within MATLAB and is coupled with the finite 
element buckling computation in ANSYS. Details of the 
methodology and some interesting results are discussed 
below. 

 
 

3. Scope of the study 
 
In this study, the critical buckling load of the orthotropic 

plate is computed using the general purpose commercial 
finite element software ANSYS. The rectangular plate with 
length a, width b, thickness h, are considered to be simply 
supported at all four edges and subjected to uniform 
uniaxial compressive edge loads (N0) along the x-direction. 
See Fig. 1 for the schematic of the plate. An elliptical cutout 
of major axis 2c and minor axis 2e is located at an arbitrary 
position (xc, yc) within the plate and is inclined by an angle 
(θ) with the x-axis. Note that the cutout will become 
circular when the ratio c/e is set to 1. 

 
3.1 Material properties 
 
In this work, both cross-ply (0°/90°)2𝑠𝑠 and angle-ply 

(30°/−60°)2𝑠𝑠 laminates are considered. The thickness of 
each layer in this eight-layer laminate is taken as 0.15 mm. 
The orthotropic material properties of the lamina used for 

 
 

 
Fig. 1 Schematic of the uniaxially compressed orthotropic 

rectangular plate (length a, width b, and thickness h) 
containing an elliptical hole and having all edge 
simply supported (SS) 

the buckling analysis in this paper are shown in Table 1 
(adopted from reference Jain and Kumar (2004), 
Ghannadpour et al. (2006)). In this table, E, G, and ν 
correspond to the Young’s moduli, shear moduli, and 
Poisson’s ratios respectively. 

 
3.2 Buckling analysis 
 
For the buckling analysis in ANSYS, four node 

SHELL181 elements have been used for the discretization 
of the plate. This element has six nodal degrees of freedom 
(translations in x, y, z-axes and rotations about the x, y, and 
z-axes). This element is used for the analysis of thin to 
moderately thick plates and shells as it considers transverse 
shear deformations (ANSYS Inc. 2015). See Section 3.3 for 
a validation study with already published results. 

In ANSYS, a geometric model of the perforated plate is 
first generated and then the structure is meshed using 
SHELL181 elements. In order to get accurate buckling 
results, mesh convergence study has been carried out 
(details not reported here). A relatively finer mesh near the 
cutout geometry is used for better accuracy. See Fig. 2 for a 
typical finite element mesh used for the plate having an 
elliptical cutout at some arbitrary location. The boundary 
condition used in the analysis is simply supported at all four 
edges. For simulating simply supported boundary condition, 
displacements in the z direction along all the four edges are 
restrained. Additionally, x and y displacements for one node 
on the x = -a/2 edge and y displacement of a node on the x = 
a/2 edge are restrained in order to prevent only the rigid 
body motion of the plate. 

Note that the numerical results computed from the linear 
(eigenvalue) buckling analysis in ANSYS are some scaling 
factors (say SF) that has to be multiplied to the loads 

 
 

 
Fig. 2 A typical finite element meshes of the laminated 

orthotropic plate with an elliptical cutout at some 
arbitrary location 

 
 

Table 1 Mechanical properties (adopted from Jain and 
Kumar 2004, Ghannadpour et al. 2006) of the 
lamina used for the results reported in this paper 

Mechanical properties Values 
E1 130.0 GPa 

E2 = E3 10.0 GPa 
G12 = G13 5.0 GPa 
𝜈𝜈12 = 𝜈𝜈13 0.35 

𝜈𝜈23  0.49 
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applied in the FE model in order to get the buckling 
instability of the structure. Therefore, the total critical 
buckling load of the plate will be calculated as Nxcr = SF × 
N0. In this paper, we focus on the first instability of the 
orthotropic plate and compute the first critical buckling 
load. 

 
3.3 Validation of buckling load computation 
 
To validate our buckling load computation, we compare 

our results with some already published literature (Jain and 
Kumar 2004, Ghannadpour et al. 2006). For this 
comparison study, we have considered the same plate 
dimensions, material properties, boundary conditions and 
laminate sequences as taken in these references. Table 2 
shows the comparison of the first nondimensional critical 
buckling loads  𝑁𝑁�𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑁𝑁𝑥𝑥𝑥𝑥𝑥𝑥 𝑏𝑏2 (𝐸𝐸2ℎ3⁄ ). From the table it 
can be seen that our results are in good agreement with the 
published results. Slight mismatch seen in case of Jain and 
Kumar (2004) may be because of their less converged 
results with coarse mesh size whereas our reported numbers 
are due to finer mesh size thereby resulting more accurate 
values. 

 
3.4 Determination of optimal cutout position 
 
Linear elastic buckling analyses of the perforated 

orthotropic plate have been carried out for a number of 
cases after varying few design parameters such as size and 
shape of the cutout, location and orientation of the cutout, 
and the aspect ratio of the plate. In our analysis, the width b 
of the plate is taken as 1 m whereas the the length is varied 
as the aspect ratio (AR = a/b) of the plate changes. As an 
example, the length a becomes 1.5 m when AR is set to 1.5. 
For the circular cutout, three cutout sizes of radius 0.1 m, 
0.15 m and 0.2 m are considered. For the elliptical cutout, 
the ratio c/e is set to 2. We have considered three elliptical 
cutouts having the same area of the previously mentioned 
circular cutouts. Additionally, as a design limitation, a 
minimum margin of 0.05 m between the edges of the cutout 
and the plate is assumed. This will add a constraint to our 

 
 

Table 2 Comparison of nondimensional buckling load 
𝑁𝑁�𝑥𝑥𝑥𝑥𝑥𝑥 = 𝑁𝑁𝑥𝑥𝑥𝑥𝑥𝑥 𝑏𝑏2 (𝐸𝐸2ℎ3⁄ ) with existing literature 
results (Jain and kumar 2004, Ghannadpour et al. 
2006) 

Cutout shape 
and size 

Laminate 
sequence 

Non-dimensional 
buckling load 

  Present 
study Literature values 

Circular 
cutout 
c = e = 
0.25b 

[(±45◦/0◦/90◦)5]S 13.59 13.84 
(Jain and Kumar 2004) 

[(0◦/90◦)2]S 6.40 6.39 
(Ghannadpour et al. 2006) 

Elliptical 
cutout 

c = 0.25b; 
e = 0.5c 

[(±45◦/0◦/90◦)5]S 12.74 13.05 
(Jain and Kumar 2004) 

[(0◦/90◦)2]S 7.64 7.63 
(Jain and Kumar 2004) 

 

optimization problem. For all of these cases the finite 
element buckling computations in ANSYS are coupled with 
a MATLAB optimization routine and the optimal positions 
of the circular/elliptical cutout are obtained. Details of the 
optimization routine and the optimal results are discussed 
below. 

 
 

4. Optimization routine 
 
For the optimization, the objective function that is the 

first critical buckling load of the orthotropic plate is 
considered as a function of the position (xc, yc) and 
orientation (θ) of the cutout. Therefore, xc, yc, and θ are the 
three input parameters (p) in this optimization process. For 
obtaining the optimal position of the cutout systematically 
and accurately, we develop an optimization routine in 
MATLAB that uses the ANSYS buckling computation 
iteratively and provide the optimal results as final output. 
The execution of the entire optimization process is done in 
three modules as described below. See Fig. 3 for the flow 
diagram of these modules. 

 
4.1 Module 1: FE computing of buckling load 
 
ANSYS Parametric Design Language (APDLs) along 

with the automatic mesh generation techniques available in 
ANSYS has been used for generating the parametric finite 
element model for the buckling analysis. ANSYS APDLs 
that has been used for a typical case is shown in Appendix 
A. For a given plate dimension and cutout size and shape, 
this APDLs accept an input parameter, i.e., p = {xc, yc, θ} 
and returns Nxcr that has to be used in the evaluation of the 
objective function in Module 2. 

 
4.2 Module 2: Input parameter and definition of 

objective function 
 
Module 2 consists of two things: The input design 
 
 

 
Fig. 3 Schematic of the flow diagram used in the optimiza-

tion routine for computing the optimal position of the 
cutout for the maximum buckling load 
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parameters (p) and the objective function (N*
xcr). These are 

defined using a MATLAB code. For a given structural 
configurations, this module accept the input parameters p = 
{xc, yc, θ} and feed it to the module 1 to obtain the scalar 
Nxcr that has to be used in the objective function (N*

xcr) 
evaluation. Note that the output Nxcr from ANSYS is a 
positive scalar number that represents the first critical 
buckling load and we would like to maximize it. Therefore, 
to use some in-built optimization algorithm already 
available within MATLAB, we convert this maximization 
problem to a regular minimization problem. We do that by 
making N*

xcr = −Nxcr. We also emphasize here that this 
evaluation of N*

xcr are carried out for every iteration of the 
optimization run used in module 3. 

 
4.3 Module 2: Input parameter and definition of 

objective function 
 
Module 3 is for the optimization process for finding the 

optimal parameters. In this module, a suitable optimization 
algorithm (here, genetic algorithm (GA)) available within 
MATLAB is selected. GA has become a popular and robust 
tool for function optimization with multiple parameters. 
One advantage of this algorithm is that it does not require 
differentiability of the objective function. It works with 
function evaluations at discrete points. The algorithm is 
based on the concepts of natural selection and genetics 
(Goldberg 2005). 

In MATLAB, following syntax is used for the 
optimization. 

 
[Xopt, f (Xopt)] = ga (@objectivefun, nvars, options) 
 
Here, @objectivefun is the objective function which has 

to be minimized. In our case it is N*
xcr. nvars is the number 

of variables (i.e., xc, yc, and θ ) for the optimization. Options 
are to handle the design constraints. The final outputs from 
this optimization run are given by Xopt as the optimal point 
and f (Xopt) as the corresponding value of the objective 
function at that optimal point. 

There are various GA parameters that play important 
roles in finding the optimal value of the objective function. 
Thus, accuracy of the optimization result can be improved 
by adjusting these parameters. We finalize these parameters  

 
 

Table 3 Parameter used in genetic algorithm (GA) 
optimization runs 

Population size 50 
No. of variable 3(xc, yc and θ) 
Population type Double vector 

Selection Method Stochastic uniform 
Elite count 2.5 

Mutation function Constraint dependent 
Crossover function Constraint dependent 

Probability of crossover 0.8 
No. of generation 100 
Stall generation 60 

 

based on convergence study via multiple GA runs with 
different values of GA parameters such as population size, 
crossover probabilities etc. See Table 3 for some of these 
selected GA parameters for this study. 

 
 

5. Results and discussions 
 
In this section, the optimal results obtained from above 

optimization routine are discussed. For better understanding 
of the results, the buckling loads of the perforated plates are 
normalized with respect to the corresponding buckling load 
of the unperforated plate. Thus, the normalized buckling 
factor (NBF) is defined as 

 

NBF =  
𝑁𝑁�𝑥𝑥𝑥𝑥𝑥𝑥
𝑁𝑁0

𝑥𝑥𝑥𝑥𝑥𝑥
, (1) 

 
Where 𝑁𝑁�𝑥𝑥𝑥𝑥𝑥𝑥  and 𝑁𝑁0

𝑥𝑥𝑥𝑥𝑥𝑥  are the critical buckling load 
of orthotropic plate with and without the cutout, 
respectively. The analytical formula for computing 𝑁𝑁0

𝑥𝑥𝑥𝑥𝑥𝑥  
for a symmetric cross-ply laminated plate is given by 

 

𝑁𝑁0
𝑥𝑥𝑥𝑥𝑥𝑥 = 𝜋𝜋2 �𝐷𝐷11 �
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�

2
�

1
𝑏𝑏
�

4
� 

(2) 

 
where m is the number of half waves along x-direction and 
Dij are the flexural stiffness coefficients of the orthotropic 
plate. For a symmetric angle-ply laminated plate, the 
presence non-zero bending-twisting coupling coefficients 
D16 and D26 makes it practically impossible to get a closed 
form expression for 𝑁𝑁0

𝑥𝑥𝑥𝑥𝑥𝑥  (Reddy 2003). Therefore, for 
the angle-ply laminated plates, we use ANSYS computed 
buckling results of the unperforated plate in order to 
compute the normalized buckling factor (NBF). 

In the following subsections, we first consider circular 
cutout and discuss results for both cross-ply (0°/90°)2𝑠𝑠 
and angle-ply (30°/−60°)2𝑠𝑠 laminates. Afterwords, results 
for an elliptical cutout are reported. Subsequently, 
influences of cutout size on the optimal results are 
highlighted. We finally end this section with the discussion 
on the effect of material orthotropy on these optimal results. 

 
5.1 Circular cutout 
 
5.1.1 Cross-ply laminate 
We first consider cross-ply (0°/90°)2𝑠𝑠 laminated plate 

having a circular cutout of radius c = e = 0.1 m. The plate 
width is set to 1 m and the aspect ratio (AR = a/b) is varied 
from 1 to 4.5. Additionally, a minimum margin of 0.05 m 
between the edge of the cutout and the plate is considered 
as a design constraint. For all these cases, the optimal center 
locations (xc , yc) of the circular cutout are obtained using 
above optimization routine. Note that the orientation (θ) 
will become a design variable for an elliptical cutout but not 
for the circular cutout which is considered here. 

Considering the fact that the plate is symmetric about 
both the x and y-axes, we only report the optimal (xc , yc) 
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values in the first quadrant of the plate that correspond to 
the maximum critical buckling load. However, one should 
note that from these optimal (xc , yc) values three different 
set of values for the three other quadrants can also be 
obtained which will produce the same optimal results. 

Fig. 4(a) shows the optimal locations of the cutout for 
various values of the plate aspect ratios. The optimal results 
are also presented in a tabular form in Table 4 in Appendix 
B. 

 
 

 
 

Table 4 actually presents four sets of optimal results; the 
first data set corresponds to this present case and the other 
three data sets are relevant to the cases discussed 
afterwords. From Fig. 4(a) it is seen that for AR = 1 to 1.7 
the optimal xc is near the x = a/2 edge (leaving the 
minimum margin) of the plate and the optimal yc values are 
somewhere between the x-axis and the y = b/2 edge. As the 
aspect ratio increases from AR = 1.8 to 2.8, optimal center 
locations of the cutout move from ‘near the edge’ to the 

 
 

 
 

  
(a) Optimal locations (xc, yc) of circular cutout 

 
(b) Normalized buckling factor (NBF) for three 

different positions of the circular cutout 

Fig. 4 Optimization results of cross-ply (0°/90° )2s laminated plate 

  
(a) Aspect ratio = 1.0 (b) Aspect ratio = 1.8 

 

  
(c) Aspect ratio = 2.0 (d) Aspect ratio = 3.0 

Fig. 5 Surface plot of the normalized buckling factor (NBF) against several positions (xc, yc) of the circular cutout 
for a number of aspect ratios of the plate 
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‘center’ of the plate. Interestingly, for AR = 2.9 to 4.5 the 
optimal yc locations remain mostly on the longitudinal 
center line (x-axis) but the optimal xc locations remain 
between the center and the x = a/2 edge of the plate as 
shown by the curve in Fig. 4(a). 

Fig. 4(b) shows the normalized buckling factor (NBF) 
for three different cases. In the first case, the cutout is 
placed at the center of the plate. The second case is for the 
cutout kept at (a/4, 0) position. And, in the third cases, the 
cutout is placed at the optimal locations as obtained in Fig. 
4(a). Firstly, these plots show that the cutout position has 
profound effect on the critical buckling load of the 
orthotropic plate. Secondly, the figure confirms (at least 
partially) that the buckling load at the optimal location 
always maintains a higher value. To get a more clear 
understanding of the above optimal results, we show four 
surface plots in Fig. 5. These surface plots, for a given plate 
aspect ratio, are generated after carrying out number of 
buckling simulations by varying the cutout location all 
along the plate. Fig. 5 shows that for each plate aspect ratio 
the first critical buckling load is a well-defined function of 
the position of the cutout and an optimal location can be 
found for which the critical buckling load will be 
maximum. Four surface plots in Fig. 5 for different aspect 
ratios also indicate that the optimal location changes as the 
aspect ratio of the plate changes. And these optimal results 
for a number of aspect ratios were shown in Fig. 4(a). 

In Fig. 6, we show the first buckling mode shapes of 
four different plate aspect ratios having the circular cutout 
located at its optimal position. These plots show that the 
optimal position of the cutout for AR = 2.0 remains on the 
nodal lines whereas for other three cases it remains far from 
the nodal lines. Therefore, the optimal positions of the 
cutouts may not be intuitively guessed by some judgments 
rather it should be obtained systematically by using some 
optimization method as illustrated in this article. 

 
 

 
Fig. 6 First buckling modes of four different plate aspect 

ratios at their optimal configurations. The color bar 
represents the out-of-plane displacements 

5.1.2 Angle-ply laminates 
We now consider angle-ply (30°/−60°)2𝑠𝑠  laminated 

plate and perform similar optimization studies. The 
dimensions of the circular cutout and the plate are taken 
exactly same as described above for cross-ply (0°/90°)2𝑠𝑠 
laminated plate. 

The optimal locations (xc, yc) of the circular cutout 
within this angle-ply (30°/−60°)2𝑠𝑠  laminated plate for 
various values of the plate aspect ratios are shown in Fig. 
7(a). See also Table 4 in Appendix B for the tabulated 
results. Fig. 7(a) shows that for AR = 1.2 to 4.5 the optimal 
yc locations are very close to zero. This means that the 
optimal cutout center remains mostly on the x-axis. 
However, the optimal xc locations vary significantly along 
this x-axis as the aspect ratio of the plate changes. For AR = 
1 to 1.5, the optimal xc is near the x = a/2 edge of the plate. 
The optimal xc locations shift from the edge to the center of 
the plate for AR = 1.6 to 2.6. As AR increases from 2.7 to 
4.5, the optimal xc values turn out to be between the center 
and the x = a/2 edge of the plate as depicted by the curve in 
Fig. 7(a). 

To show that the optimal results shown in Fig. 7(a) 
correspond to the maximum critical buckling loads 
normalized buckling factor (NBF) for three different cutout 
locations are shown in Fig. 7(b). This figure indicates that 
buckling loads at the optimal locations always maintain 
higher values. 

 
5.2 Elliptical cutout 
This section discusses the optimal results for an 

elliptical cutout. In this case, the orientation (θ) of the 
cutout along with the center position (xc, yc) plays a 
significant role in determining the maximum buckling load. 
We consider both cross-ply (0°/90°)2𝑠𝑠  and angle-ply 
(30°/−60°)2𝑠𝑠  laminated plates. The dimension of the 
elliptical cutout is taken as c = 0.141 m with e = 0.5c, which 
makes the cutout area same of a circular cutout of radius 0.1 
m. The width of the plate is set to 1 m and the plate aspect 
ratio (AR = a/b) is varied from 1 to 4.5. A minimum margin 
of 0.05 m between the edge of the cutout and the plate is 
also taken as design constraint. For these cases, the optimal 
positions (xc, yc, and θ) of the elliptical cutout are obtained 
using the optimization routine as depicted in Section 4. 

 
5.2.1 Cross-ply laminate 
Fig. 8(a) shows the optimal locations (xc, yc) of the 

elliptical cutout within the cross-ply (0°/90°)2𝑠𝑠 laminated 
plate for various values of the plate aspect ratios whereas 
Fig. 8(b) represents the corresponding optimal values. The 
optimal results are also shown in Table 4 in Appendix B. 

From Fig. 8, it is seen that for AR = 1 to 1.6, the optimal 
xc is near the x = a/2 edge, the optimal yc values are between 
the x-axis and the y = b/2 edge, and the corresponding 
values are somewhere between 125° to 140°. However, for 
AR = 1.7 to 4.5, the optimal becomes more or less 90° and 
the corresponding optimal center locations are as shown in 
Fig. 8(a). In this case, we see that the optimal xc values shift 
twice to the center of the plate: for AR = 1.7 to 2.7 and 
again for AR = 4.3 to 4.5. One more interesting point to 
observe from these results is that for long cross-ply 
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(0°/90°)2𝑠𝑠 laminated plate the elliptical cutout should be 
placed vertically in order to get the maximum buckling 
load. However, results below will show that this does not 
remain valid for an angle-ply (30°/−60°)2𝑠𝑠  laminated 
plate. 

 
 

 
 

 
 
5.2.2 Angle-ply laminates 
For angle-ply (30°/−60°)2𝑠𝑠 laminates, the geometrical 

parameters of the plate and the cutouts are kept same as 
described in Section 5.2.1 for the cross-ply (0°/90°)2𝑠𝑠 
laminates. The optimal locations (xc, yc) and the 

 
 

  
(a) Optimal locations (xc, yc) of circular cutout 

 
(b) Normalized buckling factor (NBF) for three 

different positions of the circular cutout 

Fig. 7 Results for angle-ply (30°/-60° )2s laminated plate 

  
(a) Optimal center locations (xc, yc) (b) Optimal θ values 

Fig. 8 Optimal positions of the elliptical cutout within the cross-ply (0°/90° )2s laminated plate 

  
(a) Optimal center locations (xc, yc) (b) Optimal θ values 

Fig. 9 Optimal positions of the elliptical cutout within the angle-ply (30°/-60° )2s laminated plate 
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corresponding optimal θ values of the elliptical cutout for 
various values of the plate aspect ratio are shown in Figs. 
9(a) and (b) respectively. Tabulated results, for this case, are 
also given in Table 4 in Appendix B. Interestingly, for the 
angle-ply laminates considered here, the optimal θ values 
are not close to 0° or 90° instead it has a variation from 40° 
to 130° as shown in Fig. 9(b). This shows that for designing 
elliptical cutout within an orthotropic plate the cutout 
orientation plays a significant role in order to maximize the 
buckling load. 

To show that the reported optimal positions for the 
elliptical cutout correspond to the maximum buckling load, 
we compute the normalized buckling factor (NBF) by 
keeping the cutout at various positions within the plate and 
compare them with the optimal results. We consider five 
positions of the cutout and the comparison is shown in Figs. 
10(a) and (b) for the cross-ply (0°/90°)2𝑠𝑠 and angle-ply 
(30°/−60°)2𝑠𝑠  laminates respectively. The figure shows 
that the Nxcr is higher at the optimal cutout position for both 
the cross-ply and angle-ply laminated plate. These plots 
also demonstrate that the position of the elliptical cutout has 
profound effect on the critical buckling load. 

 
 

 
 

5.3 Effect of cutout size 
 
In this section, we discuss the effect of size of the cutout 

on its optimal location for the maximum buckling loads. We 
consider two cases to demonstrate this size effect. First, a 
cross-ply (0°/90°)2𝑠𝑠  laminated plate having different 
circular cutouts of radii c = e = 0.1, 0.15, and 0.2 m are 
considered. The optimal xc values for these three cutout 
sizes are given in Fig. 11(a). 

Second, we consider angle-ply (30°/−60°)2𝑠𝑠 
laminated plate and three elliptical cutouts of dimensions c 
= 0.14, 0.21, and 0.28 m with e = 0.5c. Fig. 11(b) shows the 
optimal xc values for these three elliptical cutout sizes. 
These two figures show that the cutout size has significant 
influence on the optimal results. Therefore, in order to get 
the optimal design of the plate, the geometry of the cutout 
has to be selected and then the optimal position has to be 
computed using the optimization scheme described in this 
article. 

 
5.4 Effect of material orthotropy 
 
Nature of orthotropy plays a significant role on 
 
 

 
 

  
(a) Cross-ply (0°/90° )2s laminated plate (b) Angle-ply (30°/-60° )2s laminated plate 

Fig. 10 Normalized buckling factor (NBF) for five different positions (xc, yc, θ) of the elliptical cutout 

  

(a) Optimal xc values for three different circular cutouts 
within the cross-ply (0°/90° )2s laminated plate 

(b) Optimal xc values for different elliptical cutouts within 
the angle-ply (30°/-60° )2s laminated plate 

Fig. 11 Effect of cutout sizes on the optimal location 
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determining the optimal locations of the cutout. The 
variation of optimal xc and yc values for a circular cutout 
within the cross-ply (0°/90°)2𝑠𝑠 laminated plate for three 
different Young’s modulus ratios are shown in Fig. 12. In 
these plots, only the E2 values are changed keeping all other 
material properties same as in Table 1. Fig. 12 shows that 
the optimal results are significantly different when the 
stiffness values of the lamina are varied. 

 
 

6. Conclusions 
 
This paper began with an objective to investigate 

systematically the optimal position of both circular and 
elliptical cutouts within an orthotropic plate that gives 
maximum buckling strengths. To accomplish that we have 
developed a MATLAB based optimization scheme coupled 
with buckling computation in ANSYS. The present study is 
limited to thin orthotropic plate subjected to uniformly 
distributed edge compression and the linear elastic buckling 
behavior of the plate is considered. 

 
From this study, the following conclusions are made. 
 
 Both location and orientation of the cutout has 

profound effect on the buckling load of the 
orthotropic plate. The presence of cutout 
redistributes the in-plane stresses in the orthotropic 
plate and mostly results in the significant reduction 
of the buckling strength. Therefore, finding the 
optimal position of the cutouts, using some 
optimization scheme as presented in this article, 
would be an important task in the design phases of 
the orthotropic plates. Optimal results presented in 
this paper are typical examples of these kinds of 
studies. 

 The geometry of the plate greatly influences the 
optimal position of the cutout. As the plate aspect 
ratio changes the optimal positions of the cutouts 
changes significantly. It has been shown that the 
optimal position of the cutout for some aspect ratios 
remains on the nodal lines whereas for other aspect 

 
 

ratios it moves far from the nodal lines. Therefore, 
the optimal positions of the cutouts may not be 
intuitively guessed by some prior judgments rather it 
should be obtained systematically by using some 
optimization method as illustrated in this paper. 

 Nature of material orthotropy has notable effect on 
the optimal results. The results vary significantly as 
laminate sequence and material properties of the 
orthotropic plate changes. 

 The shape and size of the cutout has significant 
effect on the optimal cutout position. Thereby, the 
optimal position cannot be treated same for different 
shapes and sizes of the cutout. 

 There are some studies available in the literature 
(e.g., Qablan et al. 2009, Narayana et al. 2013) 
where the effect of cutout location on buckling 
strength has been obtained by just positioning the 
cutouts in a few selected locations in FEM 
softwares. Hence, these studies had limitations and 
the true optimal positions could not be obtained. In 
contrast to these studies, we could provide the true 
optimal results in tabular forms and presented a 
quantitative understanding of the optimal positions 
of the cutout. 

 
The above conclusions and recommendations are 

important in design perspective and should be considered in 
the design phases of the orthotropic plates against buckling 
failure. 
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A. APDL used for the buckling analysis 
 

! This APDL is written in a compact form using ‘$’ symbol 

  
(a) Optimal xc values for three different Young’s modulus ratios (b) Optimal yc values for three different Young’s modulus ratios 

Fig. 12 Effect of material orthotropy on the optimal location of circular cutouts within the cross-ply (0°/90° )2s 
laminated plate 
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! Here, MATLAB routine supplies the (xc, yc, theta) values 
/CLEAR, START $ /FILNAME, buckling_run $ /PREP7 
length=2.8 $ height=1 $ size_elm=35 
a1= 0.14 $ a2= 0.07 $ xc = 0.2 $ yc= 0.1 $ theta = 60 
BLC5,,,length,height 
CYL4,0,0,a1$ARSCALE,2,,,,a2/a1,,,,1 
CSYS,1 $ AGEN,,2,,,,theta,,,,1 
CSYS,0 $ AGEN,,2,,,xc,yc,,,,1 $ ASBA,1,2,,, 
 
 

MPTEMP, 1, 0 
MPDATA,EX,1,,130e9$MPDATA,EY,1,,10e9 
MPDATA,EZ,1,,10e9$MPDATA,PRXY,1,,0.35  
MPDATA,PRXY,1,,0.35$ MPDATA,PRXY,1,,0.49 
MPDATA,GXY,1,,5e9$MPDATA,GYZ,1,,5e9  
MPDATA,GXZ,1,,5e9 
 
 
 
 

Table 4 Optimal results for circular (0.1 m radius) and elliptical cutout (c = 0.141 m with e = 0.5c) within the cross-ply 
(0°/90° )2s and angle-ply (30°/-60° )2s laminated plate. Optimal orientation (θ) values are given in degree 

a/b 
Circular cutout Elliptical cutout 

Cross-ply Angle-ply Cross-ply Angle-ply 
xc/b yc/b NBF xc/b yc/b NBF xc/b yc/b θ NBF xc/b yc/b θ NBF 

1.0 0.35 0.27 0.96 0.35 0.10 0.97 0.31 0.28 143 0.98 0.31 0.21 129 0.95 
1.1 0.40 0.18 0.97 0.4 0.03 0.99 0.36 0.27 140 0.99 0.36 0.20 126 0.99 
1.2 0.45 0.08 0.99 0.45 0.00 0.99 0.41 0.22 131 1.00 0.41 0.18 125 1.00 
1.3 0.50 0.05 1.00 0.50 0.00 1.00 0.46 0.21 129 1.01 0.05 0.03 89 0.99 
1.4 0.55 0.04 1.00 0.55 0.01 0.99 0.51 0.17 125 1.01 0.03 0.03 92 1.00 
1.5 0.60 0.04 1.01 0.60 0.00 0.97 0.56 0.18 129 1.02 0.03 0.01 91 1.01 
1.6 0.65 0.02 1.00 0.02 0.01 0.97 0.61 0.21 132 1.02 0.01 0.00 87 1.04 
1.7 0.70 0.02 0.95 0.00 0.00 1.04 0.01 0.02 88 1.04 0.00 0.00 94 1.06 
1.8 0.00 0.00 1.04 0.00 0.00 1.04 0.01 0.01 90 1.07 0.01 0.01 95 1.05 
1.9 0.00 0.01 1.04 0.00 0.00 1.04 0.00 0.00 89 1.08 0.00 0.00 95 1.05 
2.0 0.00 0.00 1.04 0.01 0.01 1.03 0.01 0.00 91 1.08 0.00 0.00 93 1.04 
2.1 0.00 0.00 1.04 0.00 0.00 1.03 0.01 0.00 91 1.08 0.00 0.00 80 1.04 
2.2 0.00 0.00 1.04 0.00 0.01 1.03 0.00 0.00 91 1.08 0.00 0.00 73 1.03 
2.3 0.00 0.00 1.04 0.00 0.01 1.02 0.01 0.00 89 1.08 0.01 0.01 56 1.02 
2.4 0.00 0.01 1.04 0.00 0.00 1.02 0.00 0.00 89 1.08 0.03 0.04 48 1.02 
2.5 0.00 0.00 1.04 0.00 0.00 1.00 0.00 0.00 92 1.08 0.05 0.08 57 1.01 
2.6 0.00 0.00 1.04 0.00 0.00 0.98 0.01 0.00 89 1.07 0.07 0.05 75 0.99 
2.7 0.00 0.00 1.03 0.41 0.00 0.97 0.00 0.02 94 1.05 0.55 0.03 87 1.00 
2.8 0.00 0.01 0.98 0.49 0.01 0.99 0.30 0.01 89 1.01 0.58 0.03 96 1.01 
2.9 0.41 0.00 0.97 0.53 0.03 1.01 0.50 0.01 91 1.01 0.52 0.02 97 1.02 
3.0 0.52 0.01 1.01 0.52 0.01 1.02 0.58 0.01 91 1.05 0.51 0.01 91 1.02 
3.1 0.55 0.01 1.03 0.53 0.02 1.02 0.54 0.00 90 1.05 0.51 0.00 84 1.02 
3.2 0.54 0.01 1.03 0.53 0.01 1.02 0.55 0.01 89 1.06 0.52 0.01 70 1.02 
3.3 0.55 0.00 1.03 0.54 0.01 1.01 0.54 0.00 91 1.06 0.53 0.01 59 1.02 
3.4 0.56 0.01 1.03 0.54 0.02 1.01 0.55 0.00 91 1.06 0.56 0.04 55 1.01 
3.5 0.58 0.01 1.03 0.58 0.01 1.01 0.55 0.00 89 1.05 0.56 0.03 49 1.01 
3.6 0.58 0.01 1.03 0.64 0.00 1.00 0.56 0.01 90 1.05 0.56 0.03 77 1.01 
3.7 0.59 0.01 1.03 0.64 0.01 0.99 0.56 0.01 91 1.05 0.71 0.08 75 1.00 
3.8 0.59 0.01 1.03 0.74 0.01 0.99 0.55 0.01 87 1.05 1.06 0.02 87 1.00 
3.9 0.66 0.02 1.01 0.96 0.01 1.00 0.63 0.02 96 1.03 1.15 0.03 89 1.01 
4.0 0.81 0.03 1.00 1.04 0.00 1.00 0.84 0.01 90 1.01 1.08 0.02 98 1.01 
4.1 0.96 0.02 0.99 1.08 0.00 1.01 1.19 0.00 90 1.01 1.05 0.02 94 1.01 
4.2 1.13 0.00 1.01 1.07 0.01 1.01 1.13 0.00 90 1.02 1.05 0.00 75 1.01 
4.3 1.12 0.00 1.02 1.07 0.00 1.01 0.00 0.01 88 1.04 1.09 0.07 73 1.01 
4.4 1.13 0.00 1.02 1.08 0.00 1.01 0.00 0.00 91 1.04 1.07 0.00 48 1.01 
4.5 1.17 0.00 1.02 1.10 0.01 1.01 0.00 0.01 88 1.05 1.11 0.04 61 1.01 
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Sect, 1, shell, 
Secdata, 0.15e-3, 1, 0.0,3 $ secdata, 0.15e-3, 1,90,3 
Secdata, 0.15e-3, 1, 0.0,3 $ secdata, 0.15e-3, 1,90,3 
Secdata, 0.15e-3, 1,90,3 $ secdata, 0.15e-3, 1, 0, 3 
Secdata, 0.15e-3, 1,90,3 $ secdata, 0.15e-3, 1, 0.0,3 
Secoffset, MID $ seccontrol, , , , , , , 
ET, 1, SHELL181 $ KEYOPT, 1, 3, 0 
LDIV,2,0.5,,2,0 $ LDIV,4,0.5,,2,0 
LESIZE,ALL,height/size_elm/1.5 
LESIZE, 1, height/size_elm $ LESIZE, 2, height/size_elm 
LESIZE, 3, height/size_elm $ LESIZE, 4, height/size_elm 
LESIZE, 9, height/size_elm $ LESIZE, 10, height/size_elm 
AMESH, ALL $CSKP,11,0,1,2,3 $ EMODIF,ALL,ESYS,11 
LSEL,S,LINE,,1 $ LSEL,A,LINE,,2 $ LSEL,A,LINE,,3 
LSEL,A,LINE,,4 $ LSEL,A,LINE,,9 $ LSEL,A,LINE,,10 
NSLL, S, 1 $ D, ALL, UZ $ ALLS 
 
KSEL, S, KP,, 10 $ NSLK,S $ D,ALL,UX $ D,ALL,UY $ 
ALLS 
KSEL, S, KP,, 9 $ NSLK,S $ D,ALL,UY $ ALLS 
LSEL,S,LINE,,2 $ LSEL,A,LINE,,4 $ LSEL,A,LINE,,9 
LSEL, A, LINE,,10 $ SFL,ALL,PRES,10 $ ALLS 
/SOLU $ ANTYPE, STATIC $ PSTRES, ON $ SOLVE $ 
FINISH 
/SOLU $ ANTYPE, BUCKLE $ BUCOPT, LANB, 1 $ 
SOLVE $ FINISH 
/POST1 $ RSYS, SOLU $ FILE, buckling_run, rst $ SET, 
1, 1 
*GET, factor, ACTIVE, 0, SET, FREQ, 
/OUT, buck_fact, dat 
*vwrite, 1, factor 
(F4.1, 2X, F10.4) 
/OUT 
SAVE 
FINISH 

 
 

B. Tabulated optimal results for circular and 
elliptical cutouts 
 
Optimal locations for the circular and elliptical cutouts 

within the cross-ply (0°/90°)2𝑠𝑠  and angle-ply (30°/
−60°)2𝑠𝑠 laminated plate for various values of plate aspect 
ratios are shown in Table 4. 

 
 

References 
 
Adali, S., Lene, F., Duvaut, G. and Chiaruttini, V. (2003), 

“Optimization of laminated composites subject to uncertain 
buckling loads”, Compos. Struct., 62(3-4), 261-269. 

Aktas, M. and Balcioglu, H.E. (2014), “Buckling behavior of 
pultruded composite beams with circular cutouts”, Steel 
Compos. Struct., Int. J., 17(4), 359-370. 

Al Qablan, H., Katkhuda, H. and Dwairi, H. (2009), “Assessment 
of the buckling behavior of square composite plates with 
circular cutout subjected to in-plane shear”, Jordan J. Civil 
Eng., 3(2), 184-195. 

Altunsaray, E. and Bayer, I. (2014), “Buckling of symmetrically 
laminated quasi-isotropic thin rectangular plates”, Steel 
Compos. Struct., Int. J., 17(3), 305-320. 

Anil, V., Upadhyay, C.S. and Iyengar, N.G.R. (2007), “Stability 

analysis of composite laminate with and without rectangular 
cutout under biaxial loading”, Compos. Struct., 80(1), 92-104. 

ANSYS Inc. (2015), ANSYS Reference Manual, Release 15.0 
Documentation for ANSYS. 

Baba, B.O. (2007), “Buckling behavior of laminated composite 
plates”, J. Reinf. Plast. Compos., 26(16), 1637-1655. 

Baba, B.O. and Baltaci, A. (2007), “Buckling characteristics of 
symmetrically and antisymmetrically laminated composite 
plates with central cutout”, Appl. Compos. Mater., 14(4), 265-
276. 

Baltaci, A., Sarikanat, M. and Yildiz, H. (2006), “Buckling 
analysis of laminated composite circular plates with holes”, J. 
Reinf. Plast. Compos., 25(7), 733-744. 

Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), “Analytical 
solution for buckling of embedded laminated plates based on 
higher order shear deformation plate theory”, Steel Compos. 
Struct., Int. J., 21(4), 883-919. 

Darvizeh, M., Darvizeh, A. and Sharma, C.B. (2002), “Buckling 
analysis of composite plates using differential quadrature 
method (DQM)”, Steel Compos. Struct., Int. J., 2(2), 99-112. 

Ghannadpour, S.A.M., Najafi, A. and Mohammadi, B. (2006), “On 
the buckling behavior of cross-ply laminated composite plates 
due to circular/elliptical cutouts”, Compos. Struct., 75(1-4), 3-6. 

Goldberg, D.E. (2005), “Genetic algorithms in search, 
optimization, and machine learning”, Pearson Education Inc. 

Jain, P. and Kumar, A. (2004), “Postbuckling response of square 
laminates with a central circular/elliptical cutout”, Compos. 
Struct., 65(2), 179-185. 

Jana, P. (2016), “Optimal design of uniaxially compressed 
perforated rectangular plate for maximum buckling load”, Thin-
Wall. Struct., 103, 225-230. 

Komur, M.A. (2011), “Elasto-plastic buckling analysis for 
perforated steel plates subject to uniform compression”, Mech. 
Res. Commun., 38(2), 117-122. 

Komur, M.A. and Sonmez, M. (2008), “Elastic buckling of 
rectangular plates under linearly varying in-plane normal load 
with a circular cutout”, Mech. Res. Commun., 35(6), 361-371. 

Komur, M.A., Sen, F., Atas, A. and Arslan, N. (2010), “Buckling 
analysis of laminated composite plates with an elliptical/circular 
cutout using FEM”, Adv. Eng. Software, 41(2), 161-164. 

Kumar, D. and Singh, S.B. (2010), “Effects of boundary 
conditions on buckling and postbuckling responses of 
composite laminate with various shaped cutouts”, Int. J. Mech. 
Sci., 92(3), 769-779. 

Larsson, P.L. (1987), “On buckling of orthotropic compressed 
plates with circular holes”, Compos. Struct., 7(2), 103-121. 

Lee, Y.J., Lin, H.J. and Lin, C.C. (1989), “A study on the buckling 
behavior of an orthotropic square plate with a central circular 
hole”, Compos. Struct., 13(3), 173-188. 

Leissa, A.W. (1987), “A review of laminated composite plate 
buckling”, Appl. Mech. Rev., 40(5), 575-591. 

Lin, C.C. and Kuo, C.S. (1989), “Buckling of laminated plates 
with holes”, J. Compos. Mater., 23(6), 536-553. 

Lopatin, A.V. and Morozov, E.V. (2014), “Approximate buckling 
analysis of the CCFF orthotropic plates subjected to in-plane 
bending”, Int. J. Mech. Sci., 85, 38-44. 

Mohammadi, B., Najafi, A. and Ghannadpour, S.A.M. (2006), 
“Effective widths of compression-loaded of perforated cross-ply 
laminated composites”, Compos. Struct., 75(1-4), 7-13. 

Narayana, A.L., Rao, K. and Kumar, R.V. (2013), “Effect of 
location of cutout and plate aspect ratio on buckling strength of 
rectangular composite plate with square/rectangular cutout 
subjected to various linearly varying in-plane loading using 
FEM”, Int. J. Mech., 7(4) , 508-513. 

Nemeth, M.P. (1988), “Buckling behavior of compression-loaded 
symmetrically laminated angle-ply plates with holes”, AIAA 
Journal, 26(3), 330-336. 

50



 
Position optimization of circular/elliptical cutout within an orthotropic rectangular plate for maximum buckling load 

Onkar, A.K., Upadhyay, C.S. and Yadav, D. (2007), “Stochastic 
finite element buckling analysis of laminated plates with 
circular cutout under uniaxial compression”, J. Appl. Mech., 
74(4), 798-809. 

Paluch, B., Grediac, M. and Faye, A. (2008), “Combining a finite 
element programme and a genetic algorithm to optimize 
composite structures with variable thickness”, Compos. Struct., 
83(3), 284-294. 

Rajanna, T., Banerjee, S., Desai, Y.M. and Prabhakara, D.L. 
(2016), “Vibration and buckling analyses of laminated panels 
with and without cutouts under compressive and tensile edge 
loads”, Steel Compos. Struct., Int. J., 21(1), 37-55. 

Reddy, J.N. (2003), “Mechanics of Laminated Composite Plates 
and Shells: Theory and Analysis”, CRC Press. 

Seifi, R., Chahardoli, S. and Attar, A.A. (2017), “Axial buckling of 
perforated plates reinforced with strips and middle tubes”, 
Mech. Res. Commun., 85, 21-32. 

Sharma, D.S., Patel, N.P. and Trivedi, R.R. (2014), “Optimum 
design of laminates containing an elliptical hole”, Int. J. Mech. 
Sci., 85, 76-87. 

Sivakumar, K., Iyengar, N.G.R. and Deb, K. (1998), “Optimum 
design of laminated composite plates with cutouts using a 
genetic algorithm”, Compos. Struct., 42(3), 265-279. 

Spallino, R. and Rizzo, S. (2002), “Multi-objective discrete 
optimization of laminated structures”, Mech. Res. Commun., 
29(1), 17-25. 

Srivatsa, K.S. and Murty, A.K. (1992), “Stability of laminated 
composite plates with cut-outs.”, Comput. Struct., 43(2), 273-
279. 

Topal, U. and Uzman, Ü. (2007), “Optimum design of laminated 
composite plates to maximize buckling load using MFD 
method”, Thin-Wall. Struct., 45(7-8), 660-669. 

Walker, M. (1999), “Optimal design of symmetric laminates with 
cut-outs for maximum buckling load”, Comput. Struct., 70(3), 
337-343. 

Zehnder, N. and Ermanni, P. (2006), “A methodology for the 
global optimization of laminated composite structures”, 
Compos. Struct., 72(3), 311-320. 

Zhang, Y.X. and Yang, C.H. (2009), “Recent developments in 
finite element analysis for laminated composite plates”, 
Compos. Struct., 88(1), 147-157. 

Zhong, H. and Gu, C. (2007), “Buckling of symmetrical cross-ply 
composite rectangular plates under a linearly varying in-plane 
load”, Compos. Struct., 80(1), 42-48. 

 
 
CC 
 
 
 
 

51




