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1. Introduction 

 

Rectangular thin and thick plates are important 

structural elements that are widely used in various fields of 

engineering including mechanical, civil, aerospace, marine 

and structural engineering. Thus, a good understanding of 

the vibration characteristics of such structural components 

is crucial to the structural designers. 

There are generally two kinds of methods which can be 

employed to determine the natural frequencies and mode 

shapes of rectangular plates, namely analytical and 

numerical methods. Analytical methods are very desirable 

since they provide valuable information about solution 

behavior over problem domain. But, their applications to 

plate problems are limited to rectangular plates with Levy-

type boundary conditions (Leissa 1973, Xiang et al. 2002, 

Hashemi et al. 2012). This is due to the complexities 

introduced by the imposition of free edges and free corner 

boundary conditions. So, various approximate or numerical 

methods such as the Ritz method (Leissa 1973, Bassily and 

Dickinson 1975, Dawe and Roufaeil 1980, Bhat 1985, Felix 

et al. 2011, Eftekhari and Jafari 2012a, Chakraverty and 

Pradhan 2014), the method of superposition (Gorman 1978, 

Gorman and Ding 1996), the finite strip method (Dawe 

1987, Ashour 2003, Akhras and Li 2007, Ovesy and 
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Ghannadpour 2009, Azhari and Heidarpour 2011), the finite 

integral transform method (Zhong and Yin 2008), the 

extended Kantorovich approach (Jones and Milne 1976, 

Fallah et al. 2013), the Fourier and power series expansion 

methods (Bhaskar and Dhaoya 2009, Zhang and Li 2009), 

the finite difference method (Rajasekaran and Wilson 

2013), the finite element method (Valizadeh et al. 2013, 

Pachenari and Attarnejad 2014), the differential quadrature 

method (DQM) (Bert et al. 1988, Darvizeh et al. 2002, 

Karami and Malekzadeh 2003, Civalek 2004, Malekzadeh 

et al. 2004, Lal and Saini 2013), the meshless method 

(Tsiatas and Yiotis 2013, Ragb et al. 2014), the spectral 

element method (Wu et al. 2014), and the discrete singular 

convolution (DSC) method (Ng et al. 2004, Wang and Xu 

2010) have been developed to study the dynamic and 

stability behaviors of rectangular plates with general 

boundary conditions. 

Among the approximate methods used for addressing 

the present problem, the finite element method (FEM) is 

one of the most popular and versatile techniques that has 

been widely used by many researchers to obtain 

approximate solutions for the natural frequencies of 

rectangular thin and thick plates (Reddy 1993, Zienkiewicz 

and Taylor 2000). It is powerful computationally due to its 

flexibility in handling complex geometries and boundary 

conditions. However, the number of unknowns and the 

amount of input data are very large in the FEM. A way for 

overcoming this limitation is to combine the FEM with 

other known analytical or approximate methods. In this 

regard, some researchers have combined the FEM with 
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higher order methods such as the Ritz technique (Cheung 

1968, 1976, Cheung et al. 1996), and the differential 

quadrature method (DQM) (Eftekhari and Jafari 2012b, 

2014a). Although these mixed methods were shown to work 

well for some plate problems, their accuracy and 

convergence are not guaranteed for handling the plate 

problem with general boundary conditions. For example, in 

conventional finite strip method (FSM) (say mixed Ritz-

FEM), only the geometric boundary conditions can be 

incorporated into the solution process. Hence, the 

conventional FSM may encounter some difficulties when 

dealing with rectangular plates involving free edges and 

free corners (Jafari and Eftekhari 2011). The mixed FE-

DQM can be used to overcome some of the drawbacks of 

the FSM (Eftekhari and Jafari 2014a). For instance, the free 

edge boundary conditions can be easily implemented in this 

mixed method. However, similar to the mixed Ritz-DQM 

(Eftekhari and Jafari 2012c), the implementation of free 

corner boundary conditions is still an important issue in the 

mixed FE-DQ formulation. 

To overcome the above-mentioned limitations, the 

present author and his co-author proposed recently a simple 

mixed method in which all the natural boundary conditions, 

including the free edge and free corner boundary 

conditions, are exactly implemented (Eftekhari and Jafari 

2012d). In this method, the original plate problem is first 

reduced to two simple beam problems. One beam problem 

is discretized by the FEM while the other by the Ritz 

method. An analogue procedure was also proposed to 

implement the natural boundary conditions of the plate. The 

mixed FE-Ritz method has been successfully applied to 

study the free vibration of various benchmark thin plate 

problems. It has been found that the mixed FE-Ritz method 

can produce highly accurate solutions for vibration problem 

of plates involving free edges, free corners and irregular 

boundaries (Eftekhari and Jafari 2012d). However, as we 

will show in this paper, the mixed FE-Ritz method is not 

very efficient for solving plate problems with Levy-type 

boundary conditions. Besides, the application of the mixed 

FE-Ritz method was limited to thin plate problems. To 

improve its efficiency and applicability, this paper presents 

a mixed Ritz-FE formulation which is more suitable for 

analysis of such type of plates. This formulation is similar 

to the FE-Ritz approach, but the order of combined methods 

(FEM and Ritz method) is only reversed. Its stability, rate of 

convergence, and accuracy are challenged through the 

solution of some benchmark vibration problems. It is shown 

that the mixed Ritz-FEM can be used as an efficient tool for 

vibration analysis of rectangular thin and thick plates with 

general boundary conditions. Furthermore, it requires less 

computational effort compared with the FE-Ritz approach 

for vibration analysis of Levy-type rectangular plates. 

 

 

2. Formulation for free vibration of thin rectangular 
plates 
 

2.1 Governing equation and Ritz formulation 
 

For an elastic isotropic thin rectangular plate with length 

a, width b, thickness h, mass density ρ, Young’s modulus E, 

Poisson’s ratio μ, bending stiffness D = Eh3 / [12(1  ̶μ2)], the 

governing non-dimensional differential equation for free 

vibration is 
 

wwww YYYYXXYYXXXX
2

,
4

,
2

, 2    (1) 

 

where a subscript comma denotes differentiation; w is the 

dimensionless mode function of the lateral deflection;X = x 

/ a and Y = y / b are dimensionless coordinates; λ = a / b is 

the aspect ratio; and Ω = 𝜔𝑎2 𝜌ℎ/𝐷 is the dimensionless 

frequency, wherein ω is the circular frequency. 

The boundary conditions of the rectangular thin plate 

are: 

(I) Simply-supported edge (S) 
 

1and/or      0at      0,  XXww XX  (2) 

 

1and/or      0at      0,  YYww YY  (3) 

 

(II) Clamped edge (C) 
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(III) Free edge (F) 
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For a free corner formed by the intersection of two free 

edges, the additional condition 
 

0, XYw  (8) 

 

must also be satisfied at the corner (Leissa 1973). 

Using the separation of variable technique, the 

transverse deflection of the plate is approximated along the 

X-axis by using the following series 
 






n

j

jj XYYXw
1

)()(),(  (9) 

 

where Ψj(Y) are undetermined parameters, Φi(X) are 

orthonormal approximation functions that satisfy the 

geometric boundary conditions of the plate in the X-

direction (see Bhat (1985) for details), and n is the number 

of solution terms. Substituting Eq. (9) into Eq. (1), 

multiplying both sides of the resulting equation by Φi(X), 

and performing the integration over the length of the plate 

(0 ≤ X ≤ 1), we obtain 
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where (i, j = 1, 2,..., n) 
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It can be seen that the application of separation of 

variable technique with Ritz procedure results in a system 

of eigenvalue ordinary differential equations of the fourth-

order. This system will be further discretized by the 

application of the FEM. The details will be given in the next 

sub-section. It is interesting to note that since we used 

orthonormal functions as the Ritz trial functions, the matrix 

[B] in Eq. (10) is an identity matrix. This will improve the 

efficiency of the proposed formulation significantly. 

However, the formulation will be presented for the general 

case where this matrix is not an identity matrix. 
 

2.2 FEM analogues of resulting system of 
eigenvalue ordinary differential equations 

 

At this stage, we apply the FEM to discretize the 

resulting system of eigenvalue ordinary differential 

equations given in Eq. (10). The domain of the problem 

along the Y-axis is first divided into N number of equal 

length finite elements. The polynomial approximation of the 

solution within a typical finite element is then assumed as 

(Ye ≤ Y ≤ Ye+1) 
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where 𝛼𝑗
𝑖,𝑒

 (f, i = 1, 2,..., n, e = 1, 2,..., N) are nodal values 

of the eth finite element (displacements and slopes) and 

𝜓𝑗
𝑒(𝑌) are the interpolation functions of degree p. Now, 

consider the kth equation of the system (10) 
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(18) 

Substituting Eq. (17) into Eq. (18), multiplying both 

sides of resulting equation by 𝜓𝑗
𝑒(𝑌) and performing the 

integration over the length of the eth finite element (Ye ≤ Y 

≤ Ye+1), we obtain 
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where (i, j = 1, 2,..., p+1, k = 1, 2,..., n) 
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The assembly of finite element equations (19) and 

imposition of geometric boundary conditions are similar to 

those of one-dimensional beam element equations. By 

doing so, we obtain the following assembled equations 
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Eq. (24) can be expressed for all the k-values in the 

compact form as 
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where the sub-matrices [𝐾 𝑖𝑗 ] and [𝑀 𝑖𝑗 ] are given by (i, j 

= 1, 2,..., n) 
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TTnTT ]}{...}{}{[}~{ 21    (28) 

 

The eigenvalue problem (25) can be solved for the 

eigenvalues Ω, if the natural boundary conditions of the 

plate problem are also applied. The procedure is detailed in 

the following section. 

 

2.3 Implementation of natural boundary conditions 
of the rectangular thin plate 

 

According to the new variational formulation recently 

proposed by the present author and his co-author (Eftekhari 

and Jafari 2012a, 2014b, c), the natural boundary conditions 

of the problem can be integrated along its boundaries or 

analogized by the approximate method. The resulting 

analog equations can then be used to modify the stiffness 

matrix of the problem. It is noted that for the case of 

rectangular plates with combination of simply supported 

and clamped edges, there is no need to any modification of 

the stiffness matrix. Therefore, in this section, the required 

boundary analog equations are derived only for the case of 

rectangular plates involving free edges. 

 

2.3.1 Implementation of free edge boundary 
conditions in the X-direction 

Consider a rectangular thin plate having free edges at X 

= 0 and X = 1. The boundary conditions of the plate for this 

case are given in Eq. (6). The main idea of the proposed 

variational method (Eftekhari and Jafari 2012a) is that these 

boundary conditions can be related to the boundary terms 

𝐴𝑖𝑗
∗  and 𝐴𝑖𝑗

∗∗  defined in Eq. (11). Substituting the Ritz 

approximation (given in Eq. (9)) into Eq. (6) and 

performing some mathematical manipulations, we obtain 

the following boundary analog equations 
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where the matrix [C*] is defined in Eq. (13). Eqs. (29) and 

(30) can be used to modify the stiffness matrix of the plate. 

 

2.3.2 Implementation of free edge boundary 
conditions in the Y-direction 

Consider a rectangular thin plate having free edges at Y 

= 0 and Y = 1. The boundary conditions of the plate for this 

case are given in Eq. (7). To implement the free edge 

boundary conditions at Y = 0 and Y = 1, these boundary 

conditions should be expressed in terms of the boundary 

terms 
e
ijA


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e
ijA
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 defined in Eq. (20). Substituting the 

Ritz approximation (given in Eq. (9)) and the finite element 

approximation (given in Eq. (17)) into Eq. (7) and 

performing some mathematical manipulations, we obtain 

the following boundary analog equations 
 

 

  },{]
~

[]
~

[

}{]
~

[]
~

[

21

2

43

lTT
kl

l
kl

DDC

AAB












   nlk ,...,2,1,   (31) 

 

 

  }{]
~

[]
~

[
)2(

}{]
~

[]
~

[

21

2

21

l
kl

l
kl

DDC

AAB















 (32) 

 

wherein Bkl and Ckl are defined in Eqs. (12) and (13), 

respectively, and 
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where the subscript “exp” means that the associated matrix 

is written in the global coordinate system. Eqs. (31) and 

(32) can be used to modify the stiffness matrix of the plate. 

 

2.3.3 Implementation of free corner boundary 
condition 

As pointed out earlier, for the case of corners formed by 

the intersection of two free edges, the additional condition 

w,XY = 0 must also be satisfied at the corners. Consider a 

rectangular thin plate having such a corner at (X, Y) = (X*, 

Y*) (where (X*, Y*) = (0, 0), (0, 1), (1, 0) or (1, 1)). 

Substituting the Ritz approximation (given in Eq. (9)) and 

the finite element approximation (given in Eq. (17)) into 

this equation and performing some mathematical 

manipulations, we obtain the following boundary analog 

equations 
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Eq. (37) can be used to modify the stiffness matrix of 

the plate. 
 

2.4 Numerical results 
 

To demonstrate the stability, rate of convergence and 

accuracy of the proposed coupled approach, natural 

frequencies of square thin plates with different boundary 

conditions are evaluated and the results are shown in Tables 

1-4. To simplify the notation, the boundary conditions of the 

plate are denoted by letters S (simply supported), C 

658



 

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions 

 

 

 

 
(clamped), and F (free). For instance, the symbol SFCF 

denotes that the plate has a simply supported edge at X = 0, 

a free edge at Y = 0, a clamped edge at X = 1, and a free 

edge at Y = 1. In all computation, the Poisson’s ratio μ = 0.3 

is taken. 

In applying the proposed method to vibration problem 

 

 

 

 
of thin plates, the domain of the problem along the Y axis is 

divided into N equal length finite elements with pth order 

interpolation functions, and n number of Ritz terms is 

considered for approximation of the solution in the X-

direction. 

Table 1 illustrates the convergence study for the first 

Table 1 Convergence and comparison of natural frequencies of a clamped square thin plate (N = 1) 

n p Ω1 Ω2 Ω3 Ω4 Ω5 

3 

7 35.9900 73.4201 74.1843 108.4270 137.2938 

9 35.9881 73.4037 74.1797 108.4111 132.0998 

13 35.9881 73.4037 74.1797 108.4111 131.9019 

15 35.9881 73.4037 74.1797 108.4111 131.9019 

5 

7 35.9881 73.4121 73.4201 108.2574 132.0998 

9 35.9855 73.3947 73.4121 108.2387 131.7789 

13 35.9854 73.3946 73.4118 108.2386 131.6646 

15 35.9854 73.3946 73.4118 108.2386 131.6646 

7 

7 35.9881 73.4037 73.4118 108.2387 131.9035 

9 35.9854 73.3941 73.3947 108.2179 131.6656 

13 35.9852 73.3939 73.3941 108.2174 131.5816 

15 35.9852 73.3939 73.3941 108.2174 131.5816 

9 

7 35.9881 73.4037 73.4118 108.2386 131.9019 

9 35.9854 73.3941 73.3946 108.2175 131.6646 

13 35.9852 73.3939 73.3939 108.2166 131.5808 

15 35.9852 73.3939 73.3939 108.2166 131.5808 

Leissa (1973) 35.992 73.413 73.413 108.27 131.64 
 

Table 2 Convergence and comparison of natural frequencies of a clamped square thin plate (n = 11) 

p n Ω1 Ω2 Ω3 Ω4 Ω5 

3 

2 36.4831 74.1918 92.3989 124.8356 132.9960 

6 35.9935 73.4170 73.5077 108.3535 131.8358 

10 35.9864 73.3976 73.4090 108.2365 131.6376 

20 35.9853 73.3941 73.3948 108.2179 131.5847 

30 35.9852 73.3939 73.3940 108.2168 131.5816 

40 35.9852 73.3939 73.3939 108.2166 131.5810 

45 35.9852 73.3939 73.3939 108.2166 131.5809 

50 35.9852 73.3939 73.3939 108.2166 131.5809 

5 

1 35.9995 73.5345 74.1797 108.4111 132.2604 

2 35.9870 73.4019 73.4286 108.2275 131.8262 

4 35.9853 73.3942 73.3942 108.2177 131.5816 

6 35.9852 73.3939 73.3939 108.2167 131.5809 

8 35.9852 73.3939 73.3939 108.2166 131.5808 

7 

1 35.9881 73.4037 73.4118 108.2386 131.9019 

2 35.9852 73.3941 73.3941 108.2175 131.5852 

3 35.9852 73.3939 73.3939 108.2166 131.5808 

4 35.9852 73.3939 73.3939 108.2165 131.5808 

Leissa (1973) 35.992 73.413 73.413 108.27 131.64 
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five natural frequencies,  Ω = 𝜔𝑎2 𝜌ℎ/𝐷,  of clamped 

square thin plates with respect to p (order of FEM 

interpolation functions) and n (number of Ritz terms). Only 

one finite element is considered in the Y-direction (i.e., N = 

1). The results are also compared with the results obtained 

by the conventional Ritz method (Leissa 1973). It can be 

seen from Table 1 that the present results converge very 

quickly and agree well with those of Ritz approach. 

Table 2 shows the convergence of solutions for natural 

frequencies of clamped square thin plates with respect to p 

and N (number of finite elements). These results are 

obtained using n = 11. It can be seen from Table 2 that the 

results of proposed method converge uniformly with 

increasing number of finite elements to their final values. It 

can also be seen that when lower order algorithms are used, 

a larger number of finite elements are required to achieve 

accurate solutions. For example, when FEM with Hermit 

interpolation functions is employed (i.e., when p = 3), the 

convergence is achieved with 45 finite elements. By 

increasing the order of interpolation functions, the 

convergence rate is improved significantly and accurate 

solutions are achieved by using a smaller number of finite 

elements. 

Table 3 shows the convergence study of the first five 

dimensionless natural frequencies of Levy-type square 

 

 
plates (i.e., plates with two opposite sides simply 

supported). The number of Ritz terms (i.e., n) and the order 

of interpolation functions (i.e., p) are taken to be the same 

(i.e., we assumed that n = p). These results are obtained 

using only one finite element. The analytical solutions of 

Leissa (1973) are also shown in this Table for comparison 

purposes. It can be clearly seen from table 3 that the present 

results converge very quickly and agree very closely with 

the exact solution values of Leissa (1973) even to all 

available significant digits. 

The first five non-dimensional frequency parameters for 

square plates involving free corners are tabulated in Table 4. 

These results are obtained using two eleventh-order finite 

elements and different values of n. The results are also 

compared with the results obtained by the conventional Ritz 

method (Leissa 1973). It can be seen from Table 4 that the 

results of proposed method have a close agreement with the 

results of conventional Ritz method (Leissa 1973). 

However, the results of proposed approach are slightly 

smaller than the Ritz solution values of Leissa (1973). The 

reason for this is the lack of satisfaction of free edge and 

free corner boundary conditions in the Leissa’s Ritz 

formulation. These results show the effectiveness of the 

proposed mixed Ritz-FE approach for vibration analysis of 

thin square plates with general boundary conditions. 

Table 3 Convergence and comparison of natural frequencies of Levy-type square thin plates (N = 1) 

Plate p = n Ω1 Ω2 Ω3 Ω4 Ω5 

SSSS 

7 19.7392 49.3481 49.3486 78.9573 98.7013 

9 19.7392 49.3480 49.3480 78.9568 98.6961 

11 19.7392 49.3480 49.3480 78.9568 98.6960 

Leissa (1973) 19.7392 49.3480 49.3480 78.9568 98.6960 

SCSS 

7 23.6464 51.6752 58.6582 86.1493 100.2807 

9 23.6463 51.6743 58.6464 86.1345 100.2699 

11 23.6463 51.6743 58.6464 86.1345 100.2698 

Leissa (1973) 23.6463 51.6743 58.6464 86.1345 100.2698 

SCSC 

7 28.9514 54.7478 69.3439 94.6021 102.2458 

9 28.9509 54.7431 69.3270 94.5853 102.2168 

11 28.9509 54.7431 69.3270 94.5853 102.2162 

Leissa (1973) 28.9509 54.7431 69.3270 94.5853 102.2162 

SSSF 

7 11.6845 27.7563 41.1969 59.0662 61.8711 

9 11.6845 27.7563 41.1967 59.0655 61.8607 

11 11.6845 27.7563 41.1967 59.0655 61.8606 

Leissa (1973) 11.6845 27.7563 41.1967 59.0655 61.8606 

SCSF 

7 12.6874 33.0654 41.7027 63.0159 72.4153 

9 12.6874 33.0651 41.7019 63.0148 72.3977 

11 12.6874 33.0651 41.7019 63.0148 72.3976 

Leissa (1973) 12.6874 33.0651 41.7019 63.0148 72.3976 

SFSF 

7 9.6314 16.1348 36.7257 38.9453 46.7383 

9 9.6314 16.1348 36.7256 38.9450 46.7381 

11 9.6314 16.1348 36.7256 38.9450 46.7381 

Leissa (1973) 9.6314 16.1348 36.7256 38.9450 46.7381 
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3. Formulation for free vibration of thick 
rectangular plates 
 

3.1 Governing equations and Ritz formulation 
 

Consider the free vibration of an elastic isotropic thick 

rectangular plate with length a, width b, thickness h, mass 

density ρ, Young’s modulus E, Poisson’s ratio μ, shear 

correction factor k2, bending stiffness D = Eh3 / [12(1 ‒ μ2)], 

and shear modulus G = E / [2(1 +μ)], governed by the 

following non-dimensional differential equations (Mindlin 

1945, Rao 2007) 
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where φX and φY are dimensionless mode functions of 

rotations due to plate bending, W is the dimensionless mode 

 

 

function of the lateral deflection; X = x / a and Y = y / b are 

dimensionless coordinates; λ = a / b is the aspect ratio; and 

Ω = 𝜔𝑎2 𝜌ℎ/𝐷 is the dimensionless frequency parameter 

wherein ω is the circular frequency of the plate. 

Furthermore 
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The boundary conditions of the rectangular plate are: 
 

(I) Simply-supported edge (S) 
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 (46) 

 

(II) Clamped edge (C) 

Table 4 Convergence and comparison of natural frequencies of square thin plates involving free corners 

(N = 2, p = 11) 

Plate n Ω1 Ω2 Ω3 Ω4 Ω5 

SSSS 

7 3.3671 17.3164 19.2930 38.2113 51.0392 

9 3.3670 17.3164 19.2929 38.2112 51.0354 

11 3.3670 17.3164 19.2929 38.2112 51.0354 

Leissa (1973) 3.3687 17.407 19.367 38.291 51.324 

SCSS 

7 5.3525 19.0775 24.6757 43.0936 52.7079 

11 5.3513 19.0757 24.6714 43.0889 52.7075 

13 5.3511 19.0753 24.6707 43.0879 52.7075 

15 5.3511 19.0751 24.6704 43.0873 52.7075 

SCSC 

17 5.3510 19.0750 24.6701 43.0869 52.7075 

Leissa (1973) 5.364 19.171 24.768 43.191 53.000 

7 6.9217 23.9127 26.5871 47.6628 62.7224 

11 6.9198 23.9054 26.5853 47.6537 62.7076 

SSSF 

13 6.9196 23.9044 26.5851 47.6524 62.7066 

15 6.9195 23.9038 26.5850 47.6517 62.7062 

17 6.9194 23.9035 26.5850 47.6512 62.7059 

Leissa (1973) 6.942 24.034 26.681 47.785 63.039 

SCSF 

7 3.4722 8.5098 21.2921 27.1995 30.9675 

11 3.4712 8.5073 21.2863 27.1990 30.9585 

13 3.4711 8.5069 21.2853 27.1989 30.9568 

15 3.4710 8.5066 21.2847 27.1988 30.9558 

SFSF 

17 3.4710 8.5065 21.2844 27.1988 30.9553 

Leissa (1973) 3.9417 8.5246 21.429 27.331 31.111 

7 6.6437 14.9015 25.3758 26.0006 48.4538 

9 6.6437 14.9015 25.3757 26.0005 48.4495 
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1and/or      0at      0  XXw YX   

)1and/or      0at    (also  YY  
(47) 

 

(III) Free edge (F) 
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Using the separation of variable technique, the solutions 

to Eqs. (41)-(43) are assumed to be in the following forms 
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where Λj(Y), Γj(Y) and Ψj(Y) (j = 1, 2,..., n) are 

undetermined parameters; Θj(X) and Φj(X) are orthonormal 

approximation functions that satisfy the geometric boundary 

conditions of the plate in the X-direction; and n is the 

number of solution terms. Substituting Eqs. (50)-(52) into 

Eqs. (41)-(43), multiplying both sides of resulting 

equations, respectively, by Θi(X), Φi(X) and Φi(X) and 

performing the integration over the length of the plate (0 ≤ 

X ≤ 1), we obtain 
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where (i, j = 1, 2,..., n) 
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It can be seen that the application of separation of 

variable technique with Ritz procedure results in a system 

of eigenvalue ordinary differential equations of second-

order. This system will be further discretized by the 

application of the FEM. The details will be given in the next 
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sub-section. It should be pointed out that due to 

orthonormality property of the Ritz trial functions, the 

matrices [B], ],
~

[B  ],
~

[D  ]
~~

[B  and ]
~~

[D  are identity 

matrices of order n × n. Therefore the proposed approach, at 

this stage, requires the evaluation of the matrices [A], ],
~

[A  
],[C  and ]

~
[C  only. 

 

3.2 FEM analogues of resulting system of 
eigenvalue ordinary differential equations 

 

To discretize Eqs. (53)-(55) using the FEM, the domain 

of the plate problem along the Y-axis is first discretized into 

N number of equal length finite elements. The polynomial 

approximation of the solutions within a typical finite 

element is then assumed as (i = 1, 2,..., n, Ye ≤ Y ≤ Ye+1) 
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where 𝛼𝑗
𝑖,𝑒

, 𝛽𝑗
𝑖,𝑒

and  𝛾𝑗
𝑖,𝑒

 (j = 1, 2,..., q+1; i = 1, 2,…, n; e 

= 1,2,…, N) are nodal values of the eth finite element 

(rotations and displacements) and 𝜓𝑗
𝑒(𝑌)  are the 

interpolation functions of degree q. Now, consider the kth 

equation of the system of Eqs. (53)-(55) 
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Substituting the finite element approximations, given in 

Eqs. (74)-(76), into Eqs. (77)-(79), multiplying both sides of 

resulting equation by𝜓𝑗
𝑒(𝑌) and performing the integration 

over the length of the eth finite element (Ye ≤ Y ≤ Ye+1), we 

obtain 
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where (i, j = 1, 2,..., q+1, k = 1, 2,..., n) 
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The assembly of finite element equations (80)-(82) and 

imposition of geometric boundary conditions are similar to 

those of one-dimensional bar element equations (see Reddy 

(1993) for details). By doing so, we obtain the following 

assembled equations 
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Eqs. (89)-(91) can be expressed for all the k-values in 

the compact form 
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where (i, j = 1, 2,..., n) 
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After applying the natural boundary conditions of the 

plate problem, the eigenvalue problem (92) can be solved 

for the eigenvalues Ω. The procedure is detailed in the 

following sub-section. 
 

3.3 Implementation of natural boundary conditions 
of the rectangular thick plate 

 

The procedure for implementation of natural boundary 

conditions of rectangular thick plates is similar to that 

described in Section 2.3 for rectangular thin plates. 

Furthermore, similar to rectangular thin plates, the case of 

rectangular thick plates with combination of simply 

supported and clamped edges does not require any 

modification of the stiffness matrix. 
 

3.3.1 Implementation of free edge boundary 
conditions in the X-direction 

Consider a rectangular thick plate having free edges at X 

= 0 and X = 1. The boundary conditions of the plate for this 

case are given in Eq. (48). To apply these boundary 

conditions, we substitute the Ritz approximations (given in 

Eqs. (50)-(52)) into Eq. (48) and perform some 

mathematical manipulation to obtain 
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where ],[ *A  ],
~

[ *A  and ]
~~

[ *A  are defined in Eqs. (56), 

(59) and (62), respectively. Furthermore 
 

1
0

1 ][ jiijA   (103) 

 

Substituting Eqs. (100)-(102) into Eqs. (53)-(55) and the 

results into Eq. (92) gives the modified stiffness matrices of 

the plate. 
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3.3.2 Implementation of free edge boundary 
conditions in the Y-direction 

Consider a rectangular thick plate having free edges at Y 

= 0 and Y = 1. The boundary conditions of the plate for this 

case are given in Eq. (49). Substituting the Ritz 

approximations (given in Eqs. (50)-(52)) and the finite 

element approximations (given in Eqs. (74)-(76)) into Eq. 

(49) and performing some mathematical manipulations, we 

obtain (k, l = 1, 2,..., n) 
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wherein Bkl, Ckl, ,
~
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in Eqs. (57), (58), (60), (61), (63) and (64), respectively, 

and 
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Table 5 Convergence and comparison of natural frequencies of a clamped square thick plate 

(N = 1, h/b = 0.1, k2 = 5/6, μ = 0.3) 

n q Ω1 Ω2 Ω3 Ω4 Ω5 

7 

9 3.2955 6.2860 6.2864 8.8108 10.3836 

10 3.2955 6.2860 6.2863 8.8108 10.3822 

11 3.2955 6.2859 6.2863 8.8107 10.3821 

8 

9 3.2955 6.2860 6.2860 8.8100 10.3816 

10 3.2954 6.2859 6.2860 8.8100 10.3802 

11 3.2954 6.2859 6.2859 8.8099 10.3802 

9 

9 3.2954 6.2859 6.2860 8.8100 10.3802 

10 3.2954 6.2859 6.2859 8.8100 10.3789 

11 3.2954 6.2858 6.2859 8.8099 10.3789 

Liew et al. (1993) 3.2954 6.2858 6.2858 8.8098 10.3788 
 

Table 6 Convergence and comparison of natural frequencies of a clamped square thick plate 

(n = 10, h/b = 0.1, k2 = 5/6, μ = 0.3) 

q N Ω1 Ω2 Ω3 Ω4 Ω5 

2 

3 3.4343 6.3662 7.5192 9.6435 10.4761 

7 3.3019 6.2902 6.3314 8.8428 10.4174 

10 3.2971 6.2871 6.2975 8.8185 10.3963 

20 3.2955 6.2859 6.2866 8.8104 10.3802 

30 3.2954 6.2858 6.2860 8.8099 10.3791 

40 3.2954 6.2858 6.2859 8.8098 10.3789 

45 3.2954 6.2858 6.2859 8.8098 10.3789 

3 

3 3.2974 6.2886 6.3120 8.8334 10.4246 

7 3.2955 6.2859 6.2862 8.8103 10.3800 

9 3.2954 6.2859 6.2859 8.8099 10.3791 

11 3.2954 6.2858 6.2859 8.8098 10.3789 

13 3.2954 6.2858 6.2858 8.8098 10.3788 

4 

3 3.2956 6.2862 6.2871 8.8112 10.3816 

4 3.2955 6.2859 6.2860 8.8102 10.3799 

5 3.2954 6.2859 6.2859 8.8099 10.3790 

6 3.2954 6.2858 6.2859 8.8098 10.3789 

Liew et al. (1993) 3.2954 6.2858 6.2858 8.8098 10.3788 
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where the subscript “exp” means that the associated matrix 

is written in the global coordinate system. Eqs. (104)-(106) 

can be used to modify the stiffness matrix of the plate. 

 

3.4 Numerical results 
 

To validate the proposed mixed methodology and its 

effectiveness, natural frequencies of square thick plates with 

different boundary conditions are evaluated and the results 

are tabulated in Tables 5-8. In all computation, the Poisson’s 

ratio μ = 0.3 is taken. 

Tables 5 and 6 shows the convergence and comparison 

studies for the first five frequency parameters,  Ω =

(𝜔𝑏2/𝜋2) 𝜌ℎ/𝐷, for clamped thick square plates. The 

results are compared with those obtained by the Pb2-Ritz 

method (Liew et al. 1993). 

An excellent agreement is observed between the present 

results and those of the Pb2-Ritz approach. It can also be 

observed that a better convergence rate can be achieved by 

increasing the order of interpolation functions. 

Table 7 shows the convergence and comparison studies 

of the first five dimensionless frequency parameters, Ω =

𝜔𝑎2 𝜌ℎ/𝐷,for thick square plates with Levy-type 

boundary conditions. These results are obtained using only 

 

 

one finite element (i.e., N = 1). Furthermore, the number of 

Ritz terms (i.e., n) and the order of interpolation functions 

(i.e., q) are assumed to be the same (i.e., q = n). The 

analytical solutions of Hashemi and Arsanjani (2005) are 

also shown in this Table for comparison. It can be seen from 

Table 7 that the present results converge very quickly and 

agree well with analytical solutions. 

The numerical results for different boundary conditions 

of the thick plate are presented in Table 8. An excellent 

agreement is observed between the results of present study 

and those presented in the literature. These results show the 

effectiveness of the proposed mixed Ritz-FE approach for 

vibration analysis of thick square plates with general 

boundary conditions. 

 

 
4. Comparison with mixed FE-Ritz approach 

 
The present author and his co-author proposed recently 

a mixed FE-Ritz approach for free vibration analysis of thin 

plates with general boundary conditions (Eftekhari and 

Table 7 Convergence and comparison of natural frequencies of Levy-type square thick plates 

(N = 1, h/a = 0.2, k2 = 0.86667, μ = 0.3) 

Plate n Ω1 Ω2 Ω3 Ω4 Ω5 

SSSS 

8 17.5055 38.3848 38.3851 55.5862 65.7270 

9 17.5055 38.3847 38.3847 55.5860 65.7211 

10 17.5055 38.3847 38.3847 55.5860 65.7193 

Hashemi and Arsanjani (2005) 17.5055 38.3847 38.3847 55.5860 65.7193 

SCSS 

8 19.7988 39.2036 41.7815 57.3384 66.0401 

9 19.7988 39.2032 41.7813 57.3381 66.0395 

10 19.7988 39.2032 41.7813 57.3380 66.0323 

Hashemi and Arsanjani (2005) 19.7988 39.2032 41.7813 57.3380 66.0322 

SCSC 

8 22.5099 40.1388 45.0574 59.1234 66.3785 

9 22.5099 40.1384 45.0569 59.1227 66.3780 

10 22.5099 40.1384 45.0569 59.1227 66.3706 

Hashemi and Arsanjani (2005) 22.5099 40.1384 45.0569 59.1227 66.3706 

SSSF 

8 10.7218 23.2432 32.8930 43.8590 45.5859 

9 10.7218 23.2430 32.8923 43.8580 45.5853 

10 10.7218 23.2429 32.8922 43.8579 45.5852 

Hashemi and Arsanjani (2005) 10.7218 23.2429 32.8922 43.8579 45.5852 

SCSF 

8 11.3932 25.8980 33.0755 45.0461 48.8922 

9 11.3932 25.8975 33.0748 45.0446 48.8912 

10 11.3931 25.8975 33.0747 45.0445 48.8911 

Hashemi and Arsanjani (2005) 11.3931 25.8975 33.0747 45.0445 48.8911 

SFSF 

8 8.9997 14.1345 29.2560 31.4344 36.1664 

9 8.9997 14.1341 29.2560 31.4338 36.1647 

10 8.9997 14.1341 29.2558 31.4338 36.1647 

Hashemi and Arsanjani (2005) 8.9997 14.1341 29.2558 31.4338 36.1646 
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Jafari 2012d). This mixed approach first uses the FEM to 

discretize the spatial partial derivatives with respect to a co-

ordinate direction of the plate. It then employs the Ritz 

 

 

method to solve the resulting system of ordinary differential 

equations. The mixed FE-Ritz method has been claimed to 

overcome some of limitations of both the FEM and the Ritz 

method. However, as we will show in this section, it is not 

very efficient for solving plate problems with Levy-type 

boundary conditions. To demonstrate this, we consider the 

free vibration of a Levy-type thin rectangular plate. The 

governing equation for this problem is given in Eq. (1). For 

this case, it is most appropriate to choose the Ritz trial 

functions as the beam eigenfunctions, i.e. 

 

,sin)(  jj    ,,...,2,1 nj    YX or      (110) 

 

Note that the Levy-type plate is assumed to have simply 

supported edge in the ξ direction, and the Ritz method with 

above eigenfunctions will be employed in that direction. 

To better understand the differences between the mixed 

Ritz-FE and mixed FE-Ritz approaches, the applications of 

these approaches to free vibration analysis of Levy-type 

thin plates are described in the following sections. We 

assume that the size of Ritz matrices [A], [B] and [C] is n × 

n while the FEM matrices ],[A  ][B  and ][C are of order 

nf × nf. 

 

 

 

4.1 Ritz-FE formulation for Levy-type thin 
rectangular plates 

 

When beam eigenfunctions (110) are used as the Ritz 

trial functions, the matrices [A], [B] and [C] in Eq. (10) 

become diagonal matrices. Their diagonal elements are 
 

,2/44iAii     ,2/1iiB  

,2/22iCii     ni ,...,2,1  
(111) 

 

Using Eq. (111), the eigenvalue Eq. (25) is simplified to 
 

,}{][}{][ 2
iiiii MK      ni ,...,2,1  (112) 

 

where 
 

][][2][][ 42 ABCCBAK iiiiiii    (113) 

 

][][ BBM iii   (114) 

 

Table 8 Convergence and comparison of natural frequencies of square thick plates with different boundary 

conditions (N = 1, h/b = 0.1, k2 = 5/6, μ = 0.3) 

Plate q = n Ω1 Ω2 Ω3 Ω4 Ω5 

CSSF 

9 1.6195 2.9167 4.6614 5.7679 5.9717 

10 1.6194 2.9165 4.6612 5.7676 5.9712 

11 1.6194 2.9165 4.6611 5.7675 5.9711 

Liew et al. (1993) 1.6195 2.9165 4.6612 5.7675 5.9711 

CFSF 

9 1.4735 1.9491 3.6461 4.5019 5.0397 

10 1.4734 1.9491 3.6452 4.5016 5.0395 

11 1.4734 1.9489 3.6452 4.5016 5.0392 

Liew et al. (1993) 1.4735 1.9491 3.6452 4.5017 5.0395 

CFFF 

9 0.3476 0.8168 2.0357 2.5840 2.8623 

10 0.3476 0.8168 2.0355 2.5837 2.8621 

11 0.3476 0.8167 2.0355 2.5836 2.8619 

Liew et al. (1993) 0.3476 0.8168 2.0356 2.5836 2.8620 

FFFF 

9 1.2895 1.9194 2.3633 3.2353 3.2362 

10 1.2889 1.9194 2.3633 3.2346 3.2353 

11 1.2888 1.9194 2.3633 3.2344 3.2345 

Liew et al. (1993) 1.2887 1.9194 2.3633 3.2344 3.2344 

CSSF 

9 1.6195 2.9167 4.6614 5.7679 5.9717 

10 1.6194 2.9165 4.6612 5.7676 5.9712 

11 1.6194 2.9165 4.6611 5.7675 5.9711 

Liew et al. (1993) 1.6195 2.9165 4.6612 5.7675 5.9711 

CFSF 

9 1.4735 1.9491 3.6461 4.5019 5.0397 

10 1.4734 1.9491 3.6452 4.5016 5.0395 

11 1.4734 1.9489 3.6452 4.5016 5.0392 

Liew et al. (1993) 1.4735 1.9491 3.6452 4.5017 5.0395 
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Ti

fn
ii

i ]...[}{ 21    (115) 

 

It can be seen from Eq. (112) that the ith natural 

frequency of Levy-type rectangular plates can be obtained 

by the present mixed Ritz-FE approach by solving an nf × nf 

eigenvalue equation. Noting that the size of resulting 

eigenvalue problem for plates with general boundary 

conditions is nnf × nnf (see Eq. (25)), one may conclude that 

the computational time of the mixed Ritz-FE approach for 

Levy-type rectangular thin plates is much less than that for 

plates with general boundary conditions. 

 

4.2 FE-Ritz formulation for Levy-type thin 
rectangular plates 

 

In the FE-Ritz approach, the FEM is first employed in 

on co-ordinate direction of the plate and the Ritz method is 

then employed in another one. Application of the FE-Ritz 

approach to the present problem gives (Eftekhari and Jafari 

2012d) 

}ˆ]{ˆ[}ˆ]{ˆ[ 2  MK   (116) 

 

where the sub-matrices ]ˆ[ ijK  and ]ˆ[ ijM  are given by 

 

][][2][]ˆ[ 42 ABCCBAK ijijijij    (117) 

 

],[]ˆ[ BBM ijij     fnji ,...,2,1,   (118) 
 

and 
 

TTfnTT ]}{...}{}{[}ˆ{ 21    (119) 

 

,]...[}{ 21
Tk

n
kkk      fnk ,...,2,1  (120) 

 

It can be seen from Eq. (116) that the natural 

frequencies of general rectangular plates can be obtained by 

the mixed FE-Ritz approach by solving an nf ×  nf 

 

 

eigenvalue equation. It can also be seen that even if the Ritz 

matrices [A], [B] and [C] are diagonal matrices, the 

resulting mass and stiffness matrices are not diagonal 

matrices. Therefore, the computational cost of the FE-Ritz 

approach for calculation of natural frequencies of Levy-type 

rectangular plates is approximately equal to that of non-

Levy-type rectangular plates. 

 

4.3 Comparison of computing costs for vibration 
analysis of Levy-type thin plates 

 

Consider the free vibration problem of a Levy-type 

square thin plate. When FE-Ritz approach is applied to the 

present problem, one should solve finally an eigenvalue 

equation of size nnf × nnf where nf = N (p ‒ 1) + 2 (see Eq. 

(116)). Note that, N and p are, respectively, the number of 

finite elements and the order of interpolating functions. The 

computing cost for solving such an eigenvalue equation is 

approximately (nnf)
3 or 𝑛3 𝑛𝑓

3. 

Such a cost can be significantly reduced if the problem 

is solved using the Ritz-FE approach. When Ritz-FE 

approach is applied, one should solve an eigenvalue 

equation of size nf × nf, n times (see Eq. (112)). This 

requires 𝑛𝑛𝑓
3  scalar multiplications. Therefore, we can 

conclude 

2

3

33

Cost

Cost
n

nn

nn

f

f

FEMRitz

RitzFEM 


  (121) 

 

Fig. 1 illustrates the results for CPU times of the two 

approaches (Ritz-FEM and FEM-Ritz) for free vibration 

analysis of a simply supported square plate. Note that the 

  
 

 

Fig. 1 Comparison of the CPU time of the Ritz-FEM with that of the FEM-Ritz for free vibration analysis of a 

simply supported square thin plate 
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results are obtained using different values of n, N, and p. 

Needless to say the Ritz-FEM is much more efficient than 

the FEM-Ritz approach. 

 

 

5. Conclusions 
 

A simple and accurate mixed Ritz-FE formulation is 

introduced and developed to study the free vibration of the 

thin and thick rectangular plates with general boundary 

conditions. The proposed formulation reduces the original 

2-D problem to two simple 1-D problems whose 

formulation is much easier than the case where the Ritz 

method or the FEM is fully applied to the plate problem. Its 

accuracy, convergence and stability are challenged through 

the solution of some benchmark vibration problems of thin 

and thick rectangular plates under different boundary 

conditions. It is shown that the mixed Ritz-FEM with only 

one higher order finite element can obtain the lower order 

natural frequencies of thin and thick square plates 

accurately. 

The proposed mixed Ritz-FE formulation is also 

compared with the mixed FE-Ritz formulation which has 

been recently proposed by the present author and his co-

author. It is found that the proposed mixed Ritz-FE 

formulation is more efficient than the mixed FE-Ritz 

formulation for free vibration analysis of rectangular plates 

with Levy-type boundary conditions. 
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