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1. Introduction 

 

Neglecting the shear stress in Euler-Bernoulli beam 

theory or assuming a constant shear stress in Timoshenko 

beam model, however simplifies the solutions of beam 

problems but yields to an unreal estimating of beam‟s 

behavior. Using higher order beam kinematics and 

satisfying the traction-free conditions at free surfaces of the 

beam, develops the simplified kinematics of the Euler-

Bernoulli and Timoshenko beam models. The various 

higher order shear deformation beam models are proposed 

by many researchers to approximate the behavior of shear 

deformable nano and macro beams. The Timoshenko beam 

model is developed due to approximate the axial 

displacement by higher order polynomials (Reddy 1984, Shi 

2007, Thai and Vo 2012b). The model of Touratier includes 

a sinusoidal approximation of shear stress (Touratier 1991). 

Some researchers used an exponential variation for 

approximating shear stress distribution (Karama et al. 

2003). Also the distribution of shear stress in model of 

Mechab is expressed in terms of hyperbolic functions 

(Mechab 2009). For the bending analysis of simply 
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supported FG shell, the optimized sinusoidal higher order 

shear deformation theory is proposed (Mantari and Guedes 

Soares 2014). A higher order shear and normal deformation 

theory including five unknown functions using 

approximated hyperbolic displacement field is applied to 

analyze bending and free vibration of FG plates (Belabed et 

al. 2014). A through-thickness sinusoidal variation for 

approximating displacement field is proposed to study 

elastic deformation of shear deformable thick FG plates 

having variable stiffness through their length (Amirpour et 

al. 2016). A sinusoidal shear deformation theory is proposed 

to approximate the bending, buckling and vibration 

behavior of homogeneous nonlocal beams (Thai and Vo 

2012b). The higher order transversely functionally graded 

beam theories for approximating static bending and 

vibration behavior of micro-beams (Şimşek and Reddy 

2013) and macro structure beams using parabolic shear 

deformation (Hadji et al. 2016) are proposed. A new higher 

order shear deformation theory for estimating vibration and 

stability responses of FG sandwich plate is proposed by 

Sekkal et al. (2017). A new four variable refined plate 

theory for estimating buckling behavior of FG plates is 

proposed by Bellifa et al. (2017). A novel higher order shear 

deformation theory (HSDT) is proposed for estimating 

buckling behavior of FG sandwich plates subjected to 

thermal loading (Menasria et al. 2017). The Eringen‟s 

nonlocal elasticity theory and strain gradient elasticity 
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model are applied to the higher order shear beam models 

and other beam mechanics like the Euler-Bernoulli and 

Timoshenko beam theories to predict vibration and buckling 

behavior of simply supported composite micro and nano 

beams (Challamel 2013). Challamel show that Shi–

Voyiadjis and Bickford–Reddy higher order shear beam 

models have the kinematics equivalence, especially in 

vibration and buckling behaviors. Also the mentioned 

research show that the higher order shear beam models are 

classified in a traditional gradient elasticity Timoshenko 

beam theory. Meanwhile, for the case of dynamic analyses 

the nonlocal beam model is equivalent to higher order 

inertia beam model. In contrast to the above-mentioned and 

many other similar researches, the present work aims to find 

an exact through-thickness distribution of shear strain and 

avoids guessing a shape function for across-the-thickness 

variation of shear strain. Therefore for the first time, the 

exact position of neutral axis for free vibration and buckling 

analyses of higher order FG local and nonlocal beams is 

considered. The size effect phenomena on behavior of 

nanostructures are explained by the differential or integral 

form of the nonlocal continuum theory. Eringen‟s nonlocal 

theory has been proposed for the non-neighbor interactions 

between the building units of the material microstructure 

(Eringen 1972a, b, 1978, Eringen and Edelen 1972, Eringen 

and Kim 1974, Eringen et al. 1977). Eringen‟s integral 

nonlocal theory incorporates an integral operator to sum the 

nonlocal residuals inside the material (Eringen and Kim 

1974, Eringen et al. 1977, Eringen 1978). In 1983, the 

integral operator was replaced by a differential operator 

introducing the differential nonlocal theory (Eringen 1983). 

Nonlocal theories for nanobeams and nanotubes are applied 

(Reddy 2007, Reddy and Pang 2008). Reddy (2010) 

reformulated the conventional governing equations of shear 

deformable beam and plates using nonlinear strains and 

Eringen‟s nonlocal continuum theory. Rahmani and Pedram 

(2014) discussed the vibration of FGBs based on 

Timoshenko beam and Eringen nonlocal elasticity theories. 

The Finite Element approach using continuum mechanics 

and nonlocal thermodynamics is applied to analyze bending 

behavior of homogeneous nanobeams (de Sciarra 2013). 

The Hamilton‟s principle, Timoshenko and nonlocal beam 

theories and Maxwell equation are used to investigate free 

vibration, buckling and bending of magneto-electro-elastic 

nanobeams (Li et al. 2015). Flexural vibration and buckling 

analysis of single-walled carbon nanotubes using different 

gradient elasticity theories based on Reddy and Huu-Tai 

formulations is conducted by Karličić et al. (2015). 

Nonlocal forced vibration of a double single-walled carbon 

nanotube system under the influence of an axial magnetic 

field is studied by Stamenković et al. (2016). Mode shape 

and vibration analysis of sandwich panel with multiwalled 

carbon nanotubes (MWCNTs) FG-reinforcement core is 

studied by Tahouneh (2017). The free vibration and 

buckling analyses of tapered FG thin beam-column having 

general natural end conditions is investigated (Rezaiee-

Pajand and Masoodi 2017). Buckling and postbuckling 

behavior of nanotubes are investigated by She et al. (2017). 

Nonlinear vibration of multi-body systems with linear and 

nonlinear springs is presented by Bayat et al. (2017). 

Vibration of a rotary FG plate with consideration of thermal 

and Coriolis effects is studied by Ghadiri et al. (2017). 

Vibration analysis of FG nanobeams based on third-order 

shear deformation theory for simple power law distribution 

is done by Jandaghian and Rahmani (2017). The Gurtin-

Murdoch model is based on a hybrid formulation combining 

linearized deformation of bulk material with second-order 

finite deformation of the surface. The equations of the 

linearized Gurtin-Murdoch model of surface elasticity can 

be derived from the ratio of deformed surface area to initial 

surface area (Ru 2010). Oskouie and Ansari (2017) used the 

fractional calculus to analyze the vibrations of viscoelastic 

Timoshenko nanobeams. They used the Gurtin–Murdoch 

surface stress theory to consider the surface effects. They 

applied two numerical and semi-analytical solution 

procedures including the generalized differential quadrature 

and finite difference methods for linear and the Galerkin 

approach and predictor–corrector method for nonlinear 

partial differential governing equations. The Mori-Tanaka 

method (Mori and Tanaka 1973) was originally concerned 

with calculating the average internal stress in matrix of a 

material containing precipitates with eigenstrains. Bending 

and vibration of functionally graded higher order 

microbeams by using Mori-Tanaka technique and the 

modified couple stress theory are studied (Şimşek and 

Reddy 2013). The surface stress, surface density and 

surface elasticity effects on nonlinear free vibration of 

nonlocal thin functionally graded beams are considered by 

Hosseini-Hashemi et al. (2014). The sixth-order finite 

difference discretization is used to discretize the governing 

equation of motion and boundary conditions of nonlocal 

thin beam rested on two-parameter elastic foundation by 

Mohamed et al. (2016). The stability and free vibration 

analyses of a simply supported Euler–Bernoulli multiple-

nanobeam system under the influence of axial load using 

the Eringen nonlocal continuum theory is conducted by 

Karličić et al. (2016). They used D‟Alembert‟s principle to 

obtain the partial differential equations of motion of the 

system. Also, the classical Bernoulli–Fourier method and 

trigonometric method are used to obtain analytical 

solutions. A normalized symmetric kernel is employed to 

analyze the nonlocal integral elasticity of beams by 

Koutsoumaris et al. (2017). Rise to paradoxes and energy 

inconsistent formulas in the nonlocal integral forms are 

vanished. The vibration of nano-beam surrounded by two-

parameter Pasternak foundation type in thermal 

environments is studied by Demir and Civalek (2017). They 

used variational approach and Hamilton‟s principle to 

obtain the nonlocal Euler–Bernoulli governing equations of 

motion. The Hermitian cubic shape functions and Galerkin 

method of weighted residuals are used to calculate the mass 

and stiffness matrices. He et al. (2016) proposed a new 

higher order two-layer composite beam model having 

partial interaction finer than the Reddy‟s higher order beam 

theory. In their research, the Reddy‟s theory is modified and 

the Laplace transform technique is applied to find the axial 

forces and natural frequencies. The differential transform 

method (DTM) is introduced by Zhou (1986). This method 

is a semi-numerical-analytic scheme without linearization 

or perturbation requirements which leads to a closed form 
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or an approximate solution. In contrast to the traditional 

high order Taylor‟s series method, which requires large 

computational work for large orders, the DTM leads to 

highly accurate results in less time without round-off errors. 

The DTM transforms the given ordinary or partial 

differential equation and related boundary or initial 

conditions into a recurrence equation. A wide variety of 

problems including the differential difference equations, 

fractional differential equations, pantograph equations, 

integro-differential equations and matrix differential 

equations are solved by DTM (Arikoglu and Ozkol 2005, 

2006, 2007, Abazari 2009, Keskin et al. 2007). The 

collocation method is applied on a finite-dimensional space 

of candidate solution and the boundary conditions are met. 

The collocation method is used for solving static and 

dynamic beam problems, multi-term fractional partial 

differential equations and multidimensional wave type 

equations (Ren and Tian 2016, Wattanasakulpong and Mao 

2015, Reutskiy 2017, Bhrawy et al. 2015). Heydari et al. 

(2017) employed collocation and spectral Ritz methods to 

analyze stability of thin and thick FG circular plates having 

linear and quadratic thickness variations rested on two-

parameter elastic medium. For some problems, analyses of 

structures made up of FGM have been done (Heydari 2013, 

2015, Heydari and Shariati 2018). ANFIS is applicable for 

analytical modeling of FG beam (Toghroli et al. 2018). This 

paper presents new methodology to solve free vibration and 

stability problems of nanostructure higher order shear 

deformable rectangular FG nanobeams having arbitrary 

material gradation by considering coupled partial 

differential equations of motion without any simplifications. 

Using higher order beam kinematics, satisfying equilibrium 

equations and shear stress-free conditions at top and bottom 

surfaces of the beam‟s section yields to accurate solutions 

due to compute the exact shear strain distribution and 

therefore the exact position of neutral axis. The natural 

circular frequencies and buckling loads of the first modes 

are obtained by considering small scale effects and shear 

deformation without shear correction factor requirement by 

using differential transformation and collocation methods. 

For the first time, the dependency of exact position of 

neutral axis on length to thickness ratio in higher order 

shear deformable FG nanobeam is investigated. The 

Eringen‟s nonlocal continuum theory is applied to capture 

the small scale effects. Two homogenization schemes, the 

classical rule of mixture and Mori-Tanaka technique are 

used to model the through-thickness variations of mass and 

mechanical properties. The various classical end conditions 

for buckling analysis and pinned boundary condition for 

vibration analysis are considered. In our model, increasing 

the length to thickness ratio yields to change the through- 

thickness distribution of axial strain from nonlinear 

distribution for thick FGB to a linear distribution for thin 

FGB. Also, for thin FGB the shear strain is vanished. The 

maximum shear stress is occurred at neutral axis which is 

located at top of the mid-axis. The analytical formulas in 

the case of the homogeneous beams are obtained. The 

results of present study are more accurate than the 

previously published results in literature due to considering 

the exact position of neutral axis for higher order shear 

deformable FG nanobeam. 
 

 

2. Higher order transversely functionally graded 
beam 
 

A rectangular functionally graded beam (FGB) having 

arbitrary through-thickness material gradation with the axial 

displacement u(x,y) and deflection w(x) is assumed. The 

right-handed coordinate system (x,y) is considered, in which 

x axis is located along the axis of the beam and y axis is 

upside positive. The origin of y ordinate is selected based 

on the reference axis which is used for mathematical 

definition of the mass density and elastic modulus. The 

distance between origin of y and top and bottom fibers of 

the beam are 𝑐𝑡  and 𝑐𝑏  respectively. The neutral axis is 

located at somewhere rather than the position of reference 

axis. The parameter 𝑦  denotes the distance between neutral 

axis and reference axis. The above-mentioned parameters 

and geometry of FGB are demonstrated in Fig. 1. 
 

2.1 Buckling analysis of FGB for various boundary 
conditions 

 

The components of engineering strain tensor are 

considered as follows 
 

𝜀𝑥𝑥 = 𝑢,𝑥  

𝜀𝑥𝑦 =
1

2
 𝑢,𝑦 + 𝑤,𝑥  

𝜀𝑦𝑦 = 0 

(1) 

 

where subscripts ,x and ,y denote partial derivatives with 

respect to x and y respectively. The shear strain is assumed 

as follows 

𝛾𝑥𝑦 = 𝑓,𝑦  (2) 
 

in which 𝛾𝑥𝑦 = 2𝜀𝑥𝑦  is shear strain and f is an unknown 

function in terms of x and y to be determined. Substituting 

𝜀𝑥𝑦  from Eq. (2) into Eq. (1) and integrating from the 

resultant with respect to y, one has 
 

𝑢 = 𝑓 − 𝑤,𝑥𝑦 + 𝑢0 (3) 
 

The function 𝑢0 is an unknown function in terms of x 

 

 

 

Fig. 1 The cross section of FGB 

that arising from the integration. The function 𝑢0 is the 
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axial displacement at origin of y ordinate. Substituting Eq. 

(3) into Eq. (1) after considering Hooke‟s law, yields 

 

𝜍𝑥𝑥 = 𝐸  𝑓,𝑥 − 𝑤,𝑥𝑥 𝑦 + 𝑢0,𝑥
  

𝜏𝑥𝑦 = 𝐺𝑓,𝑦  

𝐺 =
𝐸

2(1 + 𝜈)
 

(4) 

 

in which 𝜍𝑥𝑥 , 𝜏𝑥𝑦 , E, G and 𝜈  are axial stress, shear 

stress, modulus of elasticity, shear modulus and Poisson‟s 

ratio respectively. The modulus of elasticity and shear 

modulus are arbitrary functions in terms of y. In the beam 

subjected to pure bending the sum of all infinitesimal axial 

forces must be vanished. Therefore the integration of axial 

stress over the cross section is set equal to zero. 

 

 𝑏𝐸𝑓,𝑥

𝑐𝑡

−𝑐𝑏

𝑑𝑦 − 𝐼2𝑤,𝑥𝑥 + 𝐼1𝑢0,𝑥
= 0 (5) 

 

in which the parameter b is width of the section. The 

constants 𝐼1 and 𝐼2 are as follows 

 

𝐼1 =  𝑏𝐸𝑑𝑦
𝑐𝑡

−𝑐𝑏

,          𝐼2 =  𝑏𝐸𝑦𝑑𝑦
𝑐𝑡

−𝑐𝑏

 (6) 

 

After integrating from Eq. (5) with respect to x, the axial 

displacement at origin of y is obtained as follows 

 

𝑢0 =
𝐼2

𝐼1
𝑤,𝑥 −

1

𝐼1
  𝑏𝐸𝑓,𝑥

𝑐𝑡

−𝑐𝑏

𝑑𝑦𝑑𝑥 (7) 

 

The shear stress resultant is calculated by integrating the 

shear stress in Eq. (4) over the cross section, A. It is 

noteworthy to mention that the change of shear stress 

resultant in longitudinal direction of FGB is equal to the 

change of shear force which is imposed to the beam due to 

axial compression, P. 

 
𝜕

𝜕𝑥
 𝐺𝑓,𝑦𝑑𝐴 = 𝑃𝑤,𝑥𝑥  (8) 

 

The function 𝑓 is determined after considering this fact 

that the resultant of integration in left-hand side of Eq. (8) 

must be equal to the product of a constant to curvature of 

FGB, 𝑤,𝑥𝑥 . 

𝑓 = 𝜑𝑤,𝑥  (9) 

 

where 𝜑  is an unknown function in terms of y to be 

determined. Considering Eqs. (8)-(9), yields to obtain the 

buckling load of higher order shear deformable rectangular 

FGB having arbitrary gradation of elasticity modulus as 

follows 

𝑃 =
1

2 1 + 𝜈 
 𝑏𝐸𝜑,𝑦𝑑𝑦

𝑐𝑡

−𝑐𝑏

 (10) 

 

The function 𝜑 can be determined by considering the 

equilibrium equation in x direction. 

𝜕

𝜕𝑥
 𝜍𝑥𝑥 +

𝜕

𝜕𝑦
 𝜏𝑥𝑦 = 0 (11) 

 

Substituting Eqs. (7)-(9) in Eqs. (4) and substituting the 

resultant into Eq. (11), yields 

 

2 1 + 𝜈  𝜑 − 𝑦 +
𝐼2

𝐼1
−

𝐼3

𝐼1
 𝑤,𝑥𝑥𝑥  

+  
𝐸,𝑦

𝐸
𝜑,𝑦 + 𝜑,𝑦𝑦  𝑤,𝑥 = 0 

(12) 

 

in which the constant 𝐼3 is defined in Eq. (13). 

 

𝐼3 =  𝑏𝐸𝜑
𝑐𝑡

−𝑐𝑏

𝑑𝑦 (13) 

 

All terms of Eq. (12) rather than 𝑤,𝑥  and 𝑤,𝑥𝑥𝑥  are 

functions of y. Therefore one can write 𝑤,𝑥𝑥𝑥 = −𝛽𝑤,𝑥 , 

where 𝛽 is a numeric constant. After differentiating from 

𝑤,𝑥𝑥𝑥 + 𝛽𝑤,𝑥 = 0  with respect to x, and solving the 

resultant ODE, one has 

 

𝑤 = 𝑐0 + 𝑐1 𝑥 + 𝑐2 𝑠𝑖𝑛⁡( 𝛽 𝑥) + 𝑐3𝑐𝑜𝑠⁡( 𝛽 𝑥) (14) 

 

The Eq. (14) is the deflection of buckled Euler-Bernoulli 

FGB. Therefore the constant 𝛽 is equal to the PE /EI, in 

which EI and PE are the bending rigidity and buckling load 

of Euler-Bernoulli FGB respectively. In general, 𝛽 is equal 

to 𝑁𝜋2/𝐿2, in which L is length of the beam and the values 

of dimensionless parameter N for simply supported (S-S), 

clamped (C-C), simply clamped (S-C) and cantilever (C-F) 

end conditions are calculated according to the Euler-

Bernoulli beam theory (Table 1). 

The Eq. (12) is rewritten by considering 𝑤,𝑥𝑥𝑥 = −𝛽𝑤,𝑥  

as follows 
 

𝜑,𝑦𝑦 +
𝐸,𝑦

𝐸
𝜑,𝑦 − 2𝛽 1 + 𝜈  𝜑 − 𝑦 +

𝐼2

𝐼1
−

𝐼3

𝐼1
 = 0 (15) 

 

The parameter 𝐼3 is depended on unknown function 𝜑. 

For neglecting the unknown parameter 𝐼3, the derivative of 

Eq. (15) with respect to y is calculated. The function 𝜙 is 

equal to 𝜑,𝑦 . 

 

𝜙,𝑦𝑦 +
𝐸,𝑦

𝐸
𝜙,𝑦 +  

𝐸,𝑦𝑦

𝐸
−  

𝐸,𝑦

𝐸
 

2

 𝜙 

−2𝛽 1 + 𝜈  𝜙 − 1 = 0 

(16) 

 

 

Table 1 The values of N for first five modes and various 

boundary conditions 

End 

condition 

Mode number 

1 2 3 4 5 

S-S 1.000000 4.000000 9.000000 16.000000 25.000000 

C-C 4.000000 8.182994 16.000000 24.187197 36.000000 

S-C 2.045749 6.046799 12.047075 20.047188 30.047244 

C-F 0.250000 2.250000 6.250000 12.250000 20.250000 
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The traction-free condition for shear stress at top and 

bottom surfaces of FGB implies that 𝜙 at  𝑦 = 𝑐𝑡  and 

𝑦 = −𝑐𝑏  must be vanished. Therefore there is no need to 

use the shear correction factor in Eq. (10) to calculate the 

buckling load of higher order FGB. 
 

2.2 Vibration analysis of pinned FGB subjected 
to axial load 

 

It is possible to obtain a complete solution through 

separation of variables of partial differential equation of 

motion. Assuming deflection function as product of two 

independent functions w(x) and exp(Iωt), and considering 

equilibrium equation in transverse direction, yields 
 

𝜕

𝜕𝑥
 𝜏𝑥𝑦 𝑑𝐴 − 𝑃𝑤,𝑥𝑥 = −𝑚0𝜔

2𝑤 (17) 

 

where 
 

𝑚0 =  𝜌𝑑𝐴
𝐴

 (18) 

 

The parameter 𝜔  is circular frequency of vibration. 

The sign of axial compression, P, is taken to be positive. It 

is assumed that f in Eq. (2) is a separable two variable 

function as follows 
 

𝑓 = 𝜓  𝑤𝑑𝑥 (19) 

 

where 𝜓 is an unknown function in terms of y and ω to 

be determined. The axial displacement after considering the 

Eqs. (3) and (19) is calculated in Eq. (20). The numerical 

results indicate that in contrast to the homogeneous beam 

the function 𝜓  at origin (y = 0) of FGB is nonzero, 

therefore u in Eq. (20) at origin is nonzero. In addition, after 

neglecting 𝑢0  the convergence of fundamental natural 

frequency is observed and verified by the outcomes of the 

previous works. 
 

𝑢 = 𝜓  𝑤𝑑𝑥 − 𝑤,𝑥𝑦 (20) 

 

The stress field of FGB by considering Eqs. (4) and (19) 

is obtained as follows 
 

𝜍𝑥𝑥 = 𝐸 𝜓𝑤 − 𝑤,𝑥𝑥 𝑦  

𝜏𝑥𝑦 = 𝐺𝜓,𝑦  𝑤𝑑𝑥 
(21) 

 

The equilibrium equation of FGB in longitudinal 

direction, can be written as follows 
 

𝜕

𝜕𝑥
𝜍𝑥𝑥 +

𝜕

𝜕𝑦
𝜏𝑥𝑦 = 𝜌𝑢  (22) 

 

where 𝑢  is axial acceleration and takes the value −𝑢𝜔2. 

Substituting Eq. (20) and Eqs. (21) into Eq. (22), one has 
 

𝐸 𝜓𝑤,𝑥 − 𝑤,𝑥𝑥𝑥 𝑦 + 𝐺,𝑦𝜓,𝑦  𝑤𝑑𝑥 + 𝐺𝜓,𝑦𝑦  𝑤𝑑𝑥 

+𝜌𝜔2   𝜓  𝑤𝑑𝑥 − 𝑦𝑤,𝑥 = 0 

(23) 

For simply supported FGB, the sinusoidal deflection 

function is assumed as follows 
 

𝑤 = sin  
 𝑚 𝜋𝑥

𝐿
  (24) 

 

where 𝑚  denotes the number of mode. After substituting 

Eq. (24) into Eq. (23), the Eq. (25) is obtained. 

 

𝐺𝐿4𝜓,𝑦𝑦 + 𝐺,𝑦𝐿4𝜓,𝑦 +  𝜌𝜔2𝐿2 − 𝑚 2𝜋2𝐸  

 𝐿2𝜓 +  𝑚 2𝜋2𝑦 = 0 
(25) 

 

The shear stress-free condition at top and bottom 

surfaces of FGB implies that 𝜓,𝑦  at  𝑦 = 𝑐𝑡  and 

𝑦 = −𝑐𝑏  must be vanished. After using numerical methods 

and satisfying boundary conditions, the function ψ can be 

obtained. Considering Eqs. (17) and Eq. (21), yields 
 

  𝐺𝜓,𝑦 𝑑𝐴 + 𝑚0𝜔
2 𝑤 − 𝑃𝑤,𝑥𝑥 = 0 (26) 

 

By substituting Eq. (24) into Eq. (26), the Eq. (27) is 

written. The natural circular frequencies of first modes for 

simply supported higher order FGB will be obtained after 

solving the Eq. (27) with respect to 𝜔. 
 

  𝐺𝜓,𝑦 𝑑𝐴 + 𝑚0𝜔
2 𝐿2 + 𝑚 2𝜋2𝑃 = 0 (27) 

 

 

3. Solutions of differential equations 
 

The analytical solutions for buckling and free vibration 

problems of homogeneous beam are provided in Section 

3.1. For FGB, the differential transformation method 

(DTM) and collocation method (CM) are used in Sections 

3.2 and 3.3 to obtain the numerical solutions. The DTM and 

CM are used to have the faster convergence for fractional 

values and great amounts of material exponent parameter 

respectively. 
 

3.1 Analytical solutions for homogeneous beam 
 

After degenerating Eq. (16), the governing differential 

equation for bucking of homogeneous beam is obtained (E,y 

= E,yy = 0). The function 𝜙 can be obtained by solving the 

governing differential equation and satisfying the traction 

free conditions. The stress field of buckled rectangular 

higher order homogeneous beam can be obtained from Eqs. 

(4) as follows 
 

𝜍𝑥𝑥 = −𝐸𝑤,𝑥𝑥  

 
sin𝑕  2𝜋2𝑁 1 + 𝜈 /𝐿2𝑦 

 2𝜋2𝑁 1 + 𝜈 /𝐿2cos𝑕  𝜋2𝑁 1 + 𝜈 /2𝐿2𝑕 
  

𝜏𝑥𝑦 = 𝐺𝑤,𝑥  1 −
cos𝑕  2𝜋2𝑁 1 + 𝜈 /𝐿2𝑦 

cos𝑕  𝜋2𝑁 1 + 𝜈 /2𝐿2𝑕 
  

(28) 

 

where „sinh‟ and „cosh‟ are hyperbolic sine and cosine 

functions. For rectangular homogeneous beam having 
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classical boundary condition, the critical load is obtained 

from Eq. (10) in terms of hyperbolic tangent function as 

follows 

 

𝑃𝑐𝑟
𝐻 = 𝐺𝐴  1 −

 2𝑅 tan𝑕 𝜋 𝑁 1 + 𝜈 /2𝑅2 

𝜋 𝑁 1 + 𝜈 
  (29) 

 

where h and R are thickness and length to thickness ratio 

respectively. The other parameters were introduced in 

Section 2. By approaching R to zero, 𝑃𝑐𝑟
𝐻 approaches to 

GA. In addition, by approaching R to infinity, the ratio of 

𝑃𝑐𝑟
𝐻 to PE, approaches to one. For thin beam the parameter 

R approaches to infinity and the shear stress is vanished. 

For this case, the axial stress is simplified to the 𝐸𝑤,𝑥𝑥 𝑦, 

which is a linear through-thickness variation. 

After degenerating Eq. (25), the governing differential 

equation of motion for vibration of homogeneous beam is 

obtained (G,y = 0). The function 𝜓 can be obtained by 

solving the governing differential equation of motion and 

satisfying the traction free conditions. The stress field 

caused by free vibration for simply supported rectangular 

higher order homogeneous beam subjected to axial load is 

obtained from Eq. (21) as follows 

 

𝜍𝑥𝑥 = 𝑚 2𝜋2𝐸𝑤max sin 𝑚 𝜋𝑥/𝐿  

sin𝑕   2𝑚 2𝜋2 1 + 𝜈 /𝐿2 − 𝜌𝜔2/𝐺𝑦 /[ 

𝐿2cos𝑕   𝑚 2𝜋2  1 + 𝜈 /2𝐿2 − 𝜌𝜔2/4𝐺𝑕  

 2𝑚 2𝜋2 1 + 𝜈 /𝐿2 − 𝜌𝜔2/𝐺] 

𝜏𝑥𝑦 = 𝑚 𝜋𝐺𝑤max cos 𝑚 𝜋𝑥/𝐿 /𝐿[1 − 

cos𝑕   2𝑚 2𝜋2 1 + 𝜈 /𝐿2 − 𝜌𝜔2/𝐺𝑦 / 

cos𝑕   𝑚 2𝜋2 1 + 𝜈 /2𝐿2 − 𝜌𝜔2/4𝐺𝑕 ] 

(30) 

 

where 𝑤max  is the maximum deflection of the beam. The 

vibration characteristic equation of higher order shear 

deformable rectangular homogeneous beam subjected to 

axial load is obtained from Eq. (27) as follows 

 

2 tan𝑕   𝑚 2𝜋2 1 + 𝜈 /2𝐿2 − 𝜌𝜔2/4𝐺𝑕 / 

  2𝑚 2𝜋2 1 + 𝜈 /𝐿2 − 𝜌𝜔2/𝐺𝑕  

+𝜌𝜔2𝐿2/ 𝐺𝑚 2𝜋2 = 1 − 𝑃/𝐺𝐴 

(31) 

 

The minimum positive root of the characteristic 

equation is the frequency of vibration for 𝑚 th mode. The 

fundamental natural frequency will be obtained for 𝑚 = 1. 

 

3.2 Differential transformation method 
 

The differential transformation technique is an iterative 

procedure which can be used to obtain the sufficiently 

differentiable answer of an ordinary differential equation. 

This method generates a recurrence equation and therefore 

the high-order Taylor series expansion of answer is obtained 

with the less computational efforts. This method is used to 

have a faster convergence for fractional values of material 

exponent parameter. The m-partial sums of Taylor 

polynomial for function 𝜙 in Eq. (16) about the origin of y 

(about the reference axis or mid-axis) is assumed as follows 

 

𝜙 ≈  𝛷 𝑘 𝑦𝑘

𝑚

𝑘=0

 (32) 

 

The differential transform of coefficients of ODE in Eq. 

(16) are presented in Eq. (33). 

 

𝐶2 𝑖 = 𝛿 𝑖  

𝐶1 𝑖 =
1

𝑖!
  

𝑑𝑖

 𝑑𝑦 𝑖
 
𝐸,𝑦

𝐸
  

𝑦=0

 

𝐶0 𝑖 =
1

𝑖!
 𝑑𝑖

 𝑑𝑦 𝑖
 
𝐸,𝑦𝑦

𝐸
−  

𝐸,𝑦

𝐸
 

2

  
𝑦=0

− 2𝛽 1 + 𝜈 𝛿 𝑖  

(33) 

 

The differential transform of ODE in Eq. (16) is 

presented in Eq. (34). 

 

  𝐶𝑗  𝑖 
 𝑘 + 𝑗 − 𝑖 !

 𝑘 − 𝑖 !
𝛷 𝑘 + 𝑗 − 𝑖 

𝑘

𝑖=0

2

𝑗 =0

 

+2𝛽 1 + 𝜈 𝛿 𝑘 = 0 

𝑘 ∈  0,1,2, … , 𝑚  

(34) 

 

where 
 

𝛿(𝑟) =  
1    𝑟 = 0
0    𝑟 ≠ 0

  (35) 

 

The recurrence equation is obtained by considering Eq. 

(34) as follows 

 

𝛷(𝑘 + 2) = −
𝑘!

 𝑘 + 2 !
 

   𝐶𝑗  𝑖 
 𝑘 + 𝑗 − 𝑖 !

 𝑘 − 𝑖 !
𝛷 𝑘 + 𝑗 − 𝑖 

𝑘

𝑖=0

1

𝑗 =0

  

 + 2𝛽(1 + 𝜈)𝛿(𝑘)  

(36) 

 

The Eq. (36) shows that the truncated Taylor series 

expansion of function 𝜙 can be written in terms of ϕ(0) 

and ϕ,y(0) or 𝛷 0  and 𝛷 1 . The differential transform of 

traction-free conditions are 

 

 𝛷 𝑘  
𝑕

2
 

𝑘𝑚

𝑘=0

= 0 

  −1 𝑘𝛷 𝑘  
𝑕

2
 

𝑘𝑚

𝑘=0

= 0 

(37) 

 

By using Eqs. (37), the unknown coefficients 𝛷 0  and 

𝛷 1  and an approximation of unknown function 𝜙 about 

the mid-axis will be obtained. Increasing order of Taylor 

series expansion in Eq. (32), yields to an accurate solution. 
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The buckling loads of first modes for higher order shear 

deformable FGB are obtained by substituting Eq. (32) into 

Eq. (10) as follows 

 

𝑃 =
𝑏

2 1 + 𝜈 
 𝛷 𝑘  𝐸𝑦𝑘𝑑𝑦

𝑐𝑡

−𝑐𝑏

𝑚

𝑘=0

 (38) 

 

Using similar procedure yields to solve the differential 

equation of motion of higher order shear deformable FGB. 

The approximation of the function 𝜓 is shown in Eq. (39). 

 

𝜓 ≈  𝛹 𝑘 𝑦𝑘

𝑚

𝑘=0

 (39) 

 

where 𝛹  is the differential transform of 𝜓 . The 

differential transform of coefficients of ODE in Eq. (25) are 

presented in Eq. (40) 

 

𝐶 2 𝑖 =
𝐿4

𝑖!
  

𝑑𝑖

 𝑑𝑦 𝑖
 𝐺  

𝑦=0

 

𝐶 1 𝑖 =
𝐿4

𝑖!
  

𝑑𝑖

 𝑑𝑦 𝑖
 𝐺,𝑦  

𝑦=0

 

𝐶 0 𝑖 =
𝐿2

𝑖!
 𝑑𝑖

 𝑑𝑦 𝑖
 𝜌𝜔2𝐿2 − 𝑚 2𝜋2𝐸  

𝑦=0

 

(40) 

 

The differential transform of ODE in Eq. (25) is 

obtained in Eq. (41). 

 

  𝐶 𝑗  𝑖 
 𝑘 + 𝑗 − 𝑖 !

 𝑘 − 𝑖 !
𝛹 𝑘 + 𝑗 − 𝑖 

𝑘

𝑖=0

2

𝑗 =0

+ 𝑚 2𝜋2 𝛿  𝑘  

 𝜌𝜔2𝐿2 − 𝑚 2𝜋2𝐸 = 0     𝑘 ∈  0,1,2, … , 𝑚  

(41) 

 

where 

 

𝛿  𝑟 =  
1    𝑟 = 1
0    𝑟 ≠ 1

  (42) 

 

The recurrence equation by considering Eq. (41) is 

obtained as follows 

 

𝛹 𝑘 + 2 = −
𝑘!

 𝐺  𝑦=0𝐿
4 𝑘 + 2 !

 

   𝐶 2 𝑖 
 𝑘 + 2 − 𝑖 !

 𝑘 − 𝑖 !
𝛹 𝑘 + 2 − 𝑖 

𝑘

𝑖=1

 + 

   𝐶 𝑗  𝑖 
 𝑘 + 𝑗 − 𝑖 !

 𝑘 − 𝑖 !
𝛹 𝑘 + 𝑗 − 𝑖 

𝑘

𝑖=0

1

𝑗 =0

 

 +  𝜌𝜔2𝐿2 − 𝑚 2𝜋2𝐸  𝑚 2𝜋2 𝛿  𝑘   

(43) 

 

According to the Eq. (43), the truncated Taylor series 

expansion of function 𝜓 can be written in terms of 𝛹 0  

and 𝛹 1 .  The differential transform of traction-free 

conditions are 

 𝛹 𝑘 𝑘  
𝑕

2
 

𝑘−1𝑚

𝑘=1

= 0 

  −1 𝑘−1𝛹 𝑘 𝑘  
𝑕

2
 

𝑘−1𝑚

𝑘=1

= 0 

(44) 

 

Using Eqs. (44) yields to obtain the unknown 

coefficients Φ 0  and Φ 1 . Therefore an approximation 

of unknown function 𝜙  about the mid-axis will be 

obtained. The differential transform of Eq. (27) is written in 

Eq. (45). The first natural frequencies of simply supported 

higher order shear deformable FGB subjected to axial load 

can be obtained by solving Eq. (45) in terms of ω. 

 

𝑚0𝜔
2 + 𝑏  𝛹 𝑘 𝑘  𝐺𝑦𝑘−1𝑑𝑦

𝑐𝑡

−𝑐𝑏

𝑚

𝑘=1

 

+𝑚 2𝜋2𝑃/𝐿2  = 0 

(45) 

 

3.3 Collocation method 
 

The collocation method is used as an alternative method 

to have a faster convergence for large amounts of the 

material exponent parameter. The differential equation will 

be converted to a system of algebraic equations. The Taylor 

series expansion of 𝜓 up to m degree is selected as the 

finite-dimensional space of candidate solution and the 

points 𝑦𝑖  are selected as the collocation points. Two 

boundary conditions (44) implies that 

 

𝛹 1 = 𝑕  𝛹 2𝑘 𝑘  
𝑕

2
 

2𝑘−2
 𝑚/2 

𝑘=2

−  𝛹 𝑘 𝑘  
𝑕

2
 

𝑘−1𝑚

𝑘=3

 

𝛹(2) = −  𝛹 2𝑘 𝑘  
𝑕

2
 

2𝑘−2
 𝑚/2 

𝑘=2

 

(46) 

 

where  𝑚/2  denotes floor of m/2. Substituting Eq. (39) 

and Eqs. (46) into Eq. (25) at 𝑦𝑖 , yields 

 

 𝜌𝑖𝜔
2𝐿2 − 𝑚 2𝜋2𝐸𝑖 𝑚 

2𝜋2𝑦𝑖 + 𝜉0 𝛹 0 + 

𝜉1  𝑕  𝛹 2𝑘 𝑘  
𝑕

2
 

2𝑘−2
 
𝑚

2
 

𝑘=2

−  𝛹 𝑘 𝑘  
𝑕

2
 

𝑘−1𝑚

𝑘=3

 − 𝜉2 

 𝛹 2𝑘 𝑘  
𝑕

2
 

2𝑘−2
 
𝑚

2
 

𝑘=2

+  𝛹 𝑘   𝜌𝑖𝜔
2𝐿2 − 𝑚 2𝜋2𝐸𝑖  

𝑚

𝑘=3

 

 𝐿2𝑦𝑖
𝑘 + 𝐺𝑖𝐿

4𝑘 𝑘 − 1 𝑦𝑖
𝑘−2 +  𝐺,𝑦  

𝑦=𝑦𝑖
𝐿4𝑘𝑦𝑖

𝑘−1 = 0 

(47) 

 

in which the parameters 𝜉0  to 𝜉2  are presented in Eq. 

(48). 
 

𝜉0 =  𝜌𝑖𝜔
2𝐿2 − 𝑚 2𝜋2𝐸𝑖 𝐿

2  

𝜉1 =  𝜌𝑖𝜔
2𝐿4 − 𝑚 2𝜋2𝐿2𝐸𝑖 𝑦𝑖 +  𝐺,𝑦  

𝑦=𝑦𝑖
𝐿4 

𝜉2 = 2 𝐺,𝑦  
𝑦=𝑦𝑖

𝐿4𝑦𝑖 + 2𝐺𝑖𝐿
4 + 𝐿2𝑦𝑖

2 

(48) 

595



 

Abbas Heydari 

 𝜌𝑖𝜔
2𝐿2 − 𝑚 2𝜋2𝐸𝑖  (48) 

 

The subscript i denotes the value of function at 𝑦 = 𝑦𝑖 . 

The symmetrical collocation points about origin, 𝑦𝑖 , are 

assumed as follows 
 

𝑦𝑖 =  
𝑖

𝑚 − 2
−

𝑚

2 𝑚 − 2 
  𝑕      1 ≤ 𝑖 ≤ 𝑚 − 1 (49) 

 

The unknown parameters Ψ 0  and Ψ 3  to Ψ m  

are obtained by solving system of algebraic equations in Eq. 

(47) at 𝑦𝑖 . The first modes of natural frequencies of simply 

supported higher order shear deformable FGB subjected to 

axial load can be obtained by considering Eq. (45). 

The similar procedure can be used to solve the stability 

problem of higher order shear deformable FGB. The 

symmetrical collocation points about origin, 𝑦𝑖 , in Eq. (49) 

are considered. The unknown parameters Φ 0  and Φ 1  

in Eq. (32) are obtained by considering Eq. (37). 
 

𝛷(0) = −  𝛷 2𝑘  
𝑕

2
 

2𝑘
 𝑚/2 

𝑘=1

 

𝛷 1 =
2

𝑕
  𝛷 2𝑘  

𝑕

2
 

2𝑘
 𝑚/2 

𝑘=1

−  𝛷 𝑘  
𝑕

2
 

𝑘𝑚

𝑘=2

  

(50) 

 

Substituting Eq. (32) and Eqs. (50) into Eq. (16) at 𝑦𝑖 , 

yields 

− 𝜉 0  𝛷 2𝑘  
𝑕

2
 

2𝑘
 𝑚/2 

𝑘=1

+
2 𝜉 1
𝑕

 

  𝛷 2𝑘  
𝑕

2
 

2𝑘
 
𝑚

2
 

𝑘=1

−  𝛷 𝑘  
𝑕

2
 

𝑘𝑚

𝑘=2

  

+  𝛷 𝑘  𝑘 𝑘 − 1 𝑦𝑘−2 +  𝐸,𝑦

𝐸
 
𝑦=𝑦𝑖

𝑘𝑦𝑘−1 + 𝜉 0𝑦
𝑘 

𝑚

𝑘=2

  

+2𝛽(1 + 𝜈) = 0 

(51) 

 

The parameters 𝜉 0 and 𝜉 1 are defined as follows 
 

𝜉 0 =   
𝐸,𝑦𝑦

𝐸
−  

𝐸,𝑦

𝐸
 

2

  
𝑦=𝑦𝑖

− 2𝛽 1 + 𝜈  

𝜉 1 =  𝐸,𝑦

𝐸
 
𝑦=𝑦𝑖

+ 𝜉 0𝑦𝑖  

(52) 

 

The unknown parameters Φ 2  to Φ 𝑚  are obtained 

by solving system of algebraic equations in Eq. (51) at 𝑦𝑖 . 

The first modes of buckling loads of higher order shear 

deformable FGB having various boundary conditions can 

be obtained by considering Eq. (38). 
 

 

4. Nonlocal elasticity theory 
 

In the nonlocal elasticity theory the stress tensor at a 

point depends to strain tensor at all points in domain of the 

material. The validity of this theory is approved by the 

experimental observations and atomistic simulation results 

on phonon dispersion. In the nonlocal elasticity theory the 

stress-strain relationship has an integral form. Eringen 

chooses an appropriate kernel function to convert the 

integral form into the equivalent differential form. In the 

nonlocal differential elasticity, the differential constitutive 

equations of higher order shear deformable FGB are as 

follows (Ebrahimi and Barati 2016) 
 

 1 − 𝜂2
𝑑2

 𝑑𝑥 2
 𝜍𝑥𝑥

𝑁 = 𝜍𝑥𝑥  

 1 − 𝜂2
𝑑2

 𝑑𝑥 2
 𝜏𝑥𝑦

𝑁 = 𝜏𝑥𝑦  

(53) 

 

in which 𝜍𝑥𝑥
𝑁  and 𝜏𝑥𝑦

𝑁  are stress field of nonlocal and 𝜍𝑥𝑥  

and 𝜏𝑥𝑦  are stress field of local FGB respectively. Also, the 

small scale effects are captured by the scale coefficient, 

𝜂 =  𝜇. Differentiating with respect to x and integrating 

over the cross section from shear stress in Eq. (53), yields 
 

𝜕

𝜕𝑥
 𝜏𝑥𝑦

𝑁 𝑑𝐴 − 𝜂2
𝜕2

𝜕𝑥2
 

𝜕

𝜕𝑥
 𝜏𝑥𝑦

𝑁 𝑑𝐴 =
𝜕

𝜕𝑥
 𝜏𝑥𝑦 𝑑𝐴 (54) 

 

For buckled FGB, by considering Eq. (8), we get 
 

𝑃𝑁𝑤,𝑥𝑥 − 𝜂2
𝜕2

𝜕𝑥2
 𝑃𝑁𝑤,𝑥𝑥  = 𝑃𝑤,𝑥𝑥  (55) 

 

By considering the relation 𝑤,𝑥𝑥𝑥 = −𝛽𝑤,𝑥  and the Eq. 

(55), the buckling load of nonlocal FGB, 𝑃𝑁, is obtained in 

terms of buckling load of local FGB, 𝑃. 
 

𝑃𝑁 =
𝑃

1 + 𝜂2𝛽
 (56) 

 

Neglecting axial force and considering Eq. (17), Eqs. 

(24) and (54), one has 
 

 𝜔𝑁 2 sin  
𝜋𝑥

𝐿
 − 𝜂2

𝜕2

𝜕𝑥2
  𝜔𝑁 2 sin  

𝜋𝑥

𝐿
  = 

𝜔2 sin  
𝜋𝑥

𝐿
  

(57) 

 

The relation between nonlocal circular frequency of 

vibration, 𝜔𝑁 and local circular frequency of vibration, ω 

is obtained from Eq. (57) as follows 
 

𝜔𝑁 =
𝜔

 1 + 𝑚 2𝜋2  
𝜂

𝐿
 

2
 

(58) 

 

 

5. Results and discussion 
 

For conducting numerical exercises, the effective 

material properties of FGB are expressed in Section 5.1. 

After introducing two homogenization schemes, the 

comparison and validation by comparing present results 

with the results of previous works are presented in Section 
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5.2. The new numerical results for various amounts of 

slenderness ratio, scale coefficient, material constant, 

Poisson‟s ratio and boundary conditions are presented in 

Section 5.3. 
 

5.1 Effective material properties 
 

It is assumed that the local and nonlocal FGBs are made 

up of ceramic and metal. The effective bulk modulus and 

shear modulus based on Mori–Tanaka homogenization 

technique can be obtained from Eq. (59) (Şimşek and 

Reddy 2013) 
 

𝐾𝑒 − 𝐾𝑚

𝐾𝑐 − 𝐾𝑚
=

𝑉𝑐

1 +
𝑉𝑚  𝐾𝑐−𝐾𝑚  

𝐾𝑚 +
4𝜇 𝑚

3

 

𝜇𝑒 − 𝜇𝑚

𝜇𝑐 − 𝜇𝑚
=

𝑉𝑐

1 +
𝑉𝑚  𝜇𝑐−𝜇𝑚  

𝜇𝑚  1+
9𝐾𝑚 +8𝜇 𝑚

6𝐾𝑚 +12𝜇 𝑚
 

 

(59) 

 

where the subscripts m and c denote the metallic and 

ceramic constituents respectively. The effective modulus of 

elasticity and Poisson‟s ratio are presented in terms of bulk 

and shear moduli as follows 
 

𝐸(𝑦) =
9𝐾𝑒𝜇𝑒

3𝐾𝑒 + 𝜇𝑒  
 

𝜈(𝑦) =
3𝐾𝑒 − 2𝜇𝑒  

6𝐾𝑒 + 2𝜇𝑒   
 

(60) 

 

The effective modulus of elasticity and mass density 

based on classical rule of mixture are 
 

𝐸 𝑦 = 𝐸𝑚𝑉𝑚 + 𝐸𝑐𝑉𝑐  

𝜌 𝑦 = 𝜌𝑚𝑉𝑚 + 𝜌𝑐𝑉𝑐  
(61) 

 

The volume fraction of the phase materials are presented 

in Eq. (62). 

𝑉𝑐 =  
1

2
+

𝑦

𝑕
 

𝑛

 

𝑉𝑚 = 1 −  
1

2
+

𝑦

𝑕
 

𝑛

 

(62) 

 

 

Table 2 The convergence of results for FGB (n = 1) 

m 

Critical load 

(𝑃 1, 𝐿/𝑕 = 20) 

Fundamental frequency 

(𝜔 1, 𝐿/𝑕 = 5) 

DTM CM DTM CM 


 0 41.8524442 42.2787109 3.9838762 3.9912844 

15 41.8322576 41.9545456 3.9897744 3.9900182 

20 41.9356992 41.9498883 3.9898571 3.9900099 

25 41.9322170 41.9477374 3.9900027 3.9900083 

30 41.9460639 41.9476919 3.9900046 3.9900083 

40 41.9474434 41.9476580 3.9900083 - 

50 41.9476286 41.9476574 - - 

80 41.9476574 41.9476574 - - 
 

 

where n is material exponent parameter or gradient index 

which takes non-negative real numbers. Also, h is the height 

of rectangular section. In above-mentioned two 

homogenization methods the bottom and top surfaces of 

FGB are pure metal and pure ceramic respectively. 

 

5.2 Comparison and validation 
 

The convergence of differential transform method 

(DTM) and collocation method (CM) for numerical 

solutions of free vibration and stability problems of higher 

order shear deformable FGB is presented in Table 2. The 

dimensionless parameters 𝑃 1  and 𝜔 1  are equal to 

𝑃𝐿2/𝐸𝑚 𝐼 and 𝜔𝐿2 𝜌𝑚 /𝐸𝑚𝑕2 respectively. The parameter 

I is cross section‟s moment of inertia. For calculating the 

numerical amounts of 𝑃 1 , the ratio of 𝐸𝑐  to 𝐸𝑚  and 

Poison‟s ratio are assumed equal to 10 and 0.38 

respectively. For calculating the numerical amounts of 𝜔 1, 

it is assumed that the FGB composed of alumina (𝐸𝑐 =
380 GPa, 𝜌𝑐 = 3960 kg/m3) and aluminium (𝐸𝑚 =
70 GPa, 𝜌𝑚 = 2702 kg/m3 ) with the constant Poisson‟s 

ratio equal to 0.3. The fundamental circular frequencies of 

free vibration are calculated by neglecting the axial force. 

The rate of convergence for numerical results based on CM 

is more than the rate of convergence based on DTM. 

Moreover, the rate of convergence for vibration analysis is 

more than buckling analysis. Table 3 shows the validity of 

numerical results for simply supported higher order 

homogeneous nanobeam by considering various amounts of 

slenderness ratios and scale coefficients. The length of the 

nanobeam and Poisson‟s ratio are assumed equal to 10 nm 

and 0.3 respectively. The dimensionless parameter 𝜔 2 is 

equal to 𝜔𝐿2 𝜌𝐴/𝐸𝐼, in which 𝐸𝐼 is flexural rigidity of 

the beam. The result validation of homogeneous nonlocal 

beam having pinned ends for second and third free vibration 

modes are presented in Table 4. 

By decreasing slenderness ratio and scale coefficient 

and increasing mode‟s number the difference between 

results of current work and the outcomes of Thai and Vo 

(2012b) is increased. The results in Tables 3 and 4 show 

that the present method gives less frequencies and less 

buckling loads than the results of Thai and Vo (2012b) due 

to considering the exact through-thickness distribution of 

shear strain and exact position of neutral-axis in higher 

order shear deformable beam. The result validation for 

buckling analysis of higher order shear deformable 

homogeneous nanobeam having pinned (S-S) and clamped 

(C-C) end conditions is presented by comparing our results 

with the results of third order Reddy homogeneous 

nanobeams in Table 5. The results based on current work 

show a good agreement with the results of Reddy theory 

(Emam 2013). The result validation for buckling analysis of 

shear deformable simply supported FGB is presented in 

Table 6. For conducting numerical exercises the mechanical 

properties of FGB are assumed similar to the mechanical 

properties that are introduced for calculating 𝑃 1 in Table 2. 

The non-dimensional critical loads of current work for 

pinned inhomogeneous and homogeneous local beams are 

less than the results of Reddy (2011) and Şimşek and 

Reddy(2013). The critical loads of shear deformable pinned 
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Table 3 Result validation for higher order shear deformable homogeneous nanobeam 

L/h 𝜇(𝑛𝑚2) 
Critical load (𝑃 1) Fundamental frequency (𝜔 2) 

Thai and Vo (2012b) Current work Thai and Vo (2012b) Current work 

5 

0 8.9533 8.9518 9.2752 9.2745 

1 8.1490 8.1477 8.8488 8.8481 

2 7.4773 7.4761 8.4763 8.4756 

3 6.9079 6.9068 
 .1472 8.1465 

4 6.4191 6.4180 7.8536 7.8530 

10 

0 9.6231 9.6227 9.7077 9.7075 

1 8.7587 8.7583 9.2614 9.2612 

2 8.0367 8.0364 8.8715 8.8713 

3 7.4247 7.42445 8.5271 8.5268 

4 6.8994 6.8990 8.2198 8.2196 

20 

0 9.8068 9.8066 9.8282 9.8281 

1 8.9258 8.9257 9.3764 9.3763 

2 8.1901 8.1900 8.9816 8.9815 

3 7.5665 7.5663 8.6329 8.6328 

4 7.0310 7.0309 8.3218 8.3218 

100 

0 9.8671 9.8671 9.8679 9.8679 

1 8.9807 8.9807 9.4143 9.4142 

2 8.2405 8.2404 9.0180 9.0179 

3 7.6130 7.6129 8.6678 8.6678 

4 7.0743 7.0742 8.3555 8.3555 
 

Table 4 Result validation for higher modes of higher order shear deformable homogeneous nanobeam 

L/h 𝜇(𝑛𝑚2) 
Critical load (𝑃 1) Fundamental frequency (𝜔 2) 

Thai and Vo (2012b) Current work Thai and Vo (2012b) Current work 

5 

0 32.1948 32.1840 61.6192 61.5662 

1 27.2604 27.2513 44.8420 44.8034 

2 24.0664 24.0584 36.9798 36.9480 

3 21.7833 21.7760 32.1878 32.1
 01 

4 20.0470 2
 .0402 28.8778 28.8530 

10 

0 37.1009 37.0980 78.1855 78.1715 

1 31.4146 31.4121 56.8977 56.8875 

2 27.7339 27.7317 46.9219 46.9135 

3 25.1029 25.1009 40.8415 40.8342 

4 23.1019 23.1001 36.6416 36.6350 

20 

0 38.8308 38.8300 85.6671 85.6634 

1 32.8793 32.8786 62.3422 62.3395 

2 29.0270 29.0264 51.4118 51.4096 

3 26.2733 26.2728 44.7496 44.7477 

4 24.1790 24.1785 40.1478 40.1461 

100 

0 39.4517 39.4516 88.6915 88.6913 

1 33.4051 33.4050 64.5432 64.5430 

2 29.4912 29.4911 53.2269 53.2267 

3 26.6934 26.6934 46.3295 46.3293 

4 24.5657 24.5656 41.5653 41.5651 
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FGBs based on Mori–Tanaka homogenization scheme and 

many beam models like the first shear deformation theory, 

trigonometric shear deformation theory and exponential 

shear deformation theory are calculated by the Şimşek and 

Reddy (2013). The results based on hyperbolic shear 

deformation theory and parabolic shear deformation theory 

are less than or equal to the results based on the proposed 

theory of Şimşek and Reddy and other mentioned theories. 
 

 

 

 

 

 

The difference between Poisson‟s ratio of ceramic and 

metallic constituents are negligible(𝜈𝑚 = 0.3177,   𝜈𝑐 =
0.3), therefore the results based on current work are 

presented for constant Poisson‟s ratio and variable modulus 

of elasticity which is obtained by using Mori–Tanaka 

scheme (𝐸𝑚 = 210 GPa, 𝐸𝑐 = 390 GPa). By approaching 

material exponent parameter to 10, the through-thickness 

distribution of Poisson‟s ratio is approached to 𝜈𝑚 . Table 7 
 

 

Table 5 Result validation for higher order homogeneous nanobeam having various end conditions 

L/h 𝜇 
Critical load (𝑃 1,S-S) Critical load (𝑃 1,C-C) 

Emam (2013) Current work Emam (2013) Current work 

10 

0 9.6228 9.6227 35.8075 35.8074 

1 8.7583 8.7583 25.6724 25.6723 

2 8.0364 8.0364 20.0090 20.0089 

3 7.4245 7.4244 16.3927 16.3927 

4 6.8991 6.8990 13.8835 13.8834 

5 6.4432 6.4431 12.0405 12.0404 

20 

0 9.8067 9.8066 38.4910 38.4910 

1 8.9258 8.9257 27.5964 27.5963 

2 8.1900 8.1900 21.5085 21.5085 

3 7.5664 7.5663 17.6212 17.6212 

4 7.0310 7.0309 14.9240 14.9239 

5 6.5663 6.5663 12.9429 12.9428 
 

Table 6 Result validation for critical load of higher order shear deformable FGB (L/h = 20) 

𝑛 = 0 𝑛 = 1 𝑛 = 10 

Reddy 

(2011) 

Şimşek and 

Reddy (2013) 

Current work 

(𝑃 1) 

Reddy 

(2011) 

Şimşek and 

Reddy(2013) 

Current work 

(𝑃 1) 

Reddy 

(2011) 

Şimşek and 

Reddy(2013) 

Current work 

(𝑃 1) 

9.81 9.8058 9.8028 41.96 41.9583 41.9476 19.55 19.5523 19.4850 
 

Table 7 Critical load of higher order shear deformable FGB based on various effective material 

properties (L/h = 20) 

𝑛 Method 𝜈 𝑃 1 based on MT 𝑃 1 based on CR 

1 
Current work 

𝜈𝑚  13.2909 13.5906 

𝜈𝑐  13.2920 13.5917 

𝜈𝑎𝑣𝑒 . 13.2914 13.5912 

PSDT (Şimşek and Reddy 2013) 𝜈𝑣𝑎𝑟 . 13.2916 - 

2 
Current work 

𝜈𝑚  12.4922 12.6981 

𝜈𝑐  12.4933 12.6993 

𝜈𝑎𝑣𝑒 . 12.4927 12.6987 

PSDT (Şimşek and Reddy 2013) 𝜈𝑣𝑎𝑟 . 12.4927 - 

5 
Current work 

𝜈𝑚  11.7250 11.9302 

𝜈𝑐  11.7262 11.9314 

𝜈𝑎𝑣𝑒 . 11.7256 11.9308 

PSDT (Şimşek and Reddy 2013) 𝜈𝑣𝑎𝑟 . 11.7252 - 

10 
Current work 𝜈𝑚  11.1402 11.3283 

PSDT (Şimşek and Reddy 2013) 𝜈𝑣𝑎𝑟 . 11.1403 - 
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Table 8 Through the thickness variation of shear strains in 

higher order beam theories 

Beam model Shape function of shear strain (g) 

TBT 1 −  
𝑦

𝑕/2
 

2

 

SBT 𝑐𝑜𝑠  
𝜋𝑦

𝑕
  

HBT 𝑐𝑜𝑠𝑕  
𝑦

𝑕
 − 𝑐𝑜𝑠𝑕  

1

2
  

EBT  1 −  
𝑦

𝑕/2
 

2

 𝑒
−2 

𝑦

𝑕
 

2

 

CBT 0 
 

 

 

shows a good agreement between the critical loads of 

higher order shear deformable FGBs based on current work 

and based on parabolic shear deformation theory (PSDT). 

The results show that new proposed method can be used for 

exact analysis of arbitrary material gradations like the 

classical rule of mixture (CR) and Mori–Tanaka (MT) 

homogenizations schemes. The critical load is decreased by 

increasing Poisson‟s ratio. Moreover it can be seen that 

when the average of Poisson‟s ratios of metal and ceramic is 

used, the critical load is approached to the average of 

critical loads of metallic and ceramic beams. The shear 

strain for various beam theories is assumed as g𝑤𝑠,𝑥 , where 

𝑔 and 𝑤𝑠 are the shape function and shear component of 

transverse displacement respectively. The shape function of 

shear strain for third-order beam theory (TBT), sinusoidal 

beam theory (SBT), hyperbolic beam theory (HBT), 

exponential beam theory (EBT) and Euler-Bernoulli or 

classical beam theory (CBT) are shown in Table 8 (Thai and 

Vo 2012a). 

Shear stress-free conditions at top and bottom fibres of 

FGB in all mentioned models are satisfied. By increasing 

slenderness ratio the effect of shear strain on vibration 

behavior of FGB is decreased. Therefore a good agreement 

between the results of various theories is observed for the 

large amounts of slenderness ratio. Based on various beam 

 

 

theories the fundamental natural circular frequencies of 

higher order simply supported local FGBs for various 

slenderness ratio and material exponent parameter are 

calculated by Thai and Vo (2012a). The outcomes of present 

paper are compared by the results of various beam models 

in Table 9. For conducting numerical exercises the 

mechanical properties of FGB are assumed equal to the 

mechanical properties which are introduced for calculating 

𝜔 1 in Table 2. 

The frequencies of local FGBs (𝑛 ≠ 0) based on current 

work are less than the frequencies based on TBT, SBT, 

HBT, EBT and CBT. Therefore our proposed method 

improves the results of previous works. The validity of 

vibration analysis for higher order shear deformable FG 

nanobeam is presented in Table 10 by considering various 

amounts of slenderness ratio, scale coefficient and material 

exponent parameter. The results are compared with the 

both, nonlocal Timoshenko beam theory (Rahmani and 

Pedram 2014) and nonlocal higher order beam theory 

(Ebrahimi and Barati 2016). The dimensionless parameter 

𝜔 2  is equal to 𝜔𝐿2 𝜌𝑐𝐴/𝐸𝑐𝐼 , in which 𝐼  is cross 

section‟s moment of inertia. For numerical examples the 

mechanical properties of FGB are assumed as (𝐸𝑐 =
390 GPa, 𝜌𝑐 = 3960 kg/m3) for ceramic and (𝐸𝑚 =
210 GPa, 𝜌𝑚 = 7800 kg/m3)  for metallic materials. In 

addition, the Poisson‟s ratio is taken to be constant (𝜈 =
0.3). The calculated frequencies based on current work are 

less than calculated frequencies based on mentioned works 

in Table 10. Therefore the proposed method in current work 

improves the results of previous works. 

 

5.2 Numerical results 
 

In all cases, when no assumptions are mentioned, the 

slenderness ratio, length of nanobeam, scale coefficient, 

gradient index and Poisson‟s ratio are assumed equal to 20, 

10 nm, 2, 1 and 0.3 respectively. Also, the mechanical 

properties of FGB are (𝐸𝑐 = 390 GPa, 𝜌𝑐 = 3960 kg/m3) 

for ceramic and (𝐸𝑚 = 210 GPa, 𝜌𝑚 = 7800 kg/m3) for 

metallic materials. Also, when end conditions aren‟t 

 

 

Table 9 Result validation for vibration analysis of higher order shear deformable FGB 

L/h 𝑛 TBT SBT HBT EBT CBT Current work (𝜔 1) 

5 

0.0 5.1527 5.1531 5.1527 5.1542 5.3953 5.1527 

0.5 4.4107 4.4110 4.4107 4.4118 4.5931 4.4098 

1.0 3.9904 3.9907 3.9904 3.9914 4.1484 3.9900 

2.0 3.6264 3.6263 3.6265 3.6267 3.7793 3.6237 

5.0 3.4012 3.3998 3.4014 3.3991 3.5949 3.3975 

10.0 3.2816 3.2811 3.2817 3.2814 3.4921 3.2800 

20 

0.0 5.4603 5.4603 5.4603 5.4604 5.4777 5.4603 

0.5 4.6511 4.6511 4.6511 4.6512 4.6641 4.6500 

1.0 4.2051 4.2051 4.2051 4.2051 4.2163 4.2050 

2.0 3.8361 3.8361 3.8361 3.8361 3.8472 3.8359 

5.0 3.6485 3.6484 3.6485 3.6483 3.6628 3.6481 

10.0 3.5390 3.5389 3.5390 3.5390 3.5547 3.5387 
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Table 10 Comparison of current work results with the results of Timoshenko and higher order FG nano-beams 

L/h  𝜇 𝑛 = 0 𝑛 = 0.2 𝑛 = 0.5 𝑛 = 1 𝑛 = 2 𝑛 = 5 𝑛 = 10 

20 

Ebrahimi and 

Barati (2016) 

0 9.829569 8.660194 7.715125 6.967613 6.395955 5.916152 5.651341 

1 9.377686 8.262069 7.360447 6.64730 6.101922 5.644175 5.391538 

2 8.982894 7.914243 7.050579 6.367454 5.845036 5.406561 5.164560 

3 8.634103 7.606946 6.776816 6.120217 5.618083 5.196632 4.964028 

4 8.323021 7.332872 6.532651 5.899708 5.415670 5.009400 4.785177 

Rahmani and 

Pedram (2014) 

0 9.8296 8.6600 7.7149 6.9676 - 5.9172 5.6521 

1 9.3777 8.2620 7.3602 6.6473 - 5.6452 5.3923 

2 8.9829 7.9140 7.0504 6.3674 - 5.4075 5.1653 

3 8.6341 7.6068 6.7766 6.1202 - 5.1975 4.9647 

4 8.3230 7.3327 6.5325 5.8997 - 5.0103 4.7858 

Current work 

(𝜔 2) 

0 9.828129 8.6579 7.7126 6.966932 6.395479 5.915990 5.651284 

1 9.376312 8.2598 7.3580 6.646650 6.101467 5.644021 5.391484 

2 8.981578 7.9121 7.0483 6.366832 5.844601 5.406413 5.164507 

3 8.632838 7.6049 6.7745 6.119618 5.617664 5.196490 4.963978 

4 8.321801 7.3309 6.5305 5.899131 5.415263 5.009264 4.785128 

50 

Ebrahimi and 

Barati (2016) 

0 9.863157 8.68958 7.74135 6.99174 6.41911 5.93877 5.67285 

1 9.409730 8.29010 7.38547 6.67032 6.12401 5.66576 5.41206 

2 9.013589 7.94110 7.07455 6.38950 5.86620 5.42723 5.18421 

3 8.663606 7.63276 6.79985 6.14141 5.63842 5.21650 4.98292 

4 8.351461 7.35775 6.55486 5.92014 5.43527 5.02855 4.80340 

Rahmani and 

Pedram (2014) 

0 9.8631 8.6895 7.7413 6.9917 - 5.9389 5.6730 

1 9.4097 8.2901 7.3854 6.6703 - 5.6659 5.4122 

2 9.0136 7.9411 7.0745 6.3895 - 5.4274 5.1843 

3 8.6636 7.6327 6.7998 6.1414 - 5.2166 4.9830 

4 8.3515 7.3577 6.5548 5.9201 - 5.0287 4.8035 

Current work 

(𝜔 2) 

0 9.862924 8.6882 7.7396 6.991629 6.419034 5.938746 5.672837 

1 9.409508 8.2887 7.3837 6.670211 6.123939 5.665731 5.412046 

2 9.013376 7.9398 7.0729 6.389401 5.866127 5.427209 5.184204 

3 8.663400 7.6315 6.7983 6.141311 5.638354 5.216479 4.982909 

4 8.351263 7.3565 6.5533 5.920043 5.435207 5.028532 4.803378 

100 

Ebrahimi and 

Barati (2016) 

0 9.86799 8.69381 7.74513 6.99521 6.42245 5.94203 5.67594 

1 9.41434 8.29414 7.38907 6.67363 6.12719 5.66886 5.41501 

2 9.01801 7.94496 7.0780 6.39268 5.86925 5.43021 5.18704 

3 8.66785 7.63647 6.80317 6.14446 5.64135 5.21936 4.98564 

4 8.35555 7.36133 6.55805 5.92308 5.43810 5.03131 4.80601 

Rahmani and 

Pedram (2014) 

0 9.8680 8.6938 7.7451 6.9952 - 5.9421 5.6760 

1 9.4143 8.2941 7.3891 6.6736 - 5.6689 5.4150 

2 9.0180 7.9449 7.0780 6.3927 - 5.4302 5.1871 

3 8.6678 7.6365 6.8032 6.1444 - 5.2194 4.9857 

4 8.3555 7.3613 6.5580 5.9231 - 5.0313 4.8060 

Current work 

(𝜔 2) 

0 9.867932 8.6926 7.7440 6.995184 6.422426 5.942023 5.675941 

1 9.414285 8.2929 7.3879 6.673603 6.127175 5.668857 5.415008 

2 9.017952 7.9438 7.0769 6.392650 5.869227 5.430204 5.187041 

3 8.667799 7.6354 6.8021 6.144433 5.641334 5.219357 4.985636 

4 8.355503 7.3603 6.5571 5.923053 5.438080 5.031307 4.806006 
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mentioned, it is assumed that the boundary condition is 

simply supported. The flexural rigidity of Euler-Bernoulli 

FGB, 𝐸𝐼𝐹𝐺 , and mass of unit length, 𝑚0 , are used to 

normalize the buckling loads and natural frequencies. The 

flexural rigidity of thin FGB according to the power-law 

distribution of the volume fraction of the constituents can 

be obtained easily as follows (Heydari 2011) 

 

𝐸𝐼𝐹𝐺 =  𝐸𝑚
2 𝑛4 + 4𝐸𝑚 𝐸𝑐 + 𝐸𝑚 𝑛3  + 

  16𝐸𝑐𝐸𝑚 + 7𝐸𝑚
2  𝑛2 + 28𝐸𝑐𝐸𝑚𝑛 + 12𝐸𝑐

2 𝐼/  

  𝑛 + 3  𝑛 + 2 2 𝑛𝐸𝑚 + 𝐸𝑐   

(63) 

 

where the parameter 𝐼 is cross section‟s moment of inertia. 

The dimensionless parameters 𝑃 2 and 𝜔 3 are equal to 

𝑃𝐿2/(𝜋2𝐸𝐼𝐹𝐺)  and 𝜔𝐿2 𝑚0/ 𝜋4𝐸𝐼𝐹𝐺    respectively, 

which for simply supported thin FGB are equal to one. The 

effect of Poisson‟s ratio on critical load of higher order 

shear deformable local FGB for various amounts of length 

to thickness ratios is illustrated in Fig. 2. The critical load is 

decreased by increasing Poisson‟s ratio. The effect of 

Poisson‟s ratio on buckling load of thin FGB is negligible. 

By decreasing slenderness ratio the dimensionless buckling 

load is decreased due to shear deformation effect. The effect 

of Poisson‟s ratio on critical load of higher order shear 

deformable nonlocal FGB for various amounts of scale 

 

 

 

Fig. 2 The effects of Poisson‟s ratio and slenderness 

ratio on critical load of higher order FGB 
 

 

 

Fig. 3 The effects of Poisson‟s ratio and scale coefficient 

on critical load of higher order shear deformable 

nonlocal FGB (L = 5h) 

coefficient is presented in Fig. 3. The slenderness ratio is 

assumed equal to 5. By increasing scale coefficient and 

Poisson‟s ratio the critical load is decreased. 

Fig. 4 illustrates the effect of 𝐸𝑐  to 𝐸𝑚  ratio on non-

dimensional buckling load of higher order shear deformable 

nonlocal FGB for various amounts of material exponent 

parameter. The dimensionless critical load is decreased by 

increasing gradient index. 

The first four non-dimensional buckling loads of higher 

order FG nanobeam for simply clamped (S-C) end 

condition and various amounts of 𝐸𝑐  to 𝐸𝑚  ratio are 

illustrated in Fig. 5. For higher modes the effect of small 

scale on buckling load is increased. 

The effect of axial load on first three natural frequencies 

of higher order shear deformable FGB is illustrated in Fig. 

6. The sign of axial compression is taken to be positive. The 

slenderness ratio is assumed equal to 5. The compressive 

axial load decreases the natural frequency and tensile axial 

load increases the natural frequency of higher order shear 

deformable FG nanobeam. By approaching the axial 

compression to the buckling load, the natural frequency of 

corresponding mode approaches to zero. 

The fundamental frequency of higher order shear 

deformable FGB based on two homogenization schemes, 

the Mori–Tanaka technique (MT) and classical rule of 

mixture (CR) for various amounts of slenderness ratio is 
 

 

 

Fig. 4 The effects of Ec to Em ratio and gradient index on 

critical load of higher order shear deformable 

nonlocal FGB 
 

 

 

Fig. 5 The first four dimensionless buckling loads of simply 

clamped (S-C) higher order shear deformable 

nonlocal FGB 
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Fig. 6 The effect of axial load on first three dimensionless 

frequencies of higher order FGB (L = 5h) 
 

 

 

Fig. 7 The fundamental natural frequency based on MT 

and CR homogenization schemes 
 

 

 

Fig. 8 Profile of axial strain for various amounts of 

slenderness ratio (n = 0) 

 

 

plotted in Fig. 7. The Poisson‟s ratio is taken to be constant. 

For both cases, the Eq. (63) is used to normalize the 

fundamental frequency. The MT scheme gives the less 

frequencies than CR method. 

The axial strain of buckled higher order shear 

deformable homogeneous beam (𝑛 = 0) for various 

slenderness ratios are presented in Fig. 8. By increasing 

slenderness ratio, the nonlinear distribution of axial strain is 

transformed to a linear distribution. In addition, the shear 

stress of higher order buckled FGB for various material 

exponent parameters are illustrated in Fig. 9. In contrast to 

the FGB, the maximum shear stress of higher order shear 

 

Fig. 9 Profile of shear stress for various amounts of 

gradient index (L = 2h) 

 

 

 

Fig. 10 The difference between positions of neutral axis 

for thin and thick FGBs 

 

 
deformable homogeneous beam is occurred at mid-axis. 

The axial displacement (axial strain or axial stress) of 

higher order shear deformable FGB for first mode of 

vibration is set equal to zero to find the position of neutral 

axis. The position of neutral axis (𝑦 ) is measured from the 

mid-axis. Fig. 10 presents the location of neutral axis for 

higher order shear deformable FGB (NAH) and location of 

neutral axis for Euler-Bernoulli FGB (NAE). By increasing 

the slenderness ratio NAH approaches to the NAE, which 

indicates that the results of current work are valid. It is 

noteworthy to mention that the exact shear stress takes the 

maximum value at neutral axis (NAH), whereas in earlier 

higher order shear deformation beam theories the maximum 

shear strain usually is occurred at mid-axis (Table 8). 

Moreover, the neutral axis for shear deformable FGB is 

located somewhere rather than the position of neutral axis 

for Euler-Bernoulli FGB. Therefore the methodology of 

current work not only improves the previous works based 

on the various higher order shear deformation beam theories 

but also improves the vibration and buckling analyses for 

shear deformable FGB by considering exact position of 

neutral axis instead of using position of neutral axis for 

Euler-Bernoulli FGB (Eltaher et al. 2014). 

 

 

6. Conclusions 
 

Survey in the literature, shows that the previous works 
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about the vibration and buckling analyses of shear 

deformable homogeneous and heterogeneous beams have 

two main weaknesses. Firstly, they guess some shear strain 

shape functions instead of using exact through-thickness 

distribution of shear strain, secondly, some works used the 

position of neutral axis of Euler-Bernoulli FGB instead of 

exact position of neutral axis. The present paper intended to 

find an exact shear strain shape function and avoided to 

guess a shape function for across-the-thickness variation of 

shear strain. As a result, for the first time, the exact position 

of neutral axis for vibration and buckling analyses of higher 

order shear deformable FG and homogeneous nanobeams is 

considered. The exact shear stress takes the maximum value 

at neutral axis, whereas in earlier higher order shear 

deformation beam theories the maximum shear strain 

usually is occurred at mid-axis. The methodology of current 

work not only improved the previous works based on the 

various higher order shear deformation beam theories but 

also the vibration and buckling analyses for shear 

deformable FGB by considering exact position of neutral 

axis instead of using position of neutral axis for Euler-

Bernoulli FGB developed. The new approaches based on 

separation of shear strain into two independent variables is 

proposed to solve the coupled partial differential equations 

of motion for arbitrary material gradation without any 

simplification. In numerical analyses, the faster conver-

gence is observed by using differential transformation and 

collocation methods for fractional values and great amounts 

of gradient index, respectively. For the homogeneous 

beams, the exact new formulas are obtained. The analytical 

relations between nonlocal and local buckling loads and 

natural frequencies are obtained using Eringen‟s nonlocal 

continuum theory. The exact buckling loads of first modes 

for various classical end conditions and natural frequencies 

of first modes for pinned ends are calculated. For similar 

gradient index, the Mori-Tanaka homogenization scheme 

gives smaller buckling loads and natural frequencies than 

the classical rule of mixture. The effect of small scale on 

buckling load and natural frequency in higher modes is 

more significant. By approaching the axial compression to 

the buckling load, the natural frequency of corresponding 

mode approaches to zero. The normalized buckling loads 

and natural frequencies decreased by increasing the scale 

coefficient, thickness to length ratio, material exponent 

parameter and Poisson‟s ratio. 
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