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1. Introduction 

 

Normally, functionally graded materials (FGMs) are 

heterogeneous materials in which the elastic and thermal 

properties change from one surface to the other, gradually 

and continuously. The material is constructed by smoothly 

changing the volume fraction of its constituent materials. 

FGMs offer great promise in applications where the 

operating conditions are severe, including spacecraft heat 

shields, heat exchanger tubes, plasma facings for fusion 

reactors, engine components, and high-power electrical 

contacts or even magnets. For example, in a conventional 

thermal barrier coating for high-temperature applications, a 

discrete layer of ceramic material is bonded to a metallic 

structure. However, the abrupt transition in material 

properties across the interface between distinct materials 

can cause large interlaminar stresses and lead to plastic 

deformation or cracking (Finot and Suresh 1996). These 

adverse effects can be alleviated by functionally grading the 

material to have a smooth spatial variation of material 

composition. The concept of FGMs was first introduced in 

Japan in 1984. Since then it has gained considerable 

attention (Koizumi 1993). A lot of different applications of 

FGMs can be found in (Zhu and Meng 1995). Owing to the 
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superior properties against the conventional composite 

laminates, FGMs have found increasing applications in 

modern engineering designs, such as aircraft fuselage, 

rocking-motor casing, packaging materials in 

microelectronic industry, human implants, and so on. FG 

sectorial plates have extensive applications in different 

engineering branches. For mechanical engineering and 

aerospace engineering it can be used in different aircraft 

components such as turbine or fan blades and also vacuum 

filter segment with replaceable sector plates. In civil 

engineering, this kind of structure has many practical 

applications for curved bridge decks. 

Ramakris and Kunukkas (1973) provided a closed-form 

analytical solution for free vibration of an annular sector 

plate with radial edges simply supported. Mukhopadhyay 

(1979, 1982) used a semi-analytical method and Srinivasan 

and Thiruvenkatachari (1983, 1986) used the integral 

equation technique to analyze the vibrations of annular 

sector plates, respectively. Kim and Dickinson (1989) used 

one-dimensional (1-D) orthogonal polynomials and Liew 

and Lam (1993) used two-dimensional orthogonal 

polynomials as admissible functions to study the free 

vibration of annular sector plates by the Rayleigh-Ritz 

method. Ramaiah and Vijayakumar (1974) studied the free 

vibration of annular sector plates with simply supported 

radial edges by a combination of the Rayleigh-Ritz method 

and coordinate transformation. Swaminadham et al. (1984) 

compared the natural frequencies of annular sector plates 

from the finite element method and experiments. Seok and 
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Tiersten (2004) used a variational approximation procedure 

to analyze the free vibration of cantilevered annular sector 

plates. Houmat (2001) used the hierarchical finite element 

method to study the free vibration of annular sector plates. 

Marin (2008) used some general results from the general 

theory of elliptic equations in order to obtain some 

qualitative results in a concrete and very applicative 

situation. In fact, he proved the existence and uniqueness of 

the generalized solutions for the boundary value problems 

in elasticity of initially stressed bodies with voids (porous 

materials). Marin et al. (2013) considered a theory of 

thermoelasticity constructed by taking into account the heat 

conduction in deformable bodies which depends on two 

temperatures. Marin (2016) investigated a micropolar 

porous body, including voidage time derivative among the 

independent constitutive variables. Marin and Baleanu 

(2016) studied vibrations in thermoelasticity without energy 

dissipation for micropolar bodies. With the help of a 

measure associated with the corresponding steady-state 

vibration and by assuming that the exciting frequency is 

lower than a certain critical frequency, they obtained a 

spatial decay estimate. Sharma et al. (2005a, b) integrated 

an analytical approach with the Chebyshev polynomials 

technique to study the buckling and free vibration of 

isotropic and laminated composite sector plates based on 

the first-order shear deformation theory. For moderate 

thickness plates, the first-order shear deformable plate 

theory is commonly used, which could provide a result 

more accurate than that from the CPT. Liew and Liu (2000) 

used the differential quadrature method to analyze the free 

vibration of thick annular sector plates. Barka et al. (2016) 

studied Thermal post-buckling behavior of imperfect 

temperature-dependent sandwich FG plates. Bouguenina et 

al. (2015) studied FG plates with variable thickness 

subjected to thermal buckling. Chen et al. (2017) studied 

Vibration and stability of initially stressed sandwich plates 

with FGM face sheets. Wu and Liu (2016) developed a state 

space differential reproducing kernel (DRK) method in 

order to study 3D analysis of FG circular plates. Park et al. 

(2016) used modified couple stress for dynamic analysis of 

sigmoid functionally graded materials plates. Leissa et al. 

(1993) and McGee et al. (1995) considered the effect of 

stress singularities on the vibration analysis of thick annular 

sector plates and presented the corner functions to improve 

the convergence of the numerical solutions. Zhou et al. 

(2009) used the Chebyshev-Ritz method to study the free 

vibration of thick annular sector plates, Nie and Zhong 

(2008) investigated the free and forced vibration analysis of 

FGM annular sector plates with simply-supported radial 

edges by using a semi-analytical approach. Arefi (2015) 

suggested an analytical solution of a curved beam with 

different shapes made of functionally graded materials 

(FGMs). Bennai et al. (2015) developed a new refined 

hyperbolic shear and normal deformation beam theory to 

study the free vibration and buckling of functionally graded 

(FG) sandwich beams under various boundary conditions. 

Bouchafa et al. (2015) used refined hyperbolic shear 

deformation theory (RHSDT) for the thermoelastic bending 

analysis of functionally graded sandwich plates. Tahouneh 

(2016) presented a 3-D elasticity solution for free vibration 

analysis of continuously graded carbon nanotube-reinforced 

(CGCNTR) rectangular plates resting on two-parameter 

elastic foundations. The volume fractions of oriented, 

straight single-walled carbon nanotubes (SWCNTs) were 

assumed to be graded in the thickness direction. Moradi-

Dastjerdi and Momeni-Khabisi (2016) studied Free and 

forced vibration of plates reinforced by wavy carbon 

nanotube (CNT). The plates were resting on Winkler-

Pasternak elastic foundation and subjected to periodic or 

impact loading. Kamarian et al. (2015) studied vibration 

analysis of sandwich beams. The material properties of the 

FG nanocomposite sandwich beam are estimated using the 

Eshelby-Mori-Tanaka approach. Tornabene et al. (2016) 

investigated the effect of Carbon Nanotube (CNT) 

agglomeration on the free vibrations of laminated 

composite doubly-curved shells and panels reinforced by 

CNTs. Fantuzzi et al. (2017) studied free vibration of 

arbitrarily shaped FG carbon nanotube-reinforced plates 

using generalized differential quadrature method. Some 

additional parametric studies were also performed to 

analyze the effect of a mesh distortion, by considering 

several geometric and mechanical configura-

tions. Tornabene et al. (2017a) investigated the static 

response of composite plates and shells reinforced by 

agglomerated nanoparticles made of carbon nanotubes. A 

two-parameter agglomeration model was taken into account 

to describe the micromechanics of such particles, which 

showed the tendency to agglomerate into spherical regions 

when scattered in a polymer matrix. A survey of several 

methods under the heading of strong formulation finite 

element method (SFEM) was presented by Tornabene et al. 

(2015). These approaches were distinguished from classical 

one, termed weak formulation finite element method 

(WFEM). Free vibration analysis of Carbon Nanotube-

Reinforced Composite (CNTRC) conical shells was 

performed considering the agglomeration effect of Carbon 

Nanotubes (CNTs) by Kamarian et al. (2016). Tornabene et 

al. (2017b) investigated free vibration problem of sandwich 

shell structures with variable thickness and made of 

Functionally Graded Materials (FGMs). Several Higher-

order Shear Deformation Theories (HSDTs), defined by a 

unified formulation, were employed in their study. A 

comparative study between different analytical and 

numerical three-dimensional (3D) and two-dimensional 

(2D) shell models for the bending analysis of composite and 

sandwich plates, spherical and doubly-curved shells 

subjected to a transverse normal load applied at the top 

surface was presented by Tornabene and Brischetto (2018). 

A study for comparison between different shell models in 

the case of static analysis of multilayered composite and 

sandwich plates and spherical shells was carried out by 

Tornabene and Brischetto (2018). Transverse shear loads 

were applied on these structures. The behavior through the 

thickness direction was analyzed in terms of the three 

displacement components and the six stress components. 

Based on the three-dimensional elasticity theory, free 

vibration analysis of sandwich plate and panel were carried 

out using GDQ method (Kamarian et al. 2013, 2014). The 

two-constituent functionally graded shell consisted of 

ceramic and metal. These constituents were graded through 
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the thickness according to a generalized power-law 

distribution. 

Nowadays, the use of carbon nanotubes in 

polymer/carbon nanotube composites has attracted wide 

attention (Wagner et al. 1997). A high aspect ratio, low 

weight of CNTs and their extraordinary mechanical 

properties (strength and flexibility) provide the ultimate 

reinforcement for the next generation of extremely 

lightweight but highly elastic and very strong advanced 

composite materials. On the other hand, by using of the 

polymer/CNT composites in advanced composite materials, 

we can achieve structures with low weight, high strength 

and high stiffness in many structures of civil, mechanical 

and space engineering. 

Several researches have recently investigated the elastic 

properties of multiwalled carbon nanotube (MWCNT) and 

their composites (Fidelus et al. 2005, Ghavamian et al. 

2012). Farsadi et al. (2013) investigated the extent to which 

the effective stiffness of composite materials can be 

impacted by the characteristic waviness of nanotubes 

embedded in polymers. Weidt and Figiel (2015) developed 

a 3D nonlinear computational model to predict the 

compressive behaviour of epoxy/carbon nanotube (CNT). 

Gojny et al. (2005) focused on the evaluation of the 

different types of the CNTs applied, their influence on the 

mechanical properties of epoxy-based nanocomposites and 

the relevance of surface functionalization. Therefore, the 

study of the mechanical performance of CNT-based 

composites and the discovery of possible innovative 

applications has recently attracted the interest of many 

researchers. Several researchers have reported that 

mechanical properties of polymeric matrices can be 

drastically increased (Montazeri et al. 2010, Yeh et al. 

2006) by adding a few weight percent (wt%) MWCNTs. 

Montazeri et al. (2010) showed that modified Halpin-Tsai 

equation with exponential Aspect ratio can be used to model 

the experimental result of MWNT composite samples. They 

also demonstrated that reduction in Aspect ratio (L/d) and 

nanotube length cause a decrease in aggregation and Above 

1.5wt%, nanotubes agglomerate causing a reduction in 

Young’s modulus values. Thus, it is important to determine 

the effect Aspect ratio and arrangement of CNTs on the 

effective properties of carbon nanotube-reinforced 

composite (CNTRC). The stiffening effect of carbon 

nanotubes was quantitatively investigated by micro-

mechanics methods. Especially, the effects of the 

extensively observed waviness and agglomeration of carbon 

nanotubes were examined theoretically by Shi et al. (2004). 

Yeh et al. (2006) used the Halpin-Tsai equation to shows 

the effect of MWNT shape factor (L/d) on the mechanical 

properties. They showed that the mechanical properties of 

nanocomposite samples with the higher shape factor (L/d) 

values were better than the ones with the lower shape factor. 

The reinforcement effect of MWCNTs with different aspect 

ratio in an epoxy matrix has been carried out by Martone et 

al. (2011). They showed that progressive reduction of the 

tubes effective aspect ratio occurs because of the increasing 

connectedness between tubes upon an increase in their 

concentration. Also they investigated on the effect of 

nanotube curvature on the average contacts number 

between tubes by means of the waviness that accounts for 

the deviation from the straight particles assumption. The 

material properties of FG-CNTR can be evaluated through a 

micromechanical model in which CNT efficiency 

parameters are estimated by matching the elastic moduli of 

the CNTR observed from the molecular dynamics (MD) 

simulation with that of numerical results obtained from the 

rule of mixture (Shen 2009). 

Analysis of FG-CNTR plates were first presented by 

Shen (2009) in which he studied the nonlinear bending 

behavior of FG-CNTR plates in thermal environment. He 

concluded that the load bending moment curves of the plate 

could be significantly increased as a result of functionally 

graded CNT reinforcements. Shen and Zhang (2010) 

presented thermal buckling and post buckling behavior of 

functionally graded nanocomposite plates reinforced by 

single-walled carbon nanotubes (SWCNTs). The 

temperature-dependent material properties of SWCNTs 

were obtained from MD simulations. In comparison with 

research works on the free vibration or buckling analyses of 

FG structures, only a few references can be found that 

consider the effect of waviness and aspect ratio on the free 

vibrational behavior of panels with four edges simply 

supported (Moradi-Dastjerdi et al. 2013). Moradi-Dastjerdi 

et al. (2013) investigated the effects of CNT waviness on 

the dynamic behavior of FG-CNTR cylinder under impact 

load. Tornabene et al. (2018) studied free vibration of 

laminated nano-composite plates and shells using first-order 

shear deformation theory and the Generalized Differential 

Quadrature (GDQ) method. Each layer of the laminate was 

modelled as a three-phase composite. Despite the 

aforementioned extensive research on the free vibration 

analysis of structures resting on elastic foundations, to the 

authors’ best knowledge, still very little work has been done 

for vibration analysis of FG-CNTR structures and 

considering the effect of waviness and aspect ratio on their 

vibrational response. The aim of this study is to fill this 

apparent gap in this area by investigating the effects of 

CNTs waviness and aspect ratio on vibrational behavior of 

FG sandwich annular sector plates on elastic foundations. 

Five linear types of distributions of CNTs are considered; 

uniform and four kinds of FG distributions along the 

thickness of face sheets and the effects of CNT volume 

fraction, aspect ratio and waviness and also Pasternak’s 

elastic foundation coefficients, sandwich plate thickness, 

face sheets thickness and plate aspect ratio are investigated 

on the free vibration behavior of sandwich plates with wavy 

CNT-reinforced face sheets. 

 

 

2. Problem description 
 

2.1 Mechanical properties of the sandwich 
structure 

 Consider a sandwich annular sector plate resting on 

two-parameter elastic foundations as shown in Fig. 1. This 

plate is referring to a cylindrical coordinate system (r, θ, z), 

as depicted in Fig. 1. It is assumed that the total thickness of 

plate is “h”. Volume fraction of CNT is assumed to be 

graded along the thickness of the face sheets. The FG- 
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Fig. 1 Geometry of the sandwich annular sector plate on an 

elastic foundation 

 

 

CNTRC face sheets are made from a mixture of wavy 

SWCNTs and isotropic matrix. 

The wavy SWCNT reinforcement is either uniformly 

distributed (UD) or functionally graded in the plate 

thickness. 

Employing the extended rule of mixture the effective 

elastic properties of the CNTR plate can be expressed as 

follows (Shen 2009) 
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 and 𝜌

𝐶𝑁𝑇denote effective 

Young’s moduli, effective shear modulus, Poisson’s ratios 

and density of the CNT, respectively. Em, Gm, υm and ρm are 

the corresponding properties of the isotropic matrix. ηj (j = 

1, 2, 3) are the CNT efficiency parameters accounting for 

the scale-dependent material properties evaluated by 

comparing the effective material properties obtained from 

MD simulations and that of numerical results obtained from 

the rule of mixture in (Shen 2009). VCNT and Vm are the 

CNT and matrix volume fractions related by 
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Fig. 2 Variation of nanotube volume fraction (Vcnt) along the 

thickness of plate for different CNT distributions 
 

 

The effective Young’s moduli and shear modulus of 

wavy CNT are introduced as follows (Martone et al. 2011) 
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The efficiency parameter, η*, is considered to account 

the CNT aspect ratio and waviness (Martone et al. 2011). 

<c> is the average number of contacts for CNTs depends on 

their aspect ratio defined as 
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where the waviness, w, has been introduced for accounting 

the CNT’s curvature within the CNTR structure (Martone et 

al. 2011). Introducing this parameter, the excluded volume 

due to the curvature of CNTs has been considered. The 

accuracy of this method has been investigated by Moradi-

Dastjerdi et al. (2013). The variation of CNT distribution 

through the plate thickness is assumed as follows (Fig. 2) 
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where 
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V
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(11) 

 

𝑉𝐶𝑁𝑇
∗  is the CNT volume fraction and wCNT is the mass 

fraction of CNTs. Poly methyl methacrylate, referred to as 

PMMA and (10,10) SWCNTs are selected as the matrix and 

the reinforcement materials, respectively. The material 

properties for the constituent materials are listed in Table 1 

(Shen and Zhang 2010). 

Values of CNT efficiency parameters, ηi (i = 1, 2, 3), for 

different CNT volume fractions are presented in Table 2 to 

capture the scale difference between micro and nano levels. 

It should be noted that η3 = 0.7η2, G13 = G12 and G23 = 

1.2G12 (Shen and Zhang 2010). 

 

 

Table 1 Properties of the (10,10) SWCNT and the polymer 

matrix (Shen and Zhang 2010) 

SWCNT Polymer matrix 

𝐸11
𝐶𝑁𝑇  =  5.6466 (TPa), 

𝐸22
𝐶𝑁𝑇  = 7.0800 (TPa), 

𝐺12
𝐶𝑁𝑇  =1.9447 (TPa), 

𝜌𝐶𝑁𝑇 = 1400 (kg/m3) 

𝜐12 = 0.175 

Em = 2.1 (GPa) 

ρm = 1150 (kg/m3) 

υm = 034 

 

 

 

Table 2 CNT efficiency parameters for different values of 

volume fractions (Shen and Zhang 2010) 

𝑉𝐶𝑁𝑇
∗  η1 η2 η3 

0.12 0.137 1.022 0.715 

0.17 0.142 1.626 1.138 

0.28 0.141 1.585 1.109 
 

3. Governing equations 
 

In the absence of body forces, the governing equations 

are as follows (Reddy 2013) 
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where σr, σθ, σz are axial stress components, τrθ, τθz, τrz are 

shear stress components, ur, uθ, uz are displacement 

components, ρ denotes material density and t is time. The 

relations between the strain and the displacement are 
 

 

(13) 

 

where εr, εθ, εz, γθz, γrθ, γrz are strain components. The 

constitutive equations for material are (Reddy 2013) 
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where cij are material elastic stiffness coefficients. 

Using the three-dimensional constitutive relations and 

the strain-displacement relations, the equations of motion in 

terms of displacement components for a linear  elastic FG 

plate with infinitesimal deformations can be written as 
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where 𝑐𝑖𝑗
′ =

𝑑𝑐𝑖𝑗

𝑑𝑧
. 

Eqs. (15) and (16) represent the in-plane equations of 

motion along the r and θ-axes, respectively; and Eq. (17) is 

the transverse or out-of-plane equation of motion. 

The related boundary conditions are as follows: 

 

at z = ‒0.5h 
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at z = 0.5h 

 

, ,zr z z    0 0 0
 (19) 

 

Kw and Kg are the Winkler and shearing layer elastic 

coefficients of the foundation. In this paper three different 

kinds of  boundary conditions are considered for circular 

edges including clamped-clamped (c-c), simply supported-

clamped (s-c) and free-clamped (f-c). The boundary 

conditions at edges are 
 

Clamped (r = b)-Clamped (r = a) 
 

at  r = a       r zu u u  0                                                                                            

 at  r = b       r zu u u  0  
(20) 

 

Simply supported (r = b)-Clamped (r = a) 
 

at  r = b       z ru u   0  

at  r = a       r zu u u  0  
(21) 

 

Free (r = b)-Clamped (r = a) 

at  r = a       r zu u u  0                                                                                                    

at  r = b        0 rzrr    
(22) 

 

 

4. Solution procedure 
 

Using the geometrical periodicity of the plate, the 

displacement components for the free vibration analysis 

canbe represented as 
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(23) 

 

where m (= 0, 1,…, ∞) is the circumferential wavenumber; 
  is the natural frequency and i (=  −1) is the imaginary 

number. It is obvious that m = 0 means axisymmetric 

vibration. At this stage the generalized differential 

quadrature (GDQ) method [A brief review of GDQ method 

is given in Appendix] rules are employed to discretize the 

free vibration equations and the related boundary 

conditions. Substituting for the displacement components 

from (23) and then using the GDQ rules for the spatial 

derivatives, the discretized form of the equations of motion 

at each domain grid point (rj, zk) with (j = 2, 3,…, Nr ‒ 1) 

and (k = 2, 3,…, Nz ‒ 1) can be obtained as 

Eq. (15) 
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Eq. (16) 
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Eq. (17) 
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where 𝐴𝑖𝑗
𝑟 , 𝐴𝑖𝑗

𝑧  and 𝐵𝑖𝑗
𝑟 , 𝐵𝑖𝑗

𝑧  are the first and second order 

GDQ weighting coefficients in the r- and z- directions, 

respectively. 

In a similar manner the boundary conditions can be 

discretized. For this purpose, using Eq. (23) and the GDQ 

discretization rules for spatial derivatives, the boundary 

conditions at z = 0 and h become, 

Eq. (18) 
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Eq. (19) 
 

at z = 0.5h 
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(28) 

 

where k = 1 at z = ‒0.5h and k = Nz at z = 0.5h, and j = 1, 2, 

…, Nr. The boundary conditions at r = b and a stated in (20-

22) become, 

Simply supported (S) 
 

, ,zmjk mjku u 0 0
 

( ) ( ) ( ) ( )
rN

r
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n j j

m
c A u c u u

r r
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
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  11 12
1

1

 

( ) ( )
zN

z

k kn zmjn

n

c A u


 13
1

0
 

(29a) 

 

Clamped (C) 
 

, ,rmjk mjk zmjku u u  0 0 0
 

(29b) 
 

Free (F) 
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(29c) 

 

In the above equations k = 2,…, Nz ‒ 1; also j = 1 at r = 

b and j = Nr at r = a. 

In order to carry out the eigenvalue analysis, the domain 

and boundary degrees of freedom are separated and in 

vector forms they are denoted as {d} and {b}, respectively. 

Based on this definition, the discretized form of the 

equilibrium equations and the related boundary conditions 

take the following forms, 

Equations of motion (24-26) 
 

  
 

 
    db dd

b
K K M d

d


  
     

  

2 0

 

(30) 
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Boundary conditions (27, 28) and (29.1-3) 

 

       bd bbK d K b  0
 

(31) 

 

Eliminating the boundary degrees of freedom in Eq. (30) 

using Eq. (31), this equation become 

 

       -K M d 2 0
 

(32) 

 

 

where [K] = [Kdd] ‒ [Kdb][Kbb]
-1[Kbd]. The above eigenvalue 

system of equations can be solved to find the natural 

frequencies and mode shapes of the plates. 
 

 

5. Numerical results and discussion 
 

In this section, the convergence behavior and accuracy 

of the method in evaluating the non-dimensional natural 

frequencies of isotropic and FG annular sector plates with 
 

 

Table 3 Comparison of fundamental frequency parameter  Ω = 𝜔𝑎2 𝜌ℎ/𝐷  for flexural vibration 

of annular sector plates with two straight edges simply supported for b/a = 0.5 

α (deg) h/a Theories C-C F-C F-S 

195 

0.01 

McGee et al. (1995) 90.0837 21.4263 10.8761 

Zhou et al. (2009) 90.1125 21.4074 10.8522 

Present (Nr = Nz = 9) 90.1102 21.4065 10.8513 

Present (Nr = Nz = 13) 90.1124 21.4075 10.8520 

Present (Nr = Nz = 17) 90.1122 21.4076 10.8525 

Present (Nr = Nz = 19) 90.1123 21.4076 10.8524 

0.2 

McGee et al. (1995) 70.8090 19.9986 10.2268 

Zhou et al. (2009) 71.9146 20.0967 10.2386 

Present (Nr = Nz = 9) 71.9115 20.0954 10.2392 

Present (Nr = Nz = 13) 71.9142 20.0964 10.2380 

Present (Nr = Nz = 17) 71.9143 20.0968 10.2385 

Present (Nr = Nz = 19) 71.9143 20.0968 10.2384 

0.4 

McGee et al. (1995) 48.6618 17.5822 9.3661 

Zhou et al. (2009) 50.0059 17.7636 9.3961 

Present (Nr = Nz = 9) 50.0045 17.7653 9.3945 

Present (Nr = Nz = 13) 50.0059 17.7641 9.3958 

Present (Nr = Nz = 17) 50.0056 17.7638 9.3961 

Present (Nr = Nz = 19) 50.0056 17.7638 9.3962 

210 

0.01 

McGee et al. (1995) 89.9678 20.9496 10.2631 

Zhou et al. (2009) 90.0265 20.9368 10.2418 

Present (Nr = Nz = 9) 90.0253 20.9347 10.2399 

Present (Nr = Nz = 13) 90.0260 20.9363 10.2410 

Present (Nr = Nz = 17) 90.0263 20.9369 10.2416 

Present (Nr = Nz = 19) 90.0264 20.9369 10.2416 

0.2 

McGee et al. (1995) 70.7344 19.6097 9.6643 

Zhou et al. (2009) 71.8406 19.7064 9.6751 

Present (Nr = Nz = 9) 71.8420 19.7040 9.6733 

Present (Nr = Nz = 13) 71.8401 19.7059 9.6745 

Present (Nr = Nz = 17) 71.8407 19.7063 9.6751 

Present (Nr = Nz = 19) 71.8406 19.7063 9.6752 

0.4 

McGee et al. (1995) 48.6117 17.2943 8.8769 

Zhou et al. (2009) 49.9566 17.4733 8.9043 

Present (Nr = Nz = 9) 49.9535 17.4714 8.9026 

Present (Nr = Nz = 13) 49.9555 17.4725 8.9035 

Present (Nr = Nz = 17) 49.9563 17.4736 8.9041 

Present (Nr = Nz = 19) 49.9564 17.4735 8.9041 
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different set of boundary conditions along the circular edges 

are investigated. 

McGee et al. (1995) provided the exact results for sector 

plates with a re-entrant corner, based on the Mindlin plate 

theory. As a first example, the comparative studies of the 

fundamental frequency parameters are given in Table 3. It is 

seen from Table 3 that for thin plates (h/a = 0.01) there is an 

excellent agreement between the present 3-D solutions and 

the classical solutions. For moderately thick plates (h/a = 

0.2) the present 3-D solutions also agree quite well with the 

Mindlin solutions. For very thick plates (h/a = 0.4) the 

 

 

discrepancies increase, particularly for c-c plates. It is found 

that only nineteen DQ grid points in each direction (r and z) 

can yield accurate results. The same problem has been 

analyzed by Zhou et al. (2009). It is obvious that the error 

of the Mindlin plate theory increases with the increase of 

the plate thickness, especially for very thick plates (h/a ≥ 

0.4). The two-dimensional theories, such as the classical 

plate theory, the first and the higher order shear deformation 

plate theories neglect transverse normal deformations, and 

generally assume that a plane stress state of deformation 

prevails in the plate. These assumptions may be appropriate 

Table 3 Continued 

α (deg) h/a Theories C-C F-C F-S 

270 

0.01 

McGee et al. (1995) 89.6828 19.7282 8.5788 

Zhou et al. (2009) 89.7655 19.7258 8.5635 

Present (Nr = Nz = 9) 89.7634 19.7219 8.5611 

Present ( Nr = Nz = 13) 89.7642 19.7245 8.5623 

Present ( Nr = Nz = 17) 89.7651 19.7257 8.5630 

Present ( Nr = Nz = 19) 89.7653 19.7259 8.5633 

0.2 

McGee et al. (1995) 70.5516 18.6218 8.1304 

Zhou et al. (2009) 71.6588 18.7149 8.1386 

Present (Nr = Nz = 9) 71.6551 18.7117 8.1365 

Present ( Nr = Nz = 13) 71.6575 18.7139 8.1377 

Present ( Nr = Nz = 17) 71.6584 18.7150 8.1386 

Present ( Nr = Nz = 19) 71.6586 18.7150 8.1387 

0.4 

McGee et al. (1995) 48.4901 16.5657 7.5461 

Zhou et al. (2009) 49.8361 16.7386 7.5670 

Present (Nr = Nz = 9) 49.8341 16.7370 7.5650 

Present ( Nr = Nz = 13) 49.8351 16.7382 7.5664 

Present ( Nr = Nz = 17) 90.0837 21.4263 10.8761 

Present ( Nr = Nz = 19) 90.1125 21.4074 10.8522 

360 

0.01 

McGee et al. (1995) 90.1102 21.4065 10.8513 

Zhou et al. (2009) 90.1124 21.4075 10.8520 

Present (Nr = Nz = 9) 90.1122 21.4076 10.8525 

Present ( Nr = Nz = 13) 90.1123 21.4076 10.8524 

Present ( Nr = Nz = 17) 70.8090 19.9986 10.2268 

Present ( Nr = Nz = 19) 71.9146 20.0967 10.2386 

0.2 

McGee et al. (1995) 71.9115 20.0954 10.2392 

Zhou et al. (2009) 71.9142 20.0964 10.2380 

Present (Nr = Nz = 9) 71.9143 20.0968 10.2385 

Present ( Nr = Nz = 13) 71.9143 20.0968 10.2384 

Present ( Nr = Nz = 17) 48.6618 17.5822 9.3661 

Present ( Nr = Nz = 19) 50.0059 17.7636 9.3961 

0.4 

McGee et al. (1995) 50.0045 17.7653 9.3945 

Zhou et al. (2009) 50.0059 17.7641 9.3958 

Present (Nr = Nz = 9) 50.0056 17.7638 9.3961 

Present ( Nr = Nz = 13) 50.0056 17.7638 9.3962 

Present ( Nr = Nz = 17) 89.9678 20.9496 10.2631 

Present ( Nr = Nz = 19) 90.0265 20.9368 10.2418 
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for thin plates but do not give good results for thick plates. 

It is seen from Table 3 that the maximum differences 

between the 3-D solutions and the Mindlin solutions occur 

 

 
at the clamped-clamped plates. A numerical value of Nr = Nz 

= 19 is used for the next studies. As the second example, the 

convergence behavior and accuracy of the method for 

Table 4 The lowest non-dimensional frequency parameter  Ω = 𝜔ℎ 𝜌/𝐶11  for FGMs annular sector plates having clamped 

(r = b) and clamped (r = a) conditions 

α (deg) h/a b/a 
m (circumferential 

wavenumber) 
 

λ 

1 2 3 4 5 

195 

0.1 

0.1 

1 

Nie and Zhong (2008) 0.0663 0.0622 0.0566 0.0505 0.0446 

Present (Nr = Nz = 9) 0.0651 0.0611 0.0553 0.0497 0.0432 

Present ( Nr = Nz = 13) 0.0661 0.062 0.0561 0.0502 0.0440 

Present ( Nr = Nz = 17) 0.0664 0.0622 0.0564 0.0505 0.0444 

Present ( Nr = Nz = 19) 0.0664 0.0623 0.0564 0.0505 0.0445 

2 

Nie and Zhong (2008) 0.0795 0.0746 0.0677 0.0603 0.0531 

Present (Nr = Nz = 9) 0.0781 0.0712 0.0666 0.0589 0.0519 

Present ( Nr = Nz = 13) 0.0791 0.0743 0.0677 0.0601 0.0528 

Present ( Nr = Nz = 17) 0.0793 0.0746 0.0679 0.0604 0.0530 

Present ( Nr = Nz = 19) 0.0793 0.0747 0.0679 0.0603 0.0530 

0.3 

1 

Nie and Zhong (2008) 0.1041 0.0980 0.0895 0.0801 0.0710 

Present (Nr = Nz = 9) 0.1049 0.0968 0.0888 0.0789 0.0721 

Present ( Nr = Nz = 13) 0.1041 0.0981 0.0896 0.0801 0.0712 

Present ( Nr = Nz = 17) 0.1039 0.0979 0.0898 0.0799 0.0710 

Present ( Nr = Nz = 19) 0.1039 0.0979 0.0897 0.0800 0.0710 

2 

Nie and Zhong (2008) 0.1104 0.1039 0.0948 0.0849 0.0753 

Present (Nr = Nz = 9) 0.1094 0.1030 0.0933 0.0839 0.0741 

Present ( Nr = Nz = 13) 0.1103 0.1038 0.0946 0.0845 0.0755 

Present ( Nr = Nz = 17) 0.1106 0.1040 0.0950 0.0850 0.0751 

Present ( Nr = Nz = 19) 0.1105 0.1039 0.0950 0.0850 0.0752 

0.3 

0.1 

1 

Nie and Zhong (2008) 0.4040 0.3862 0.3611 0.3329 0.3046 

Present (Nr = Nz = 9) 0.4026 0.3842 0.3593 0.3314 0.3035 

Present ( Nr = Nz = 13) 0.4038 0.3853 0.3604 0.3322 0.3045 

Present ( Nr = Nz = 17) 0.4041 0.3863 0.3609 0.3326 0.3047 

Present ( Nr = Nz = 19) 0.4041 0.3863 0.3610 0.3327 0.3048 

2 

Nie and Zhong (2008) 0.5013 0.4781 0.4455 0.4091 0.3730 

Present (Nr = Nz = 9) 0.5001 0.4768 0.4438 0.4081 0.3719 

Present ( Nr = Nz = 13) 0.5008 0.4784 0.4449 0.4090 0.3727 

Present ( Nr = Nz = 17) 0.5011 0.4780 0.4453 0.4092 0.3730 

Present ( Nr = Nz = 19) 0.5011 0.4779 0.4455 0.4092 0.3729 

0.3 

1 

Nie and Zhong (2008) 0.6077 0.5840 0.5504 0.5125 0.4744 

Present (Nr = Nz = 9) 0.6061 0.5852 0.5494 0.5120 0.4761 

Present ( Nr = Nz = 13) 0.6075 0.5846 0.5500 0.5127 0.4754 

Present ( Nr = Nz = 17) 0.6079 0.5843 0.5505 0.5124 0.4748 

Present ( Nr = Nz = 19) 0.6079 0.5842 0.5505 0.5124 0.4746 

2 

Nie and Zhong (2008) 0.6077 0.5840 0.5504 0.5125 0.4744 

Present (Nr = Nz = 9) 0.6061 0.5852 0.5494 0.5120 0.4761 

Present ( Nr = Nz = 13) 0.6075 0.5846 0.5500 0.5127 0.4754 

Present ( Nr = Nz = 17) 0.6079 0.5843 0.5505 0.5124 0.4748 

Present ( Nr = Nz = 19) 0.6079 0.5842 0.5505 0.5124 0.4746 
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lowest non-dimensional frequency parameter (𝜛 =

𝜔ℎ 𝜌/𝐶11)  of thick FG annular sector plates with 

clamped-clamped boundary condition at circular edges are 

studied in Table 4. The results are compared with those of 

 

 

the three-dimensional elasticity solutions of Nie and Zhong 

(2008) which were obtained using the State space method 

(S.S.M). It is assumed that the material properties vary 

exponentially 𝑐𝑖𝑗  𝑧 = 𝑐𝑖𝑗
𝑀𝑒 

𝜆𝑧

ℎ
 , 𝜌 𝑧 = 𝜌𝑀𝑒 

𝜆𝑧

ℎ
   through 

Table 4 Continued 

α (deg) h/a b/a 
m (circumferential 

wavenumber) 
 

λ 

1 2 3 4 5 

210 

0.1 

0.1 

1 

Nie and Zhong (2008) 0.0659 0.0619 0.0563 0.0502 0.0443 

Present (Nr = Nz = 9) 0.0651 0.0603 0.0550 0.0509 0.0451 

Present ( Nr = Nz = 13) 0.0665 0.0617 0.0555 0.0504 0.0440 

Present ( Nr = Nz = 17) 0.0661 0.0621 0.0560 0.0501 0.0445 

Present ( Nr = Nz = 19) 0.0660 0.0621 0.0561 0.0501 0.0444 

2 

Nie and Zhong (2008) 0.0766 0.0719 0.0653 0.0581 0.0512 

Present (Nr = Nz = 9) 0.0751 0.0705 0.0641 0.0573 0.0500 

Present ( Nr = Nz = 13) 0.0760 0.0717 0.0650 0.0581 0.0508 

Present ( Nr = Nz = 17) 0.0765 0.0720 0.0655 0.0583 0.0511 

Present ( Nr = Nz = 19) 0.0765 0.0721 0.0654 0.0583 0.0510 

0.3 

1 

Nie and Zhong (2008) 0.1039 0.0978 0.0892 0.0799 0.0708 

Present (Nr = Nz = 9) 0.1025 0.0969 0.0883 0.0787 0.0681 

Present ( Nr = Nz = 13) 0.1033 0.0979 0.0892 0.0807 0.0693 

Present ( Nr = Nz = 17) 0.1038 0.0976 0.0895 0.0801 0.0701 

Present ( Nr = Nz = 19) 0.1037 0.0977 0.0895 0.0800 0.0706 

2 

Nie and Zhong (2008) 0.1090 0.1027 0.0937 0.0839 0.0744 

Present (Nr = Nz = 9) 0.1099 0.1039 0.0944 0.0849 0.0757 

Present ( Nr = Nz = 13) 0.1095 0.1033 0.0939 0.0842 0.0749 

Present ( Nr = Nz = 17) 0.1091 0.1028 0.0936 0.0839 0.0744 

Present ( Nr = Nz = 19) 0.1092 0.1029 0.0935 0.0839 0.0745 

0.3 

0.1 

1 

Nie and Zhong (2008) 0.4002 0.3827 0.3580 0.3302 0.3023 

Present (Nr = Nz = 9) 0.4018 0.3815 0.3598 0.3318 0.3003 

Present ( Nr = Nz = 13) 0.4007 0.3824 0.3587 0.3308 0.3018 

Present ( Nr = Nz = 17) 0.4001 0.3829 0.3581 0.3303 0.3023 

Present ( Nr = Nz = 19) 0.4000 0.3829 0.3582 0.3304 0.3023 

2 

Nie and Zhong (2008) 0.4832 0.4608 0.4294 0.3943 0.3594 

Present (Nr = Nz = 9) 0.4813 0.4622 0.4277 0.3931 0.3577 

Present ( Nr = Nz = 13) 0.4826 0.4611 0.4288 0.3940 0.3587 

Present ( Nr = Nz = 17) 0.4834 0.4605 0.4295 0.3944 0.3594 

Present ( Nr = Nz = 19) 0.4833 0.4606 0.4296 0.3944 0.3595 

0.3 

1 

Nie and Zhong (2008) 0.5630 0.5421 0.5123 0.4784 0.4439 

Present (Nr = Nz = 9) 0.5618 0.5404 0.5105 0.4799 0.4424 

Present ( Nr = Nz = 13) 0.5629 0.5415 0.5117 0.4790 0.4434 

Present ( Nr = Nz = 17) 0.5633 0.5422 0.5121 0.4785 0.4439 

Present ( Nr = Nz = 19) 0.5633 0.5421 0.5121 0.4784 0.4440 

2 

Nie and Zhong (2008) 0.5990 0.5756 0.5428 0.5056 0.4682 

Present (Nr = Nz = 9) 0.5977 0.5771 0.5441 0.5041 0.4702 

Present ( Nr = Nz = 13) 0.5984 0.5760 0.5433 0.5050 0.4690 

Present ( Nr = Nz = 17) 0.5990 0.5756 0.5429 0.5055 0.4683 

Present ( Nr = Nz = 19) 0.5991 0.5755 0.5429 0.5057 0.4683 
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the thickness of the plate. Superscripts M denote the 

material properties of the bottom surface of the plate, λ is 

the material property graded index. One can see that an 

excellent agreement exists between the converged results of 

the presented approach and the other one. In this section, we 

characterize the response of FG sector plate considering the 

effects of waviness and aspect ratio. The non-dimensional 

natural frequency, Winkler and shearing layer elastic 

coefficients are assumed as follows (Tahouneh 2017) 
 

)1(12, 232

iiiii hEDDha    (33) 

 

where ρi, Ei 
and υi are mechanical properties of CNT. 

 

,g g i w w iK k a D K k a D 2 4  (34) 

 

The effects of variation of the Winkler elastic coefficient 

on the first non-dimensional natural frequency parameters 

of FG sandwich annular sector plate and for different values 

of shearing layer elastic coefficient and sets of boundary 

conditions are shown in Fig. 3. It is clear that in all cases, 

with increasing the elastic coefficients of the foundation, 

the frequency parameters increase to some limit values. It is 

 

 
observed for the large values of Winkler elastic coefficient, 

the shearing layer elastic coefficient has less effect and the 

results become independent of it. 

The influence of shearing layer elastic coefficient on the 

first non-dimensional natural frequencies for Clamped-

Clamped boundary condition is shown in Fig. 4. One can 

see that the Winkler elastic coefficient has little effect on 

the non-dimensional natural frequencies at different values 

of shearing layer elastic coefficient. It should be noted that 

this behavior is also observed at other types of boundary 

conditions, but, for the sale of brevity, they are not shown 

here. 

Wave number, m, is calculated and plotted in Fig. 5. 

This figure is representing the five different FG material 

distributions (FG-V, FG-X, FG-ᴧ, FG-O and UD). The 

results for UD sectorial plate are included for direct 

comparison. It can be noticed that the plate of FG-V 

material distribution has highest, while the plates of FG-X 

and FG-O material distribution are nearly the same and the 

UD plate has the lowest normalized natural frequency 

among the five. 

The effect of CNT aspect ratio is depicted in Fig. 6. This 

figure illustrates frequency parameters of Clamped-

Clamped, Simply supported-Clamped and Free-Clamped 

 

Fig. 3 Variation of the first non-dimensional natural frequency parameter of sandwich annular sector plate with 

Winkler and different shearing layer elastic coefficient for different types of boundary conditions (h/a = 0.2, 

𝑉𝐶𝑁
∗  = 0.28, α = 90°, w = 0, FG-V) 
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Fig. 4 Geometry of the sandwich annular sector plate 

on an elastic foundation conditions (h/a = 0.2, 

𝑉𝐶𝑁
∗  = 0.28, α = 90°, w = 0, AR = 1000, FG-V) 

 

 

sandwich sectorial plates for different amounts of 𝑉𝐶𝑁
∗ , 

including 0.12, 0.17 and 0.28. This figure reveals that 

increasing of CNT aspect ratio leads to a little increases 

 

 

 

Fig. 5 The effect of the circumferential wave number 

(m) on the normalized natural frequency for 

Clamped-Clamped sandwich sectorial plates on 

elastic foundations (h/a = 0.2, 𝑉𝐶𝑁
∗  = 0.28, α = 

90°, w = 0, AR = 1000, Kg = Kw = 10) 
 

 

frequency parameters for different types of boundary 

conditions. 

Fig. 7 shows the effect of volume fraction of CNTs on 

 

 

 

Fig. 6 The variation of frequency parameters versus aspect ratio (AR) for FG-V sandwich sectorial plates (h/a = 0.2, 

𝑉𝐶𝑁
∗  = 0.28, α = 90°, w = 0) 
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the normalized natural frequencies of sandwich sectorial 

plates for different types of boundary conditions at circular 

edges. It is observed that the normalized natural frequency 

of the plates increases with increasing of 𝑉𝐶𝑁
∗ . Results show 

that by increasing the values of waviness index (w), 

normalized natural frequency of sectorial plate decreases, 

and the straight CNT gives highest frequency. 

It also shows that the non-dimensional natural frequency 

decreases with the increase of h/a ratio and then remains 

almost unaltered for great amount of thickness-to-outer 

radius ratio, h/a. 

 

 

6. Conclusions 
 

In this research work, free vibration of continuous 

grading sandwich sectorial plates on a two-parameter elastic 

foundation is investigated. The elastic foundation is 

considered as a Pasternak model with adding a shear layer 

to the Winkler model. This study is carried out based on the 

three-dimensional theory of elasticity. The aim of this study 

is to fill this apparent gap in this area by investigating the 

effects of CNTs waviness and aspect ratio on vibrational 

behavior of FG sandwich annular sector plates on elastic 

foundations. Five linear types of distributions of CNTs are 

 

 

considered; uniform and four kinds of FG distributions 

along the thickness of face sheets and the effects of CNT 

volume fraction, aspect ratio and waviness and also 

Pasternak’s elastic foundation coefficients, sandwich plate 

thickness, face sheets thickness are investigated on the free 

vibrational behavior of sandwich plates with wavy CNT-

reinforced face sheets. The material properties estimated 

through the extended rule of mixture. Micromechanics 

equations cannot capture the scale difference between the 

nano- and micro- levels. To overcome this difficulty, the 

efficiency parameter is defined. In this research work, 2-D 

differential quadrature method is used to study different 

types of boundary conditions at circular edges including 

Free, Clamped and Simply supported. Using 2-D 

differential quadrature method in the r- and z-directions, 

allows one to deal with FG plates with arbitrary thickness 

distribution of material properties and also to implement the 

effects of the elastic foundations as a boundary condition on 

the lower surface of the plate efficiently and in an exact 

manner. The fast rate of convergence and accuracy of the 

method are investigated through the different solved 

examples. From this study some conclusions can be made 

as following: 

 

 It is shown that the variation of Winkler elastic 

 

Fig. 7 The effect of h/a on the normalized natural frequency of sectorial plates with different types of boundary 

conditions at circular edges resting on elastic foundations (Kw = Kg = 10, AR = 1000, h/a = 0.2, α = 90°, FG-V) 
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coefficient has little effect on the non-dimensional 

natural frequencies at different values of shearing 

layer elastic coefficient. It is clear that in all cases, 

with increasing the shearing layer elastic coefficient 

of the foundation, the frequency parameters increase 

to some limit values. 

 It is shown that for the large values of shearing layer 

elastic coefficient; the results become independent of 

it. It is also shown that with increasing the elastic 

coefficients of the foundation, the frequency 

parameters increase to some limit values. 

 The waviness can significantly reduce the stiffening 

effect of the nanotubes. 

 By increasing the values of waviness index, 

normalized natural frequency of sectorial plate 

decreases, and the straight CNT gives highest 

frequency. 

 Normalized natural frequency of sectorial plate that 

reinforced by long and short CNTs is compared for 

the same waviness index; biggest normalized natural 

frequency is found in the case of long CNT with 

reference to short one. 

 It also shows that the non-dimensional natural 

frequency decreases with the increase of h/a ratio 

and then remains almost unaltered for great amount 

of thickness-to-outer radius ratio, h/a. 

 Results reveal that increasing of CNT aspect ratio 

leads to a little increases frequency parameters. 

 In this study five different FG material distributions 

(FG-V, FG-X, FG-Λ, FG-O and UD) are considered. 

The results for UD sectorial plate are included for 

direct comparison. It can be noticed that the plate of 

FG-V material distribution has highest, while the 

plates of FG-X and FG-O material distribution are 

nearly the same and the UD plate has the lowest 

normalized natural frequency among the five. 
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Appendix 
 

In Generalized Differential Quadrature Method 

(GDQM), the nth order partial derivative of a continuous 

function f (x, z) with respect to x at a given point xi can be 

approximated as a linear summation of weighted function 

values at all the discrete points in the domain of x, that is 
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(1) 

 

where N is the number of sampling points and 𝑐𝑖𝑗
𝑛  is the xi 

dependent weight coefficient. To determine the weighting 

coefficients 𝑐𝑖𝑗
𝑛 , the Lagrange interpolation basic functions 

are used as the test functions, and explicit formulas for 

computing these weighting coefficients can be obtained as 

(Bert and Malik 1996) 
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and for higher order derivatives, one can use the following 

relations iteratively 
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(5) 

 

A simple and natural choice of the grid distribution is 

the uniform grid-spacing rule. However, it was found that 

nonuniform grid-spacing yields result with better accuracy. 

Hence, in this work, the Chebyshev-Gauss-Lobatto 

quadrature points are used 
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