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1. Introduction 

 

Constitutive model of materials, was the function 

relationship of flow stress and hot working parameters, 

which represented the basic deformation behavior of 

materials (Yu and Chen 2005, Sumantra et al. 2009). The 

size of flow stress is the gist and precondition of the 

selection equipment, as well as the important symbol of the 

processing capacity of plastic materials. Understanding 

deformation characteristics of the materials under hot 

working conditions, the reference can be provided for the 

formulation of hot machining process. At the same time, the 

precision of constitutive model is directly affected the 

results of numerical simulation Accuracy. Therefore, the 

deformation behavior of materials at room and high 

temperature was researched, the control of metal material 

performance and the proper selection of process parameters 

had particularly important. Therefore, the basic mechanical 

properties of Z2CND18.12N austenitic stainless steel used 

by primary auxiliary straight piping loop of nuclear power 

plants were studied by means of experiments and BP neural 

network. Chen et al. (2016) studied ratcheting behavior of 

pressurized straight pipe and 90° elbow pipe subjected to 

reversed bending load at room temperature which were 

made of Z2CND18.12N austenitic stainless steel. But 

pressurized pipe in nuclear power plant worked at elevated 

and high temperature. Therefore, basic mechanical property 

of Z2CND18.12N austenitic stainless steel at elevated and 

high temperature was necessary. 
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Yu (2010) set up a new model for describing the 

uniaxial ratcheting behavior of Z2CND18.12N austenitic 

stainless steel based on Ohno-Wang II model, but the 

determination of model parameters is very complicated. 

Many scholars (Chen 2014) also use finite element software 

(ANSYS, ABAQUS, MARC and ADINA etc.) to establish 

different models of ratcheting effect (BKH, MKIN/KINH, 

CH3 and Ohno-Wang etc.), but these methods are very 

tedious and complicated, and the prediction accuracy is not 

enough. BP neural network, which was an important 

research achievement, had strong nonlinear reflection 

ability, redundant fault-tolerant ability and Fuzzy 

computing power. The constitutive relationship of material 

can be studied based on these characteristics of BP neural 

network. Guo et al. (2013) applied BP neural network in the 

continuous casting slab on-line diagnostics. Sample 

honogenized by custom functions and difference training 

algorithm can significantly improve the diagnostic accuracy 

rate; Selective training algorithm can speed up learning 

process, but also ensure the same diagnostic accuracy rate. 

The improved algorithm was in keeping with the real 

conditions of the continuous casting processes verified by 

the research result. Hakim and Abdul Razak (2013) 

examined a powerful tool for predicting the severity of 

damage in a model steel girder bridge. The data required for 

the Artificial Neural Networks (ANNs) which were in the 

form of natural frequencies were obtained from numerical 

modal analysis. By incorporating the training data, ANNs 

were capable of producing outputs in terms of damage 

severity using the first five natural frequencies. It had been 

demonstrated that an ANN trained only with natural 

frequency data can determine the severity of damage with a 

6.8% error. Fotovati et al. (2014) proposed train artificial 

neural networks which was used to predict nanoindentation 
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test results on different grain sizes of dual phase (DP) 

steels. The response of the ANN was analyzed in five case 

studies. Reliable and reasonable results of ANN predictions 

were achieved in each case. Jiménez‐Come et al. (2015) 

proposed that used different classification models to predict 

the pitting corrosion status of AISI 316 L stainless steel 

according to the environmental conditions and the 

breakdown potential values. Based on recall and precision 

values, the most stable model was ANN-RB, performing 

with the highest classification success in most cases. 

Based on any constitutive theory into a fully trained 

Artificial Neural Network, Stefanos and Gyan (2015) 

presented a methodology for converting or recasting 

complex constitutive models for geo-materials. Based on 

back propagation (BP) neural network, Lin et al. (2016) 

proposed a one-step-ahead model predictive control (MPC) 

strategy for the precise forging processes. Two online 

updated BP neural networks, predictive neural network 

(PNN) and control neural network (CNN), are developed to 

accurately control the die forging hydraulic press machine. 

It can be found that the proposed MPC strategy was the 

most effective control approach for the practical forging 

process. Zhou et al. (2015) used BP neural network model 

to optimize the settings of constitutive relations under 

different conditions of material strain rate forecast, and with 

the experimental values and modified J-C equation with 

modified to fit results than right. The results showed that BP 

neural network model to predict higher accuracy, prediction 

error and the measured value did not exceed 5%. BP neural 

network prediction model can be used to predict the 

material constitutive relations. 

Based on BP neural network improved by genetic 

algorithm (GABP), Zhang et al. (2015) established a model 

to simulate the relation between welding appearance and the 

characteristics of the molten-pool-shadows. The effective-

ness of the established model was analyzed through two 

different welding speed experiments, and the results 

verified its prediction performance. The work provided an 

effective way to predict the weld appearance and assess the 

welding quality in real-time. Based on the experimental 

data from the isothermal compressions of 42CrMo high 

strength steel, Quan et al. (2016) used artificial neural 

network to predict the elevated temperature deformation 

behavior of 42CrMo steel. The results indicated that the 

developed ANN model showed a good capacity of modeling 

complex hot deformation behavior and can accurately track 

the experimental data in a wide temperature range and 

strain rate range. Liu et al. (2016) employed Artificial 

Neural Network with double hidden layers composing of 10 

neurons and 15 neurons to simulate the flow behavior of hot 

compression of the ZnCu2a110 alloy. The inputs of the 

model were temperature, strain and strain rate. The output 

of the model was the flow stress. The results indicated that 

the trained Artificial Neural Network model was a robust 

tool to predict the high temperature flow behavior of the 

ZnCu2a110 alloy. Based on the artificial neural network 

(ANN) of predicting the ultimate tensile strength of the API 

X70 steels, Khalaj et al. (2013) arranged in a format of 

seven input parameters that cover the chemical 

compositions, yield stress and Charpy impact energy, and 

output parameter which was ultimate tensile strength. The 

training, validation and testing results in the ANN had 

shown strong potential for prediction of relations between 

chemical compositions and mechanical properties of API 

X70 steels. Pouraliakbar et al. (2015a) and built an artificial 

neural network model with feed forward topology and back 

propagation algorithm to predict the toughness of high 

strength low alloy steels. Pouraliakbar et al. (2015b) and 

Khalaj et al. (2014) proposed artificial neural network 

models to predict the effect of chemical composition on 

material properties. Khalaj et al. 2014 and 2013 established 

models on basic of the GEP method to predict the layer 

thickness of duplex treated ceramic coating on tool steels 

and the relationship between the ultimate tensile strength 

and chemical composition of X70 steel. 

In recent years, the artificial neural network models 

were considered as a powerful tool to describe the elevated 

temperature deformation behavior of materials. Constitutive 

model of titanium alloy was simulated by neural network 

which was widely applied by many researchers (Lu et al. 

2010, Reddy et al. 2008, Su et al. 2010). But few 

constitutive relationships of other materials such as 316 

stainless steel, 15 MnR were studied by BP neural network. 

Therefore, constitutive relationships of uniaxial tension and 

uniaxial ratcheting effect of Z2CND18.12N austenitic 

stainless steel were studied by experiments and BP neural 

network. 
 

 

2. Experimental material and method 
 

The material used in this study was Z2CND18.12N 

austenitic stainless steel. Chemical composition (wt%) of 

the material was C:0.0003, Cr: 0.1714, Ni: 0.1145, Si: 

0.0037, Mn: 0.000164, S: 0.001, P: 0.0003, V: 0.00087, 

Mo:0.0 243, N: 0.00064. 

The specimens were extracted from primary auxiliary 

straight piping loop of nuclear power plants. Tests were 

conducted on a 100 kN closed loop servo hydraulic tension-

compression testing machine with a digital controller. 

Uniaxial strains were measured by an Epsilon extensometer 

with gauge length of 20 mm. Uniaxial tension was 

conducted at 25°C, 150°C, 250°C and 350°C. Uniaxial 

ratcheting test was carried out at 25°C, considering the 

effect of mean stress and stress amplitude on ratcheting 

strain. For Z2CND18.12N austenitic stainless steel, many 

experimental data was given in the eferences (Yu et al. 

2010, Liang 2014). 
 

 

3. Neural network model of constitutive 
relationship 
 

BP Neural network, was a large-scale distributed 

parallel processing system, which need not to know the 

complex change rule of input and output parameters, as 

given in Fig. 1. The given sample data was extracted from a 

mass of data, and then was first trained. A steady state of the 

network was formed in the form of a set of weights. The 

required data was obtained by means of associative memory 

and generalization ability. 
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Fig. 1 Architecture of the BP ANN model 

 

 

Constitutive relationship of Z2CND18.12N austenitic 

stainless steel was mainly the nonlinear relationship of 

stress versus strain for uniaxial tension test and the 

relationship of ratcheting strain versus number of cycles for 

uniaxial ratcheting effect test. Therefore, for uniaxial 

tension data under different temperatures, the stress was 

output parameter of neural network, strain and temperature 

were input parameters. For uniaxial ratcheting data, the 

ratcheting strain was output parameter of neural network, 

number of cycles, mean stress and stress amplitude were 

input parameters. The ranges of input and output parameters 

were required by neural network. Input parameters of input 

layer in the training pattern and stress value of output layer 

were regressed from obtained data, according to the 

following Eq. (1). The ranges of these parameters were 

between zero and one. 
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(1) 

 

where, the parameters X and X′ were respectively the input 

and output parameters of the network. The parameters Xmax 

and Xmin were the maximum and minimum of the samples, 

respectively. 

The architecture of hidden layer in BP neural networks 

had become a hot research issue, especially the number of 

hidden neurons in each layer. If the number of hidden 

neurons was too less, the trained network was not strong 

enough. Using too few neurons in the hidden layers will 

result in something called under-fitting. Under-fitting 

occurs when there are too few neurons in the hidden layers 

to adequately detect the signals in a complicated data set. 

Using too many neurons in the hidden layers can result 

in several problems. First, too many neurons in the hidden 

layers may result in overfitting. Overfitting occurs when the 

neural network has so much information processing 

capacity that the limited amount of information contained in 

the training set is not enough to train all of the neurons in 

the hidden layers. A second problem can occur even when 

the training data is sufficient. An inordinately large number 

of neurons in the hidden layers can increase the time it takes 

to train the network. The amount of training time can 

increase to the point that it is impossible to adequately train 

the neural network. Obviously, some compromise must be 

reached between too many and too few neurons in the 

hidden layers. Ding et al. (2014) used the empirical formula 

to determine the number of neurons in the hidden layer of 

BP neural network, and then established the network model 

to predict the river water quality, which achieved the perfect 

prediction effect. Therefore, according to the actual 

operation, the optimal number of hidden neurons was 

determined by the following empirical formula. 

 

1n n m a  
 

(2) 

 

where, the parameter n1 was the number of hidden neurons. 

The parameter n was the number of output layer. The 

parameter m was the number of input layer. The parameter 

a was constant between 1 and 10. 

Because of the elements of target vectors between 0 and 

1, the transfer functions of input layer, hidden layer and 

output layer were set as „tansig‟ and „purelin‟. The target 

error was 2×10-4, and target iteration steps was 10000. 

According to the above parameter setting, the BP neural 

network model was trained based on network architecture, 

finally target accuracy is achieved. 
 

 

4. Results and discussion 
 
4.1 Uniaxial tension model and analysis 
 

4.1.1 Uniaxial tension under fixed temperatures 
Programming with the “ANN TOOL” toolbox in 

MATLAB 2014a, the number of hidden neurons is 

preliminarily determined to be 10, and three different 

training functions are used to train the uniaxial tensile test 

data at 25°C, as shown in Fig. 2. 

It is known from Fig. 1 and Table 1 that the trainlm 

 

 

 

Fig. 2 Comparison of the results of different training 

functions at 25°C 

 

 

Table 1 Comparison of error of training function 

Train function Trainlm Trainbr Traingd 

Train error (1e-6) 3.57 3.3 56.93 

Test error (%) 0.40 0.31 0.52 
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(Levenberg-Marquardt) and trainbr (Bias regularization 

algorithm) algorithm has less training error. The test error of 

the trainbr algorithm is far less than that of the trainlm 

algorithm. BP neural network model can have better 

generalization ability by using trainbr algorithm, so trainbr 

algorithm is used to train the neural network. 

It can be seen from Table 2 that selecting the number of 

hidden neurons is 11 to make the model test error minimum. 

In order to the interpolation and extrapolation of neural 

network model, 20% data of uniaxial tension data at 25°C 

were randomly selected as the detect data to inspect the 

predictive ability of network model. The neural network 

model was trained and tested based on the above 

parameters. Comparison of experimental value with 

predicted value for uniaxial tension before and after the 

training at 25°C was shown in Fig. 3. 

 

 

 

 

 

 

From Fig. 3, it‟s known that the BP neural network 

model established in this paper can be well trained to 

predict the results of uniaxial tensile test at 25°C. Fig. 3(b) 

shows that the text data can fit well with the curve predicted 

by the BP neural network model. It indicates that the BP 

neural network model established in this paper has good 

generalization ability. 

It can be seen from Fig. 4(a) that the straight slope of 

fitting scatter data is 0.99974 which coincides almost with 

the slope equal to 1. It indicates that constitutive 

relationship based on neural network, can well predict the 

uniaxial tension curve at 25°C, which has high accuracy. 

The learning curve can be a very good convergence in the 

test curve, as shown in Fig. 4(b). 

Similar to neural networks, people often use SVM 

(Support Vector Machines) during data processing. This 

Table 2 Comparison of network training errors of different hidden neurons 

Hide neurons 3 4 5 6 7 8 9 10 11 12 

Train error (1e-6) 4.25 3.99 4.57 4.07 3.15 1.44 4.16 3.3 1.44 3.09 

Test error (%) 0.32 0.32 0.31 0.31 0.30 0.31 0.29 0.31 0.28 0.27 
 

  

(a) Before the training (b) After the training 

Fig. 3 Comparison of experimental value with predicted value before and after the training 

 
 

(a) Comparison of experimental value with predicted value (b) Training process error curve for neural network 

Fig. 4 Accuracy and error 
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Fig. 5 Support vector machine model 
 

 

Table 3 Comparison between SVM and BP NN model 

Training algorithm Fitting accuracy Mean square error (1e-6) 

BP NN 0.99974 1.44 

SVM 0.98576 1242.45 
 

 

 

 

Fig. 6 Comparison of results before and after optimization 

of genetic algorithm 
 

 

algorithm has advantages in solving small sample, nonlinear 

and high dimensional pattern recognition problems. So here 

we also use SVM to process uniaxial tensile sample data at 

25°C, and compare the different results of the two 

algorithms to get the SVM model as shown in the Fig. 5. 
 

 

 

Fig. 7 Three-dimensional diagram of error 
 

 

It can be seen from Fig. 5 that under the same 

conditions, the SVM model has a good fitting effect in the 

later stage, but a poor fitting effect in the early stage. The 

specific correlation and mean square error are shown in 

Table 3 below. 

Can be seen clearly from the Table 3, the BP neural 

network is relative to the support vector machine (SVM) 

has better fitting effect, in order to further optimize the BP 

neural network, we use genetic algorithm to optimize the 

network, the optimization result is shown in Fig. 6. 

From Fig. 6, the training accuracy of the network has 

reached the ideal result, and there is no local minimum. The 

advantage of genetic algorithm is not prominent, so the 

genetic algorithm is no longer used to optimize the network. 

Fig. 7 shows three-dimensional diagram of error. It 

indicates the global error which can adjust weight threshold 

and optimize further neural network, but this article does 

not go into details. 
 

4.1.2 Uniaxial tension under different temperatures 
Fig. 8 gave the comparison of experimental value with 

predicted value under different temperatures, namely 25, 

150, 250 and 350°C. 20% data of uniaxial tension data 

under different temperatures were randomly selected as the 
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(a) Before the training (b) After the training 

Fig. 8 Comparison of experimental value with predicted value under different temperatures 
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detect data to inspect the predictive ability of network 

model. The results were given in Fig. 8. It was found from 

Fig. 8(a) that elastic modulus and yield stress of 

Z2CND18.12N austenitic stainless steel decreased with the 

increasing temperature, and tangent modulus was increased. 

It observed that the basic mechanical properties of 

Z2CND18.12N austenitic stainless steel was sensitive to 

temperature. It was found from Fig. 8(b) that the predicted 

results of network model were in well agreement with those 

of experiments. 

Fig. 9 indicated that prediction results in three 

dimensions of uniaxial tension of Z2CND18.12N austenitic 

stainless under different temperatures. It observed that 

neural network model can be well describe the relationship 

of uniaxial stress versus strain of Z2CND18.12N austenitic 

stainless under different temperatures, and the effect of 

temperatures on flow stress. 

 

4.2 Uniaxial ratcheting strain 
 

Uniaxial ratcheting strain of Z2CND18.12N austenitic 

stainless steel subjected to mean stress of 125 MPa and 

 

 

 

 

stress amplitude of 150 MPa was deeded as detect data. The 

learning curve can be a very good convergence in the test 

curve, as given in Fig. 10(a). It was seen from Fig. 10(b) 

that the straight slope of fitting scatter data was 0.99975 

which coincided almost with the slope equal to 1. It 

indicated that constitutive relationship based on neural 

network, can well predict the relationship of uniaxial 

ratcheting strain and number of cyclic. 

 

4.2.1 The effect of mean stress on ratcheting strain 
Fig. 11 showed the effect of mean stress on uniaxial 

ratcheting strain of Z2CND18.12N austenitic stainless steel, 

and the comparison of predicted results of neural network 

model with experimental value. It gave that the evolution 

rule of ratcheting strain and number of cyclic was shown, 

ratcheting strain rate in original several cyclic was very 

larger, and then gradually tended to stabilize. Even 

ratcheting strain reached saturation values, namely 

shakedown. It was also found that ratcheting strain 

increased with increasing of mean stress. Meanwhile, there 

are good consistencies between the predicted results of 

neural network model and experimental value. 

  

(a) (b) 

Fig. 9 Prediction results in three dimensions of uniaxial tension of Z2CND18.12N austenitic stainless steel at different 

temperatures based on neural network 

  

(a) Training process error (b) Comparison of experiment data with predicted value 

Fig. 10 Precision graph of network training 
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Fig. 13 The curve of ratcheting strain versus number of 

cycling with different mean stress and its history 
 

 

4.2.2 The effect of stress amplitude on ratcheting 
strain 

The effect of stress amplitude on uniaxial ratcheting 

 

 

 

 

strain of Z2CND18.12N austenitic stainless steel was 

shown in Fig. 12(a). It was also seen from Fig. 12(b) that 

the comparison of predicted results of neural network model 

with experimental value. The evolution rule of ratcheting 

strain and number of cyclic was given. It indicated that 

ratcheting strain increased with increasing of stress 

amplitude. Ratcheting strain rate in original several cyclic 

was very larger, and then gradually tended to stabilize. Even 

ratcheting strain reached saturation values, namely 

shakedown. Meanwhile, there are good consistencies 

between the predicted results of neural network model and 

experimental value. 

 

4.2.3 The effect of loading history on ratcheting 
strain 

The curve of ratcheting strain versus number of cycling 

with different various stress amplitude and constant mean 

stress and its history was given in Fig. 13, Namely under 

constant mean stress of 150 MPa and stress rate 100 MPa/s, 

stress amplitude was respectively 175 MPa, 200 MPa and 

225 MPa. It was seen from Fig. 13 that ratcheting strain rate 

at first step (stress amplitude 175 MPa) was relative 

  

(a) Constant stress amplitude of 150 MPa (b) Constant stress amplitude of 175 MPa 

Fig. 11 The curves of ratcheting strain versus number of cycling with various mean stress and constant stress amplitude 

  

(a) Constant mean stress of 150 MPa (b) Constant mean stress of 175 MPa 

Fig. 12 The curves of ratcheting strain versus number of cycling with various stress amplitude and constant mean stress 
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smaller, and that of second and third steps (stress amplitude 

200 MPa and 225 MPa) increased very rapidly. Moreover, 

the predicted results of neural network model were good 

consistent with experimental value. 

 

 

5. Conclusions 
 

Based on uniaxial tension data at 25°C, 150°C, 250°C 

and 350°C and uniaxial ratcheting strain of Z2CND18.12N 

austenitic stainless steel subjected to non-symmetric cyclic 

stress, the constitutive relationship of neural network was 

used in this study. Strains and temperatures for uniaxial 

tension at different temperatures were input parameters, 

respectively, and out parameter was stresses. For uniaxial 

ratcheting behavior, number of cyclic, mean stress and 

stress amplitude were respectively input parameter, and 

ratcheting strain was output parameters. After the neural 

network model was trained, the correlation coefficients of 

the results of the neural network model and experiments 

were almost 1. The results observed that predicted results of 

neural network model were in well agreement with those of 

experiments. The neural network model has high accuracy, 

which can well reflect the basic mechanical behaviors of 

Z2CND18.12N austenitic stainless steel. 
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