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1. Introduction 

 

Reducing all earthquake damages has provoked new 

solutions to dissipate the earthquake energy. (Shariati et al. 

2010, Andalib 2011, Bazzaz et al. 2012, Toghroli et al. 

2014, Shariati et al. 2015, Andalib et al. 2018, Li et al. 

2017, Khorramian et al. 2017). In order to determine the 

dynamic behaviors of barns, are scarce, unrealistic 

assumptions of existing studies about this subject like 

assuming the silo membranes as rigid so disregard the 

interaction and assuming the earth movements as harmonic, 

always exist (Gholhaki et al. 2008, Bazzaz et al. 2015a, 

Fanaie et al. 2015, Zahrai 2015, Shah et al. 2016). 

It is obvious that doing such kind of studies by 

considering the silo membrane-material and ground 

interactions will be more realistic. One of the numerical 

methods, finite element method is used at the structural 

analysis which considers the mentioned interactions. This 
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method is applied to the interaction problem in the form of 

Euler and Lagrangian approaches with Westergaard’s added 

mass approach (Rammerstorfer et al. 1990, Doǧangün et al. 

1996, Fanaie et al. 2012, Fanaie and Dizaj 2014, 

Mohammadhassani et al. 2014a, Shariati et al. 2015, Fanaie 

et al. 2016, Safa et al. 2016, Shah et al. 2016, Rehab et al. 

2018, Takin et al. 2016). 

Regarding the properties of the barns, in this study, 

isoparametric element which is used at the analytical 

solutions realized by Lagrangian approximation, is assumed 

to be an elastic solid whose bulk elastic modulus is equal to 

the bulk elastic modulus of the material and as the slosh 

effects created by the earth movement at the granular 

material contained at the barns are neglected; only the 

impulse pressure is taken into consideration at analytical 
methods (Yang et al. 2009, Andalib et al. 2010, Bazzaz et 

al. 2014, Bazzaz et al. 2015b, Khorami et al. 2017a, b, 

Mohammadhassani et al. 2014b). And the silo-material 

interaction is examined according to the East-West 

component of Erzincan earthquake (1992) with the 

utilization of Lagrange formulation by adapting the 

mentioned eight nodded three-dimensional isoparametric 

element to the structural analysis program (SAPIV) (Bathe 
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Abstract.  The structural behaviors of cylindrical barns as a specific engineering structure have been considered as a 

complicated computing process. The structure design against the earthquake load, to protect by using the code, is an urgency 

avoiding unexpected damages. The situation has been subjected to the applied design method if there would be no failure across 

the construction procedures. The purpose of the current study is to clarify the behaviors of cylindrical reinforced concrete barns 

through the analytic methods across the mass and Lagrangian approaches through the whole outcomes comparison indicating 

that the isoparametric element obtained from the Lagrangian approach has been successfully applied in the barns earthquake 

analysis when the slosh effects have been discarded. The form of stress distributions is equal with sz closed distributions to one 

another. 
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Table 1 Analytical methods used for determining dynamic 

pressure distribution 

Method Dynamic pressure distribution 

Westergaard 𝑝 𝑧 = 0.875𝑎𝑚𝜌 ℎ 𝑧 

Karman 𝑝 𝑧 = 0.7071𝑎𝑚𝜌 𝑧(2ℎ − 𝑧) 

Hoskins- 

Jacobsen 

𝑝 𝑧 =
8

𝜋2
∙ 𝑎𝑚 ∙ 𝜌 ∙ ℎ ∙  (−1)

𝑗−1

2

∞

𝑗=1,3,5

∙
1

𝑗2
 

∙ cos
𝑗𝜋(ℎ − 𝑧)

2ℎ
∙ tanℎ

𝑗𝜋2𝑟

4ℎ
 

Adapted 

Housner 
𝑝 𝑧 = 𝑎𝑚𝜌ℎ 3 (𝑧/ℎ) − 0.5(𝑧/ℎ)2 tanℎ  3𝑟/ℎ  

 

 

 

  

(a) (b) 

Fig. 1 qi(0) and qi(z) values for the estimation of impulse 

pressure 
 

 

et al. 1974). Finally, the data obtained from the analysis of 

silo is compared in-between them by many aspects and 

some justifications are reached about the utility of Lagrange 

Approach at the cylindrical barns. 
 

 

2. Determination of dynamic pressure 
distributions using some analytical and 
numerical methods 
 

2.1 Analytical methods 
 

With the assumption that the slosh effects at granular 

material could be neglected, besides Westergaard, Karman 

and Hoskins-Jacobsen methods which are used at liquid 

containers and only consider the impulse effects, Adapted 

Housner and Adapted Veletsos methods considering both 

effects are adapted to barns in case only the impulse 

component is considered. The relations used at calculations 

are given at Table 1. At these relations, a is the maximum 

acceleration of earth movement,  is the material unit mass, 

h is the height of the contained material and r is the radius 

of the silo. Here it should be stated that these relations are 

appropriate for rigid barns (Housner 1957, Keyvanfar et al. 

2014, Armaghani et al. 2016, Khanouki et al. 2016, Wang et 

al. 2018, Zahrai et al. 2015). 

In adapted veletsos method (Priestley et al. 1986), the 

impulse pressure can be estimated from the following 

equation by obtaining the dimensions qi(0) value from Fig. 

1(a) according to h/r ratio and the dimensionless qi(z) value 

from the chart of Fig. 1(b) 

razqzp ii  )()(  (1) 
 

2.2 Numerical methods 
 

2.2.1 Added mass approach 
The principle of added mass approach is based on the 

study made by Westergaard in1931 (Westergaard 1933). In 

that study, Westergaard added a mass, which creates the 

dynamic pressure, to the structural mass at the interface of 

fluid-structure. The value of added mass which has 

parabolic distribution from the material surface to bottom 

can be obtained by the following expression 
 

zhzm  
8

7
)(  (2) 

 

Where h is totals material height, z is the depth of the 

material from the surface, and  is the unit mass of the 

material. 

In this study, the use of added mass approach with finite 

element method is made by adding an impulse mass 

determined using different methods for the materials to the 

mass of solid elements. 

For this purpose, equation of motion given as 
 

)(tMaKuuCuM    (3) 
 

can be written in the following form for the added mass 

approach. 
 

)(** taMKuuCuM    (4) 

 

The equation of the damped impulsive motion is known 

to be as following, where M is mass matrix, C is damping 

matrix, K is rigidity matrix, u is displacement vector and 

a(t) is the acceleration of base motion. 

In the added mass approach, this motion equation takes 

the following form, where Ma is added mass matrix and M* 

(= M + Ma) is total mass matrix. As it is seen from this 

relation, according to this approach it has been assumed that 

Ma mass vibrates simultaneously with the structure and 

because of the contained material, only the mass in the 

motion equation increases and the damping does not 

change. 

This method, which is not able to consider the slosh 

effects, can be practically used at engineering structures like 

barns in which the impulsive effects dominates, by adding 

the membrane to the finite elements model at the 

membrane-material interface of the material mass (Hangai 

et al. 1983, Mansouri and Kisi 2015, Mansouri et al. 2016). 
 

2.2.2 Lagrangian approach 
In this approach, material behaviour is expressed by the 

displacement term at the finite element node points and thus 

the equilibrium-appropriateness conditions are provided at 

the points of membrane-material interface automatically. 

Assumptions made for this study are given below: 
 

(1) Neglecting the slosh effects caused by base motion 

at the granular material in the silo, only the 

impulsive effects are taken into consideration. 

(2) The contained material is assumed to be compac-
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table, behaves linearly elastic, whose viscosity 

effects are negligible and at which the rotation is 

constraint. 
 

For the three dimensional model, the equation can be 

written as follows where, v is the unit volumetric strain, ux, 

uy and uz are the material displacements along x, y and z 

axes, respectively, p is pressure and Ev is the bulk modulus 

of material 

z

u

y

u

x

u zyx














  (5) 

 

  Ep  (6) 
 

Rotations about x, y and z axes which are necessary in 

order to supply rotation constraints are respectively 

expressed as 
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(7) 

 

From here, the rotation pressures, Pxr, Pyr and Pzr can be 

as the following; where x, y and z shows constraint 

parameter coefficients for the axes orientations of x, y and z, 

and E22 = xEv, E33 = yEv and E44 = zEv. 
 

xr22 Epxr   

yr33 Epyr   

zr44 Epzr   

(8) 

 

Accordingly, the total potential (U) and kinetic energy 

(T) of the system is determined by the equations of 
 

 dvEU T 
2

1
 vdνρvT T

2

1
 (9) 

 

Where E,  and v shows elasticity matrix, strain and 

velocity vectors, respectively. Therefore the Lagrange 

equation can be written as 
 

4... 3, 2, 1,
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 (10) 

 

Where here ui and Fi show i numbered displacement 

component and external load corresponding to this 

component, respectively and this equation behaviors can be 

applied to the nonlinear systems as well as to the linear 

systems (Hangai et al. 1983). 
 

2.2.2.1 Utilization of the three dimensional 
isoparametric element by 
finite element modeling 

In this paper, the selected three dimensional 

isoparametric element with eight node points and general 

 

Fig. 2 Isoparametric element 
 

 

(x, y, z) and local (r, s, t) axes groups which are considered 

for this element, are given in Fig. 2. 

Mass and stiffness matrices of this element should be 

known in order to determine the motion equations. Mass 

matrix of the element can be expressed as 
 

ijkijk
T
ijk

i j k

kji

v

T JQ QηηηM=QdVQρM det   (11) 

 

Where J is the Jacobian matrix, Q is the interpolation 

functions and i, j, k are weight coefficients. 

In order to obtain the stiffness matrix, the elasticity 

matrix (E) whose diagonal elements are E11, E22, E33 and 

E44, respectively and the other elements are zero, and the 

strain-displacement matrix (B) at the equation  = B.u, 

where T = [v, xr, yr, zr], should be known. Thus, the 

element stiffness matrix is as 
 

 

v i j k

ijkijk
T
ijkkji

T JEBBηηηK=EBdVBK det  (12) 

 

After the mass and stiffness matrices of the selected 

element was determined by the Eqs. (11) and (12), potential 

and kinetic energy expressions can be written as 
 

Mv v     T= Ku uU TT

2

1
,

2

1
  (13) 

 

According to finite elements method, it is seen from this 

equation, as only the impulse effects are taken into 

consideration in granular material, no term related with 

surface slosh takes place in potential energy expression. If 

the mentioned energy expressions are replaced in the 

Lagrange equation of number (Hangai et al. 1983), the 

motion equation of the undamped system can be obtained as 
 

+K u=RuM   (14) 
 

 

3. Silo application 
 

3.1 General 
 

Here, adapting the three dimensional isoparametric 

element whose formulation was given before, to the 

structural analysis program SAPIV (Bathe et al. 1974), 

such that the surface slosh elements could not be used, 

computation of the silo whose characteristics are given in 

Fig. 3, is done according to the East-West component of the 

1992 Erzincan Earthquake (Fig. 4), In this computation, the 

bulk modulus, Poisson ratio and the unit mass of the 
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Fig. 4 Earthquake acceleration of the March 13, 1992 

Erzincan Earthquake in Turkey 

 

 

 

 

contained wheat is taken as Ev = 4,167×107 N/m2,  = 0.30 

and  = 800 kg/m3, respectively and unit mass, Poisson 

ratio and elasticity modulus of silo wall material is taken as 

 = 2500 kg/m3,  = 0.2 and E = 285×108 N/m2, respectively. 

 

3.2 Solution by assuming the silo to be rigid 
 

In this solution, it is assumed that the silo base and walls 

are rigid and four models of the silo which are shown in 

Fig. 5 with unit width at diameter length in the direction 

perpendicular to base motion created by the earthquake, is 

considered in order to compare the obtained results with the 

ones obtained from analytical methods. 

Material dynamic pressure distributions obtained by 

analytical methods and finite elements method (FEM) by 

using Lagrangian approach is given in Fig. 6. 

From this figure it is seen that the difference between 

material dynamic pressure values estimated by finite 

 

 

 

 

(a) Silo (b) Plan (c) Vertical section 

Fig. 3 Silo plan and vertical section 

  

(a) Model I (b) Model 2 
 

  

(c) Model 3 (d) Model 4 

Fig. 5 Finite element meshes considered at rigid analysis of the silo 
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elements method according to four different models does 

not exceed %12 at the base, pressures increase in case the 

finite element mesh is densed about the membrane 

considering a determined convergence, distribution 

obtained by the help of Model 1 practically coincides with 

he one obtained by Adapted Housner method, Westergaard 

method gives larger values at a maximum of %19 from all 

of the models at the base, and the distributions obtained by 

finite elements method according to four models are close 

to the ones obtained by Westergaard and Adapted Housner 

analytical methods. This situation indicates that finite 

elements method which uses the element selected by 

Lagrangian approach can be used effectively as analytical 

methods at the rigid analysis of barns. 

Variation of the material dynamic pressure formed 

 

 

 

 

during earthquake at the 5 numbered element of Model 1 

and Model 3 by finite elements method is given in Fig. 7. 

Looking at these details the deformation of materials can be 

realized and can be concluded that variation of material 

dynamic pressure due to time is the same of earthquake 

ccelogram (Hangai et al. 1983). 

 

3.3 Flexible solution according to model 
considering the entirety of the silo 

 
3.3.1 Lagrangian approach 
In this solution, wall thickness (tw) is taken to be 0.75 m. 

It is assumed that the walls have a prescribed flexibility 

depending on material and geometric characteristics. The 

silo model for the analysis by the finite element method by 

  

(a) (b) 

Fig. 6 Material dynamic pressure distributions estimated by analytical and Lagrangian approach 

  

(a) (b) 

Fig. 7 Variation of material dynamic pressure at the 5 numbered element of silo during earthquake 
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Fig. 9 Material dynamic pressures for the entirety and 

the unit width of the silo 
 

 

 

Fig. 10 Variation with membrane thickness of displacement 

 

 

 

Fig. 11 Finite element mesh used at added mass 

approach analysis 
 

 

 

Fig. 12 Horizontal displacement distributions 

 

Fig. 8 Silo model used for the entirety of the silo at the solution by Lagrangian approach 
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assuming walls to be flexible is given in Fig. 8. In this 

model, it is assumed that the silo is fixed to the base, so that 

all degrees of freedom at the silo base are zero. Truss 

element is used for material’s free vertical movement and 

equal horizontal displacement with wall. 

Considering the entirety of the silo, material dynamic 

pressure distribution, obtained from the analysis realized on 

the model seen in Fig. 8, is given in Fig. 9 with the pressure 

distribution obtained for silo model having a unit width 

with the same element dimensions, and the variation of 

horizontal displacement with the silo membrane thickness is 

given in Fig. 10. 

These figures show that material dynamic pressures 

obtained from the analysis of silo model with unit width, 

are smaller than the ones obtained from the analysis of the 

entirety of the silo, such kind of barns designed according 

to silo analysis with unit width might have remained at 

insecure side and as the membrane thickness increase, 

horizontal displacements decrease. 

 

3.3.2 Added mass approach 
Finite element mesh considered at added mass approach 

used in the comparison of displacement and stress values 

obtained from Lagrangian Approach is given in Fig. 11. The 

unit weight of the wall which is 25 kN/m3 with the use of 

 

 

this method is taken as 57.21 kN/m3. Horizontal displace-

ment distributions obtained according to both of the two 

methods are given in Fig. 12. 

Normal stress distributions obtained from both of the 

two methods are given in Fig. 13. It is seen from these 

igures that horizontal displacement distributions obtained 

by Lagrange and Added mass approaches coincide up to 

half of the height from base, later Lagrangian approach 

gives %23 greater values at silo top end, stress distributions 

are similar to each other in form and the z distributions 

obtained by both of the two methods give very close values 

to each other. 

 

 

4. Conclusions 
 

It is concluded from this research, material dynamic 

pressure distributions, obtained from the rigid solution by 

Lagrangian Approach according to four different models of 

silo, which are subjects to numerical applications, locate 

between the distributions which are determined by 

analytical methods. And this demonstrates that finite 

elements method which uses the element selected by 

Lagrangian Approach can be used effectively as the 

analytical methods at the rigid analysis of barns. According 

  

(a) (b) 
 

 

(c) 

Fig. 13 Normal stress (x, y, z) distributions obtained by lagrange and added mass methods 
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to the results obtained from the flexible analysis of silo, on 

the contrary for the ones obtained from rigid analysis, 

material dynamic pressure reaches to maximum at the mid 

of the approximate depth, not at the silo base, and then the 

decrease in dynamic pressures. Material dynamic pressure 

obtained from the flexible analysis with unit width of the 

silo are smaller than the ones obtained from the flexible 

analysis entirety of the silo and this demonstrates that such 

kind of barns which are designed according to silo analysis 

with unit width can remain at unsafe side. 

It is seen that, stress distributions, obtained by Lagrange 

and Added Mass Approaches which are used at the flexible 

analysis of the entirety of silo, are similar to each other in 

form and z distributions obtained by both of the two 

methods are very close to each other. 

To sum up, the current study has confirmed that the iso-

parametric element gained from the Lagrangian approach 

has been effectively used in the earthquake reinforced 

concrete cylindrical barns’ analysis discarding the slosh 

impacts when the results have been compared to both the 

analytic methods and added mass approach. The conclusion 

has been derived from the numerical examples of the 

current study. In order to generalize the results, theoretical 

and experimental studies have been done on few models in 

which all the assemblage results might be evaluated 

altogether. 
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CC 

 

 

 
 
 
 
 
 

Nomenclature 
 

a(t) Acceleration of base motion 

am Maximum acceleration of earth movement 

B Strain-displacement matrix 

C Damping matrix 

E Elasticity modulus of silo 

Ev Bulk modulus of material 

Fi External load 

h Height of the contained material 

J Jacobian matrix 

K Rigidity matrix 

M Mass matrix 

M* Total mass matrix 

Ma Added mass matrix 

p Dynamic Pressure 

pxr, pyr, pzr Rotation pressures 

Q Interpolation functions 

R General time varying load vector 

r Radius of the silo 

T Kinetic energy 

U Potential energy 

u Displacement vector 

ux, uy, uz Material displacements along x, y and z axes 

 Material unit mass 

 Poisson ratio 

i, j, k Weight coefficients 

v Unit volumetric strain 

x, y, z 

 

Constraint parameter coefficients for the 

axes orientations of x, y and z 
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