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1. Introduction 

 

Laminated composites have been increased in use due to 

their high strength to weight ratio and flexural rigidity. This 

brings increase in their applications to different branches of 

engineering. Many engineering structures or structural 

components in the field of mechanical and civil engineering 

are commonly modeled as laminated composite beams. 

Hence, it is quite essential to understand static and dynamic 

behavior of such structures. 

There is a vast literature related to the laminated 

composite beams. In these works, different analytical/semi-

analytical and numerical methods were used. Reddy (1997) 

gave analytical and numerical solutions to bending, 

buckling and free vibration problems of laminated 

composite beams and plates. In laminated beams, the effect 

of shear deformation is highly important. The first-order 

shear deformation theory (FSDT) was, thus, developed to 

include the effect of shear. In this theory, a constant 

transverse shear strain through-the-thickness was assumed, 

and a shear correction factor must be used. To calculate the 

shear correction factor accurately is cumbersome in case of 

material anisotropy because it depends on geometrical and 

elastic properties of beam. Nevertheless, FSDT has been 

extensively used in analysis of laminated composite beams 

(Yuan and Miller 1989, Teboub and Hajela 1995, Banerjee 

1998, Chakraborty et al. 2002, Goyal and Kapania 2007, 

Jafari-Talookolaei et al. 2012, Kahya 2012, 2016). 

To avoid the use of shear correction factor, various 

higher-order shear deformation theories (HSDT) have been 

developed. Some of these theories, a cubic variation of in-

plane displacement components was employed to have 
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better representation of the transverse shear stresses 

through-the-thickness as well as to satisfy the stress-free 

conditions at top and bottom surfaces of the beam (Yuan 

and Miller 1990, Kant et al. 1998, Rao et al. 2001, Vo and 

Thai 2012, Li and Qiao 2015, Mantari and Canales 2016). 

Matsunaga (2001) obtained natural frequencies and 

buckling stresses of laminated composite beams by the 

method of power series expansion of displacement 

components. Aydogdu (2005, 2006) employed parabolic, 

hyperbolic and exponential shear deformation theories for 

free vibration and buckling analyses of cross-ply laminated 

beams. Nguyen et al. (2017) developed a new 

trigonometric-series solution based on a higher-order theory 

for analysis of composite beams with arbitrary lay-ups. 

The layer-wise displacement models have also been 

developed to analyze sandwich and laminated composite 

beams. In these models, the displacement fields are layer-

dependent, and can provide in-plane displacement and shear 

stress continuity at layer interfaces (Karama et al. 1998, 

Arya 2003, Dafedar and Desai 2004, Chakrabarti et al. 

2012, Filippi and Carrera 2016). An assessment of various 

displacement-based theories for vibration and buckling 

analyses of sandwich and laminated composite beams was 

presented by Zhen and Wanji (2008) with comparisons of 

analytical solutions. 

This study presents a higher-order finite element for free 

vibration and buckling of laminated composite and 

sandwich beams. The theory considered here was first used 

by Yuan and Miller (1990) in the static analysis of 

laminated beams. According to this theory, the present N-

layer element is constituted in layer-wise manner and 

contains (9N + 7) degrees-of-freedom (DOFs). Delamina-

tion and slip between the layers are not allowed. Accuracy 

of the element is validated through the comparisons with 

the available results for buckling loads and natural 

frequencies of laminated beams with different end 

conditions and lamination scheme. 
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2. Theory 
 

Consider a laminated beam as shown in Fig. 1. 

According to the theory considered here, displacements at 

any point in the beam are (Yuan and Miller 1990) 
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where u, w and  are the axial and transversal 

displacements, and cross-sectional rotation, respectively. β1 

and β2 are the higher-order terms arising from Taylor 

expansion. All displacement components are measured on 

the neutral axis, and t is time. 

The strain-displacement relations are given by 
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where xx and xz are the normal and shear strains, 

respectively. (),x denotes the derivative with respect to x. 

The constitutive relations for an orthotropic ply 

configuration are given by 
 

11 55,xx xx xz xzQ Q    
 (3) 

 

where xx and xz are the normal and shear stresses, 

respectively. 𝑄 11  and 𝑄 55  are the transformed material 

constants which are given by 
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where c = cos α, s = sin α and α is the fiber angle measured 

from the positive x-axis in counter clockwise direction. Qij 

terms are 
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Fig. 1 Geometry and dimensions of the laminated 

composite beam and the coordinate system 

where Eij and Gij denote Young’s and shear modulus, 

respectively, ij is Poisson ratio. 

The strain energy of the beam can be given by 
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The kinetic energy can be expressed by 
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where dot denotes the derivative with respect to time, and 
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In Eqs. (6) to (9), A is the cross-sectional area of the 

beam. 

The work done by the axial compressive force P0 acting 

on the beam at its ends can be given by 
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3. Finite element formulation 
 

3.1 Element matrices for a one-layer beam 
 

Fig. 2 shows five-node beam element with four equally 

spaced nodes and a node at the middle. This model formerly 

proposed by Yuan and Miller (1990) for bending of 

laminated beams. It has sixteen DOFs measured on the 

neutral axis of the beam. The nodal displacement vector can 

be given by 
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Assume the solutions to u(x,t), w(x,t), (x,t), 1(x,t) and 

2(x,t) as 
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where i(x), i(x), i(x), i1(x) and i1(x) are the shape 

functions, and ui(t), wi(t), i(t), 1i(t) and 2i(t) are the 

generalized nodal displacements. The shape functions are 

chosen as 
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to ensure the compatibility of deformation. Selecting such a 

type of polynomials for the shape functions guarantees the 

parabolic distribution of transverse shear stresses across the 

thickness. 

The governing equations of motion can be obtained by 

Lagrange’s equations which is given by 
 

0
i i
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dt q q
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where L = T – (U + V) is the Lagrangian functional, qi 

denotes the generalized coordinates corresponding to nodal 

displacements given by Eq. (11). Substituting Eqs. (6), (8) 

and (10) into Eq. (14) with considering the solutions given 

by Eqs. (12) leads to 
 

0 0Pmu +(k - g)u =
 

(15) 

 

where m, k, and g are, respectively, 16×16 symmetric 

element mass, stiffness and geometric stiffness matrices 

which are given in Appendix. 
 

3.2 Multilayered beam element 
 

When constituting the element matrices of N-layer beam 

element shown in Fig. 3, only rotational and higher-order 

DOFs are added to the system as in Yuan and Miller (1990). 

 

 

 

Fig. 2 One-layer beam element with sixteen degrees-of-freedom 

 

Fig. 3 Multilayered beam element 
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No additional axial and transversal DOF are necessary. 

Consequently, for the N-layer beam element, total number 

of DOFs is (9N + 7). In order to connect the kth layer to the 

(k + 1)th layer, the following kinematic constraints are used 
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which are obtained by equating the axial and vertical 

displacements at the layer interfaces to ensure the 

continuity. 

Considering Eq. (15), the load-displacement relations 

for each lamina can be written as 
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where f(k) denotes the nodal force vector which is zero here. 

The local displacement vector u
(k) for each lamina can 

be converted to X
(k), which is a column vector with 

dimension (10 + 9N - 3k) × 1 including the local variables 

of kth lamina as well as the rotational variables of the other 

laminae between k and N, by using the followings (Yuan 

and Miller 1990, Kahya 2012, 2016) 
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where R(k) is a 16 × (16 + 9N ‒ 9k) matrix which is defined 

as 
( ) ( )All  0  except  1  ( , 1 16)k k

ij iiR R i j   
 

(20) 

 

X
(k) can be converted to X(k-1) by the following relations 
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where T(k) is a (7 + 9N ‒ 9k) × (16 + 9N ‒ 9k matrix which 

can be obtained by Eqs. (16) and (17) as 
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The local load vectors given by Eq. (18) can be 

transformed to the global ones by the followings 
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Combining Eqs. (18), (19), (21) and (23) gives the final 

expressions for the element matrices of the multilayered 

beam element as follows 
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3.3 Free vibration and buckling problem 
 

Following the usual finite element procedure, we have 

obtained the global equation of motion for the beam shown 

in Fig. 1 with different end conditions as 
 

0 0P MX (K G)X =
 

(25) 

 

where M, K and G are the global mass, stiffness and 

geometric stiffness matrices, respectively. 𝑃0 = 𝑏ℎ
(𝑘)𝜎𝑥𝑥

0 , 

where 𝜎𝑥𝑥
0  is the axial compressive stress acting on the 

beam at its ends. X is the nodal displacement vector 

including the unknowns for the N-layer beam. 

For free vibration of the beam without axial loading, 

ignoring G matrix and assuming X = X0e
iωt in Eq. (25), we 

have the following eigenvalue problem 
 

2

0(K M)X = 0
 

(26) 

 

For buckling analysis, ignoring M matrix and assuming 

X = X0e
λx, the stability equation becomes 

 

0(K G)X = 0
 (27) 

 

The natural frequencies n and buckling loads  = (P0)cr 

of the beam can be obtained by non-trivial solutions of Eqs. 

(26) and (27). 
 

 

4. Numerical results 
 

In order to show the accuracy of the present element, 

some illustrative examples are considered. Numerical 

results are obtained by means of a computer code written in 

FORTRAN language. Simply-supported (S-S), clamped- 

clamped (C-C) and clamped-free (C-F) end conditions 
 
 

Table 1 Convergence study for normalized fundamental 

frequencies of laminated beams 

Beam Ne S-S C-C C-F 

[0/90]s 

L / h = 15 

Material III 

4 2.4901 4.6153 0.9243 

6 2.4896 4.6081 0.9242 

8 2.4895 4.6058 0.9241 

10 2.4895 4.6048 0.9241 

12 2.4895 4.6043 0.9241 

Analytical1 2.5015 4.6531 0.9251 

[0/90] 

L / h = 10 

Material I 

(E1/E2 = 40) 

4 6.754 13.498 2.509 

6 6.753 13.474 2.508 

8 6.753 13.467 2.508 

10 6.753 13.464 2.508 

12 6.753 13.463 2.508 

Analytical2 6.945 13.670 2.543 
 

1 Parabolic shear deformation beam theory (Aydoğdu 2005) 
2 Higher-order theory based on trigonometric series 

(Nguyen et al. 2017) 

are considered for different laminated composite and 

sandwich beams. 

 

4.1 Laminated composite beams 
 

Laminae are assumed to have the same thickness and the 

following material properties: (i) Material I: E1/E2 = open, 

G12 = G13 = 0.6E2, G23 = 0.5E2, 12 = 0.25; (ii) Material II: 

E1/E2 = open, G12 = G13 = 0.5E2, G23 = 0.2E2, 12 = 0.25; 

(iii) Material III: E11 = 144.8GPa, E22 = 9.65 GPa, G12 = G13 

= 4.14 GPa, G23 = 3.45 GPa, 12 = 0.3, ρ = 1389 kg/m3. For 

convenience, the following normalized terms are used: 

 
2

22 /L E h    for Materials I and II, 

2

11 /L E h    for Material III 

2 3

22/ ( )L E bh   for Materials I and II, 

2 3

11/ ( )L E bh   for Material III 

 

Convergency study is, first, performed for the 

normalized fundamental frequencies and critical buckling 

loads. Results are given in Tables 1 and 2 for symmetrical 

[0/90]s and unsymmetrical [0/90] laminated beams with 

different boundary conditions. As can be seen, the present 

beam element converges rapidly when the number of 

elements increases. N = 8 elements seem to satisfy the 

required convergency for the analyses. Here, the results are 

also compared with the available ones. According to the 

tables, the results agree well with those of available 

literature except the normalized buckling load of C-C [0/90] 

beam for the considered case. 

The normalized fundamental frequencies are presented 

for cross-ply and angle-ply laminated beams in Tables 3 and 

4, respectively. Comparisons with the available results of 

 

 

Table 2 Convergence study for normalized buckling 

loads of laminated beams (Material I, 

E1 / E2 = 40, L / h = 10) 

Beam Ne S-S C-C C-F 

[0/90]s 

4 17.731 33.169 6.2431 

6 17.726 33.111 6.2429 

8 17.725 33.100 6.2429 

10 17.725 33.097 6.2429 

12 17.725 33.096 6.2429 

FEM1 17.734 32.829 6.2459 

[0/90] 

4 4.676 13.411 1.304 

6 4.674 13.361 1.304 

8 4.674 13.352 1.304 

10 4.674 13.350 1.304 

12 4.674 13.349 1.304 

Analytical2 4.942 15.626 1.324 
 

1 Isogeometric finite element based on FSDT (Wang et al. 2015) 
2 Higher-order theory based on trigonometric series 

(Nguyen et al. 2017) 
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analytical solutions based on HSDT given by Mantari and 

Canales (2016) and Nguyen et al. (2017) are made. As seen, 

the results are in good agreement. As the slenderness (L/h) 

increases, the natural frequencies increase, too. 

 

 

In Table 5, the normalized buckling loads for [0/90/0] 

and [0/90] laminated composite beams with simple supports 

are given. For comparison, the analytical solutions given by 

Nguyen et al. (2017) and Aydogdu (2006), and the finite 

element solution given by Vo and Thai (2012), all based on 

HSDT, are considered. The results are in good agreement. 

The normalized buckling loads increase with increasing the 

slenderness (L/h). 

In Tables 6 and 7, the normalized buckling loads for 

cross-ply and angle-ply laminated beams are compared to 

those of the analytical solutions based on HSDT given by 

Mantari and Canales (2016) and Nguyen et al. (2017). The 

present element agrees well with those of the higher-order 

theories considered with some exceptions. For the beams 

with [0/90] lamina stacking, the present element shows 

great discrepancy from the other solutions considered, i.e., 

S-S beams with L / h = 5 and C-C beams with L / h = 5 and 

10. 

Some further results for laminated composite beams are 

also given by Figs. 4 to 6. Effect of the fiber angle on the 

normalized fundamental frequencies and buckling loads are 

shown in Fig. 4. Unidirectional [] and unsymmetrical [0/] 

beams with Material III are considered. As seen, both the 

normalized frequencies and buckling loads decrease with 

increasing the fiber angle. 

Fig. 5 shows the variation of the normalized frequencies 

and buckling loads with the slenderness for [60/-60]s beam 

with Material II and different end conditions. With 

increasing the slenderness, both the normalized frequencies 

and buckling loads increase. 

Fig. 6 shows the effect of material anisotropy (E1/E2) on 

Table 3 Normalized fundamental frequencies of [0/90/0] and [0/90] laminated beams 

(Material I, E1 / E2 = 40) 

BCs Lay-up Theory 
L / h 

5 10 20 30 50 

S-S 

[0/90/0] 

Present 9.173 13.558 16.303 17.036 17.455 

Nguyen et al. (2017) 9.208 13.614 16.338 17.055 17.462 

Mantari and Canales (2016) 9.208 13.610 - - - 

[0/90] 

Present 6.024 6.753 7.163 7.248 7.293 

Nguyen et al. (2017) 6.128 6.945 7.219 7.274 7.302 

Mantari and Canales (2016) 6.109 6.913 - - - 

C-F 

[0/90/0] 

Present 4.154 5.474 6.064 6.195 6.266 

Nguyen et al. (2017) 4.234 5.498 6.070 6.198 6.267 

Mantari and Canales (2016) 4.221 5.490 - - - 

[0/90] 

Present 2.277 2.508 2.581 2.596 2.603 

Nguyen et al. (2017) 2.383 2.543 2.591 2.600 2.605 

Mantari and Canales (2016) 2.375 2.532 - - - 

C-C 

[0/90/0] 

Present 10.762 19.212 29.450 34.135 37.626 

Nguyen et al. (2017) 11.607 19.728 29.695 34.268 37.679 

Mantari and Canales (2016) 11.486 19.652 - - - 

[0/90] 

Present 9.474 13.467 15.144 15.993 16.328 

Nguyen et al. (2017) 10.027 13.670 15.661 16.154 16.429 

Mantari and Canales (2016) 9.974 13.628 - - - 
 

Table 4 Normalized fundamental frequencies of laminated 

beams with different lay-ups 

(Material I, E1 / E2 = 40) 

L/h Lay-up 
S-S C-F 

Present HSDT1 Present HSDT1 

5 

[0/30/0] 9.4203 9.4651 4.2489 4.3218 

[0/45/0] 9.3393 9.3801 4.2155 4.2855 

[0/60/0] 9.2572 9.2946 4.1840 4.2519 

[0/30/0] 9.3491 9.4194 4.2111 4.2821 

[0/45/0] 9.2203 9.2928 4.1471 4.2129 

[0/60/0] 9.0990 9.1699 4.0931 4.1548 

[0/90]2 7.3168 7.7822 3.1799 3.3187 

10 

[0/30/0] 13.8312 13.8823 5.5622 5.5791 

[0/45/0] 13.7290 13.7795 5.5249 5.5412 

[0/60/0] 13.6383 13.6889 5.4953 5.5116 

[0/30/0] 13.6569 13.7306 5.4821 5.4982 

[0/45/0] 13.4316 13.5092 5.3834 5.3987 

[0/60/0] 13.2580 13.3371 5.3142 5.3289 

[0/90]2 9.9909 10.2007 3.8468 3.9002 
 

1 Mantari and Canales (2016) 
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the normalized fundamental frequencies and buckling loads 

for [0/90]s and [0/90] composite beams with simple ends. 

 

 

 

 

As can be seen, the normalized frequencies and buckling 

loads increase with increasing the material anisotropy 

Table 5 Normalized buckling loads of simply-supported [0/90/0] and [0/90] beams 

(Materials I and II, E1 / E2 = 10) 

 
Lay-up Theory 

L / h 

5 10 20 30 50 

Material 

I 

[0/90/0] 

Present 4.722 6.811 7.665 7.848 7.945 

Nguyen et al. (2017) 4.727 6.814 7.666 7.848 7.945 

Aydogdu (2006) 4.726 - 7.666 - - 

Vo and Thai (2012) 4.709 6.778 7.620 - 7.896 

[0/90] 

Present 1.890 2.155 2.238 2.254 2.262 

Nguyen et al. (2017) 1.920 2.168 2.241 2.255 2.262 

Aydogdu (2006) 1.919 - 2.241 - - 

Vo and Thai (2012) 1.910 2.156 2.228 - 2.249 

Material 

II 

[0/90/0] 

Present 3.447 5.969 7.368 7.706 7.892 

Nguyen et al. (2017) 3.728 6.206 7.460 7.751 7.909 

Aydogdu (2006) 3.728 - 7.459 - - 

Vo and Thai (2012) 3.717 6.176 7.416 - 7.860 

[0/90] 

Present 1.744 2.108 2.225 2.248 2.260 

Nguyen et al. (2017) 1.766 2.116 2.227 2.249 2.260 

Aydogdu (2006) 1.765 - 2.226 - - 

Vo and Thai (2012) 1.758 2.104 2.214 - 2.247 
 

Table 6 Normalized buckling loads of [0/90/0] and [0/90] laminated beams (Material I, E1 / E2 = 40) 

BCs Lay-up Theory 
L / h 

5 10 20 30 50 

S-S 

[0/90/0] 

Present 8.591 18.815 27.075 29.490 30.904 

Nguyen et al. (2017) 8.613 18.832 27.086 29.496 30.906 

Mantari and Canales (2016) 8.585 18.796 - - - 

[0/90] 

Present 3.337 4.674 5.215 5.331 5.392 

Nguyen et al. (2017) 3.907 4.942 5.297 5.369 5.406 

Aydogdu (2006) 3.906 - - - - 

Mantari and Canales (2016) 3.856 4.887 - - - 

C-F 

[0/90/0] 

Present 4.704 6.769 7.610 7.790 7.886 

Nguyen et al. (2017) 4.708 6.772 7.611 7.790 7.886 

Mantari and Canales (2016) 4.673 6.757 - - - 

[0/90] 

Present 1.168 1.304 1.343 1.351 1.355 

Nguyen et al. (2017) 1.236 1.324 1.349 1.353 1.356 

Aydogdu (2006) 1.235 - - - - 

Mantari and Canales (2016) 1.221 1.311 - - - 

C-C 

[0/90/0] 

Present 11.239 34.369 75.281 97.225 114.416 

Nguyen et al. (2017) 11.652 34.453 75.328 97.248 114.398 

Mantari and Canales (2016) 11.502 34.365 - - - 

[0/90] 

Present 6.573 13.352 18.702 20.258 21.168 

Nguyen et al. (2017) 8.674 15.626 19.768 20.780 21.372 

Mantari and Canales (2016) 8.509 15.468 - - - 
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(E1/E2). E1/E2 is more effective on [0/90]s beam compared 

to [0/90] one. In addition, [0/90]s beam has greater 

frequencies and buckling loads than those of [0/90] beam. 

 

 

 

 

In Fig. 7, first three mode shapes of vibration for S-S, C-

C and C-F beams with [0/90] lamina stacking obtained by 

the present element are given. As seen, with the present 

element, mode shapes can be obtained in their correct form. 
 

4.2 Soft-core sandwich beams 
 

Table 8 gives the normalized fundamental frequencies of 

a simple five-layer (0/90/core/0/90) soft-core sandwich 

beam with E11 = 131 GPa, E22 = 10.34 GPa, G12 = G23 = 

6.895 GPa, G13 = 6.205 GPa, 12 = 0.22, ρ = 1627 kg/m3 for 

face sheets, and E11 = E22 = E33 = 6.8910-3 GPa, G12 = G13 

= G23 = 3.4510-3 GPa, 12 = 0 for isotropic core. Here, tc 

and tf denote the thickness of core and face sheets, 

respectively. The natural frequencies are normalized as 

𝜔 = 𝜔𝐿2 𝜌/𝐸22𝑓/ℎ. The global-local higher-order theory 

(GLHT), the zig-zag theory (ZZT) and the higher-order 

shear deformation theory (HSDT) given by Zhen and Wanji 

(2008) are used for comparison. As seen, the results of the 

present element agree well with those of the work 

considered for different slenderness ratio. Our results are in 

a better agreement with that of ZZT which is a layer-wise 

theory. 

Normalized buckling loads 𝜆 = 𝜆𝐿2/(𝐸2𝑓ℎ
3) for a 

simply-supported soft-core sandwich beam according to the 

different beam theories are given in Table 9. Material 

properties are: E = 70 GPa and  = 0.3 for isotropic 

aluminum face sheets, and E11 = 110-5 MPa, E22 = 109 

 
 

 

Table 7 Normalized buckling loads of laminated beams 

with different lay-ups (Material I, E1 / E2 = 40) 

L/h Lay-up 
S-S C-F 

Present HSDT1 Present HSDT1 

5 

[0/30/0] 9.0679 9.0718 4.8976 4.8633 

[0/45/0] 7.8583 7.6533 4.8249 4.7909 

[0/60/0] 8.7522 8.7473 4.7606 4.7275 

[0/30/0] 8.9658 8.9843 4.7894 4.7569 

[0/45/0] 8.7202 8.7439 4.6332 4.6034 

[0/60/0] 8.4903 8.5136 4.5139 4.4857 

[0/90]2 5.5231 6.1626 2.5183 2.6416 

10 

[0/30/0] 19.5907 19.5591 6.9606 6.9473 

[0/45/0] 19.3003 19.2700 6.8727 6.8596 

[0/60/0] 19.0429 19.0166 6.8085 6.7963 

[0/30/0] 19.1581 19.1350 6.7383 6.7246 

[0/45/0] 18.5333 18.5228 6.4867 6.4746 

[0/60/0] 18.0561 18.0533 6.3216 6.3106 

[0/90]2 10.0733 10.5854 3.1911 3.2335 
 

1 Mantari and Canales (2016) 

  

(a) (b) 
 

  

(c) (d) 

Fig. 4 Variation of the normalized fundamental frequencies and buckling loads with the fiber angle: (a) and (b) [θ] 

beam; (c) and (d) [0 / θ] beam (Material III, L / h = 15) 
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Fig. 5 Effect of the slenderness on the normalized fundamental frequencies and buckling loads for [60/-60]s composite 

beams (Material II, E1 / E2 = 10) 

  

Fig. 6 Effect of material anisotropy on the normalized fundamental frequencies and buckling loads for [0/90/90/0] and 

[0/90] composite beams with simple ends (Material I, L / h = 10) 

  

(a) S-S beam (b) C-C beam 

 

 

(c) C-F beam 

Fig. 7 First three mode shapes of vibration for [0/90] laminated beams with various end conditions 

(L/h = 10, Material I, E1 / E2 = 40) 
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Table 8 Comparison of normalized fundamental frequencies 

for a soft-core sandwich beam 

(0/90/core/0/90, tc / tf = 10) 

L / h Present ZZT1 GLHT1 HSDT1 

2 0.4413 0.4430 0.4500 0.4560 

4 0.6161 0.6161 0.6384 0.6547 

10 1.2838 1.2822 1.3467 1.3956 

20 2.4381 2.4347 2.5588 2.6533 

30 3.5189 3.5141 3.6830 3.8107 

40 3.4884 3.4824 4.6800 4.8280 

50 5.3342 5.3272 5.5389 5.6960 

60 6.0581 6.0503 6.2648 6.4223 

70 6.6699 6.6616 6.8710 7.0233 

80 7.1836 7.1747 7.3742 7.5180 

90 7.6134 7.6042 7.7911 7.9249 

100 7.9732 7.9637 8.1369 8.2602 
 

1 Zhen and Wanji (2008) 

 

 

 

 

MPa, G12 = 26.6 MPa, and 12 = 110-5 for orthotropic core. 

When the slenderness increases, the normalized buckling 

loads increase, too. However, they decrease with increasing 

the core-to-face thickness ratio. FSDT (Kahya 2012), 

GLHT and ZZT (Zhen and Wanji 2008), and the mixed 

layer-wise theory (MLWT) (Dafedar and Desai 2004) are 

used for comparison. The results are in good agreement. 

When the core-to-face thickness ratio increases, the perfect 

agreement is seen among the present element, ZZT and 

GLHT. 

5. Conclusions 
 

A multi-layer layer-wise finite element for vibration and 

buckling analyses of laminated composite and sandwich 

beams based on a higher-order theory is presented. Slip and 

delamination between the layers are not allowed. Element 

matrices are derived through the Lagrange’s equations. 

Numerical results have been obtained by a computer 

program written by the authors in FORTRAN language. 

According to the results of the study, the following 

conclusions can be drawn: 

 

 Compared to other higher-order theories available in 

the literature, the present element’s accuracy in 

calculation of natural frequencies and buckling loads 

of laminated composite and sandwiched beams is 

very good. 

 It is observed that the element presented here has 

some exceptions in calculating buckling loads. For 

unsymmetric cross-ply [0/90/…] beams with C-C 

and S-S end conditions in case of L / h < 10, the 

present element gives erroneous results compared to 

the available literature considered here. Authors 

think that this may be due to some material coupling 

for this type of lamina configuration, and if the out-

off plane displacement component (v) is taken into 

account in the kinematic relations, we will have 

obtained more accurate results. 

 Since the present element is constituted in a layer-

wise manner, it can be suitable for the solution of 

slip and delamination problems of laminated beams, 

which is a further work of the authors. 
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Appendix 
 

The elements of the mass, stiffness and geometric 

stiffness matrices are given below, respectively 
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In above, αn, βn, γn and Sn are given by 
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where L is the element length,  is the density of beam, and 

An is the integral over the cross-sectional area given by 
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For layers with a rectangular cross-section with a width 

b and height h 
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