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1. Introduction 

 

According to proper characteristics of laminated 

composites, laminated composite plates of different shapes 

are widely used in modern industries such as aerospace and 

nuclear engineering (Hirwani et al. 2017, Sahoo et al. 2016, 

2018). Fibers orientation and stacking sequence of these 

elements play an important role to obtain optimum design 

(Honda et al. 2009, Topal 2012, Malekzade et al. 2014, 

Vosoughi and Nikoo 2015, Shafei and Shirzad 2017, 

Vosoughi et al. 2017, 2018a, b). On the other hand, the 

fundamental natural frequency of a structural element is an 

important characteristic affecting its dynamic response. So, 

maximizing the fundamental frequency of a structural 

element, in addition to help to prevent the resonance 

phenomena, can improve its dynamic behavior. 

Some optimization problems of laminated rectangular 

plates have been investigated in the past. Kam and Lai 

(1995) used the finite element and constrained multi-start 

global optimization methods to obtain optimal dynamic 

characteristics of moderately thick laminated composite 

square plates. Natural frequencies of thin laminated 
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composite square plates and panels were maximized using 

the Ritz method and layerwise optimization approach by 

Narita and his co-workers (Narita 2003, Narita and 

Hodgkinson 2005, Narita and Robinson 2006). Also, Narita 

(2006) maximized fundamental natural frequency of thin 

laminated composite square plate by using a mixed 

layerwise optimization approach and the finite element 

method. Topal and Uzman (2008) employed the mixed 

modified feasible direction and finite element method to 

maximize the fundamental frequency of moderately thick 

laminated composite plates with a circular hole and skew 

composite laminated plates (Topal and Uzman 2008, 2009). 

Apalak et al. (2008) solved the problem of maximizing the 

fundamental frequency of thin laminated composite square 

plates with employing the genetic algorithms and the finite 

element method. Karakaya and Soykasap (2011) used 

genetic algorithm and simulating annealing methods to 

maximize natural frequency of simply supported laminated 

composite plates. They found frequency of the plate 

analytically. A combination of the Elitist-Genetic algorithm 

and the finite strip method was employed by Sadr and 

Ghashochi Bargh (2012) to find the maximum fundamental 

frequency of thin laminated composite square plates. Honda 

et al. (2013) extended the layerwise optimization procedure 

to find maximum fundamental frequency of thin and 

moderately thick laminated composite square plates by 

combining the Ritz refined zigzag theory. A combination of 

the finite element method and the artificial bee colony 

algorithm was employed by Apalak et al. (2014) to obtain 

the optimum fundamental natural frequency of thin 
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laminated composite square plates. Vosoughi et al. (2016) 

presented a hybrid method to maximize the fundamental 

natural frequency of thick laminated composite square 

plates. They used a mixed finite element, genetic algorithms 

and particle swarm optimization methods to solve the 

problem. 

On the other hand, searching for new combination of 

different numerical techniques and optimization algorithms 

to introduce efficient numerical solvers for optimization 

problems of composite structural elements are of interest for 

the researchers in the field (Vosoughi and Gerist 2014, 

Vosoughi 2015, Darabi and Vosoughi 2016, Vosoughi and 

Darabi 2017, Vosoughi and Anjabin 2017, Khalili and 

Vosoughi 2018, Vosoughi et al. 2018b). In the recent years, 

the computational efficiency together with the high 

accuracy of the differential quadrature method (DQM) for 

solving the different structural problems has been 

demonstrated; for example see Refs. (Malekzadeh and 

Vosoughi 2008, Malekzadeh and Vosoughi 2009, Vosoughi 

2014, Vosoughi et al., 2018a). In these studies, it has been 

shown that only with a few number of grid points, in spite 

of the other conventional approximate method such as the 

finite element method and the Ritz method, the accurate 

results can be achieved for complicated structural problems. 

So, here, as a first endeavor, a coupled form of the DQM 

and teaching-learning based optimization methods is 

introduced for maximizing fundamental natural frequency 

of moderately thick laminated composite skew plates. It 

should be mentioned that as reveals from the literature 

survey, most of the previously solved optimization 

problems of composite plates concerned with rectangular 

plates ones. But in this study, a class of important non-

rectangular composite plates, i.e. skew plates, is considered. 

To solve the problem, the first-order shear deformation 

theory is adopted to obtain governing equations of the 

plates, which includes both the transverse shear deformation 

and the rotary inertia effects. Then, the differential 

quadrature method is employed to discretize the equations 

of motion and the related boundary conditions to obtain the 

natural frequency of the plate. For maximizing the 

fundamental natural frequency, the plies’ fiber orientations 

are considered as the design variables and the teaching-

learning based optimization method is used to find the 

optimum solution. After validating the present approach, 

different examples of skew laminated composite plates are 

solved and the corresponding results are tabulated, which 

can be used as benchmark solution by other researchers in 

the field. 
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Fig. 1 The geometry of the laminated composite plate 

2. The governing equations 
 

A symmetric laminated composite plate with NL 

perfectly bonded orthotropic layers of length a, width b and 

total thickness h is considered (Fig. 1). 

Based on the first-order shear deformation theory 

(FSDT), the constitutive relations of the resultant stresses at 

an arbitrary material point on the mid-plane of the plates 

can be obtained as follows (Reddy 1997) 
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where 𝐷𝑖𝑗 =   𝑄 𝑖𝑗
(𝑘)

𝑧2𝑑𝑧
𝑧𝑘

𝑧𝑘−1

𝑁𝐿
𝑘=1 , (i, j = 1, 2, 6); 𝐴𝑖𝑗 =  

𝜅𝑖𝑗   𝑄 𝑖𝑗
(𝑘)

𝑑𝑧
𝑧𝑘

𝑧𝑘−1

𝑁𝐿
𝑘=1  (i, j = 4, 5); vis the shear correction 

factor; zk-1 and zk (k = 1,..., NL) are the lower and upper 

surface thickness coordinate of the kth layer; 𝑄 𝑖𝑗
(𝑘)

 (i, j = 1, 

2, , 4, 5, 6) are the transformed reduced stiffness 

coefficients of the kth layer (Reddy 1997); φx and φy are the 

rotations of the transverse normal to the mid-plane of the 

laminated composite plate about the y- and x-axis, 

respectively. Also, w is the vertical displacement component 

of an arbitrary point on the mid-plane of the plate along the 

z-direction. The governing equations of the laminated 

composite plate can be stated as 
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where 𝐼𝑘𝑘 =  𝜌𝑧2𝑑𝑧
ℎ

0
. 

Without loss of generality, in this paper, the skew plates 

with clamped and simply supported edges and also some 

combination of these boundary conditions are considered. 

The conditions of these edge restraints can be stated as 
 

Simple boundary condition: 
 

,0w  (5a) 
 

,0s  (5b) 
 

0nnM  (5c) 
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Clamp boundary condition: 

 
,0w  (6a) 

 

,0s  (6b) 

 

0n  (6c) 

 

where φn = nxφ
x + nyφ

y, φs = ‒ nyφ
x + nxφ

y, 𝑀𝑛𝑛 = 𝑀𝑥𝑥 𝑛𝑥
2 +

𝑀𝑦𝑦 𝑛𝑦
2 + 2𝑀𝑥𝑦 𝑛𝑥 𝑛𝑦 ; also, 𝑛𝑥  and 𝑛𝑦  are the x and y-

components of unit normal vector to an arbitrary edge of the 

plate, respectively; Mxx , Myy and Mxy are the bending 

moments about y and x-axis and twisting moment, 

respectively (Reddy 1997). 

Before utilizing the DQM, the governing equations and 

the boundary conditions should be transformed into the 

computational domain of the DQM, which is a rectangular 

domain one. For this purpose, the following linear 

transformation rules can be used 

 

  ,sin  x     cosy  (7) 

 

where ξ and η are the natural coordinate variables of the 

computational domain of the problem; ψ is the skew angle 

of the plate. 

Using the differential quadrature rules (Malekzadeh and 

Vosoughi 2008, Vosoughi 2016), the discretized form of the 

equations of motion can be obtained as follows 

Eq. (2) 
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Eq. (3) 
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Eq. (4) 
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where Nα (α = ξ, η) is the number of grid points along the α-

direction and 𝑁𝛼
′ = 𝑁𝛼 − 1; also, 𝐴𝑖𝑗

𝛼  and 𝐵𝑖𝑗
𝛼  (α = ξ, η) 

are the weighting coefficients of the first and second-order 

derivatives with respect to α variables (α = ξ, η), 

respectively. 

In a similar manner, the discretized form of the 

boundary conditions 

Eq. (5) 
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Eq. (6) 
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where 
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i = 1 at the edge ξ = 0 and i = Nξ at ξ = a with j = 1,…, 

Nη along these edges; also, j = 1 at the edge η = 0, j= Nη at η 

= b and i = 1,…, Nξ along these edges. 

Due to harmonic behavior of motion in free vibration of 

plates, the transverse displacement and the rotation 

components can be explained as 
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where W, ϕx and ϕy are the amplitude of transverse 

displacement and corresponding rotation components, 

respectively; also, ω is the circular frequency of the plate. 

The discretized equations of motion and the related 

boundary conditions can be expressed in the matrix form as 

follows 
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(15) 

 

where [Kij] (i, j = W, ϕ) and [Mij] (i, j = W, ϕ)  are the 

stiffness and mass matrices, respectively; also, {W} and 

 𝜙 =  
 𝜙𝑥 

 𝜙𝑦 
  are the vectors of vertical displacement and 

the rotational degrees of degrees of freedom, respectively. 

 

 

3. TLBO for maximizing the fundamental 
natural frequency 
 

The objective function of the problem and its related 

constraints for fiber orientations as design variables are 

given below 
 

Maximize Ω 

subjected to ‒90° < θj < 90°,  j = 1, ... NL 
(16) 

 

where Ω = 𝜔  𝜌/𝐸2 𝑎
2/ℎ  is the non-dimensional 

fundamental natural frequency of the plate and θj is the fiber 

orientation of the jth layer. 

Teaching-learning based optimization method is an 

evolutionary optimization technique which is based on the 

effects of teachers on learners, and also the interaction 

between the learners. In this method, design variable(s) are 

considered as a set of population (learners). The TLBO has 

two parts. The first one is the teacher phase in which the 

learners are trained by their teacher and the second part is 

learners phase in which the learners are trained with 

interaction between themselves (Rao et al. 2011, Baghlani 

and Makiabadi 2013). 

According to TLBO to find the maximum fundamental 

natural frequency of the plate, the fiber(s) orientations are 

selected as learners or students. The first population is 

randomly generated and the related values of frequency of 

the plate are calculated using the DQM. Then, the fiber(s) 

orientations related to the maximum frequency is 

considered as teacher (Xteacher) and the remained learners 

would be learned from the teacher according to the 

following equation 

 

 meanFteacherinew XTXrXX   (17) 

 

where Xi is the ith learner; r and TF are two random values 

between 0 and 1; (Xmean) is the mean value of the learners 

(Rao et al. 2011, Baghlani and Makiabadi 2013). 

In the second phase, the new learners (Xnew) can be 

obtained by comparing fitness values ( f ) of learners with 

each other and modifications are made using the following 

equations (Rao et al. 2011, Baghlani and Makiabadi 2013) . 

 

if  𝑓 𝑋𝑖 > 𝑓 𝑋𝑖 :   𝑋𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟 𝑋𝑗 − 𝑋𝑖  (18) 

 

if  𝑓 𝑋𝑗  > 𝑓 𝑋𝑖 :   𝑋𝑛𝑒𝑤 = 𝑋𝑖 + 𝑟 𝑋𝑖 − 𝑋𝑗   (19) 

 

where Xj is the jth learner. 

The above procedure are continued to obtain the 

 

 

 

Fig. 2 Flow chart of the hybrid DQ-TLBO solution 

procedure 
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maximum fundamental natural frequency and its related 

optimum fiber(s) orientations with acceptable accuracy. 

More details of the TLBO method can be found in Refs. 

(Rao et al. 2011, Baghlani and Makiabadi 2013). Also, flow 

chart of the new hybrid DQM-TLBO solution procedure is 

shown in Fig. 2. 
 

 

4. Numerical results 
 
In this section, by using the computer program prepared 

based on the presented algorithm, the numerical results for 

the symmetric laminated composite skew plates subjected 

to different boundary conditions are presented. For this 
 

 

Table 1 Convergence and accuracy of the presented hybrid 

method for the non-dimensional frequency of 

8-layered symmetric  𝜃1
∘/𝜃2

∘/𝜃3
∘/𝜃4

∘ Sym . SSSS 

laminated composite plate (a/b = 1, a = 1, 

a/h = 100, Nξ = Nη = 17, ψ = 0) 

Np Ng Ω 

The optimum fibers 

orientation 

𝜃1
∘ 𝜃2

∘ 𝜃3
∘ 𝜃4

∘ 

10 

10 56.0587 -42 47 43 79 

20 56.3143 -45 45 45 49 

50 56.3175 -45 45 45 43 

100 56.3175 -45 45 45 43 

20 

10 56.1179 41 -44 -46 -25 

20 56.2911 46 -47 -46 -46 

50 56.3184 45 -45 -45 -45 

100 56.3184 45 -45 -45 -45 

100 

10 56.3057 44 -44 -44 -45 

20 56.3067 45 -46 -44 -40 

50 56.3184 45 -45 -45 -45 

100 56.3184 45 -45 -45 -45 

Narita (2006)  56.32 45 -45 -45 -45 

Sadr and Ghashochi 

Bargh (2012) 
 56.370 -45 45 45 48 

 

 

 

 

Fig. 3 Convergence of the hybrid DQ-TLBO for 

maximizing the frequency of 8-layered symmetric 
 𝜃1

∘/𝜃2
∘/𝜃3

∘/𝜃4
∘ Sym . SSSS laminated composite plate 

(a/b = 1, a = 1, a/h = 100, Nξ = Nη = 17) 

purpose, firstly, the convergence and accuracy of the hybrid 

DQ-TLBO method for maximizing fundamental natural 

frequency of laminated composite plates and the related 

fiber(s) orientations are shown in Table 1. In this table and 

for all the other solved examples, the following mechanical 

properties are used for the all layers 

 

11 22 12 13 12

3
23 12 21

181 GPa,  =10.3 GPa, 7.17 GPa,  ,  

2.39 GPa,  0.28,   1500kg m

E E G G G

G   

  

   
 

 

In Table 1, the results of the presented hybrid DQ-TLBO 

method for simply supported (SSSS) 8-layered symmetric 

square plates are compared with those of other approaches 

(Narita 2006, Sadr and Ghashochi Bargh 2012). As it can be 

seen from the presented results in Table 1, it is obvious that 

by increasing the number of population (Np) and the number 

of generation (Ng), the results of present study show an 

excellent agreement with those of others. Also, one can 

observe that Np = 20 and Ng = 50 are sufficient to obtain the 

converged accurate results. So hereafter, these values are 

used to find the maximum fundamental natural frequency of 

the laminated composite skew plates and the related fiber(s) 

orientations. Although the coupled method can give real 

values for optimum design variables, but with respect to 

construction limits for the laminated composite plates, the 

obtained optimum results are rounded and integer optimum 

fiber(s) orientations are reported in the following solved 

examples. 

For the solved problem in Table 1, the efficiency and 

convergence of the present hybrid method are shown in Fig. 

3. In this figure, the convergences of the hybrid method for 

the different number of population are plotted. It is obvious 

that by increasing the number of population, the method 

converges rapidly to the optimum value of the frequency. 

Comparing these results with those achieved using the finite 

strip element method together with elitist genetic algorithms 

(E-GAs) solution obtained by Sadr and Ghashochi Bargh 

(2012) highlights the efficiency of the present hybrid DQ-

TLBO solution method. They compared their results with 

those of the genetic algorithms (GAs) and show that the E-

GAs has less computational costs than the GAs (Sadr and 

Ghashochi Bargh 2012). Also, they found that for the 8 

layers laminated composite plates, the GAs gives optimum 

results with the initial population equal to 35 in 13 

iterations. But in this paper it is shown that the present 

hybrid DQ-TLBO can found the optimum solution with 

twenty number of population in seven iterations. Reducing 

the number of iterations together with the less number of 

population sizes in the optimization problem show the less 

computational costs of the presented solution technique. 

The influence of the number of layer on the maximum 

non-dimensional frequency of simply supported 8-layered 

skew plate is studied in Table 2. As it is shown, for a skew 

plate by increasing the number of layer from 2 to 6, the 

optimum frequency change considerably; but after that by 

increasing the number of layer to 12, the maximum 

frequency has no significant change. Also, by increasing the 

skew angle of the plate with two layers, the fiber angles are 

increased clockwise. But by increasing the number of layers 

the problem become more complex and specific relations 
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Table 2 Maximum non-dimensional fundamental natural 

frequency and the related optimum fibers 

orientations for symmetric  𝜃1
∘/𝜃2

∘/ ⋯/𝜃𝑁𝐿

∘  
Sym . 

SSSS laminated composite skew plates with 

different number of layer and skew angle (a/b = 1, 

a/h = 100, b = 1, Np = 20, Ng = 50, Nξ = Nη = 17) 

ψ NL Ω 
The optimum fibers orientation 

𝜃1
∘ 𝜃2

∘ 𝜃3
∘ 𝜃4

∘ 𝜃5
∘ 𝜃6

∘ 

0° 

2 139.1795 0 --- --- --- --- --- 

4 160.6730 -45 45 --- --- --- --- 

6 174.0579 45 -45 -46 --- --- --- 

8 178.0906 45 -45 -45 -45 --- --- 

10 178.5160 45 -49 -45 -48 42 --- 

12 178.4267 -46 44 43 46 -47 34 

15° 

2 159.1952 -52 --- --- --- --- --- 

4 177.3503 -53 37 --- --- --- --- 

6 187.0663 -53 37 38 --- --- --- 

8 188.6887 -53 38 37 37 --- --- 

10 188.3300 -53 38 -53 41 37 --- 

12 188.6650 37 -54 -53 -52 -52 -53 

30° 

2 204.6379 -60 --- --- --- --- --- 

4 219.3670 -60 30 --- --- --- --- 

6 224.9180 -60 27 31 --- --- --- 

8 225.0531 -60 30 -60 30 --- --- 

10 223.6018 -62 -61 29 26 34 --- 

12 224.9427 -62 -60 28 30 30 29 

45° 

2 306.3501 -67 --- --- --- --- --- 

4 316.2149 -68 22 --- --- --- --- 

6 315.8976 -68 22 -67 --- --- --- 

8 316.3431 -73 -58 22 22 --- --- 

10 316.8629 -69 -69 22 -54 18 --- 

12 316.7214 -65 -77 -59 21 23 26 

60° 

2 588.8867 -75 --- --- --- --- --- 

4 595.4286 -79 -37 --- --- --- --- 

6 597.3617 -66 81 80 --- --- --- 

8 597.2644 90 -57 -57 90 --- --- 

10 597.7465 -60 90 -90 -90 -56 --- 

12 597.7379 -60 90 90 -61 -90 -90 
 

 

 

between the fibers orientations may not be achieved. 

The effect of aspect ratio of laminated composite skew 

plate on the optimum fundamental natural frequency is 

shown in Table 3, which includes the results for the 8-

layered simply supported skew plates. From the data 

presented in this table, it is seen that for a given value of the 

skew angle, by increasing the aspect ratio the optimum non-

dimensional frequency increases. 

In Table 4, the effect of boundary conditions on the 

optimum fundamental natural frequency of the skew plate is 

investigated. To describe a boundary condition, a four letter 

symbol is used. For example, “CSSS” means that first edge 

Table 3 Maximum non-dimensional fundamental natural 

frequency and the related optimum fibers orienta-

tions for 8-layered symmetric  𝜃1
∘/𝜃2

∘/𝜃3
∘/𝜃4

∘ Sym . 

SSSS laminated composite skew plates with 

different number of layer and skew angle 

(a/b = 1, a/h = 100, b = 1, Np = 20, Ng = 50, 

NL = 8, Nξ = Nη = 17) 

ψ a/b Ω 
The optimum fibers orientation 

𝜃1
∘ 𝜃2

∘ 𝜃3
∘ 𝜃4

∘ 

0° 

0.5 178.3936 0 0 0 0 

1.0 178.0906 45 -45 -45 -45 

1.5 241.8377 -67 62 63 -90 

2.0 356.7873 90 90 90 90 

15° 

0.5 191.5477 -16 -16 -16 -16 

1.0 188.6887 -53 38 37 37 

1.5 257.3445 -85 -77 57 55 

2.0 383.0366 90 -90 -88 -90 

30° 

0.5 237.7416 -30 -31 -29 -29 

1.0 225.0531 -60 30 -60 30 

1.5 318.6618 -88 89 -86 -86 

2.0 475.4988 90 90 90 -89 

45° 

0.5 345.9980 -42 -41 -41 81 

1.0 316.3431 -73 -58 22 22 

1.5 462.5361 -90 -90 83 -33 

2.0 691.8710 86 87 90 -27 

60° 

0.5 623.4564 -55 -44 67 -90 

1.0 597.2644 90 -57 -57 90 

1.5 870.3157 -90 90 -56 90 

2.0 1247.6547 78 -90 -40 -40 
 

 

 

 (see Fig. 1) is clamped and second, third and fourth edges 

are simply supported, respectively. The results show that 

increasing the redundancy of the plate increases the non-

dimensional fundamental frequency. Also, from the results 

presented in Tables 2-4, one can conclude that by increasing 

the skew angle, the optimum non-dimensional fundamental 

frequency increases. 
 

 

5. Conclusions 
 

As a first attempt, a hybrid differential quadrature (DQ) 

and teaching-learning based optimization (TLBO) method 

is introduced to obtain the maximum fundamental natural 

frequency of laminated composite skew plates. The first-

order shear deformation theory (FSDT) is used to obtain the 

governing equations. Using a linear transformation and the 

differential quadrature method, the discretized form of 

equations of motion of the skew plate in computational 

domain are obtained. Then, the teaching-learning based 

optimization method is coupled with the DQM to find the 

maximum fundamental natural frequency of the laminated 

composite skew plate and the related optimum fiber(s) 

orientations as design variables. Robustness, accuracy and 
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Table 4 Influences of the skew angle on the non-

dimensional fundamental natural frequency of 8-

layered symmetric  𝜃1
∘/𝜃2

∘/𝜃3
∘/𝜃4

∘ Sym . laminated 

composite skew plate with different boundary 

conditions (B.C.) (a/h = 10, a = 1, a/b = 1, Np = 20, 

Ng = 50, Nξ = Nη = 17) 

ψ B.C. Ω 
The optimum fibers orientation 

𝜃1
∘ 𝜃2

∘ 𝜃3
∘ 𝜃4

∘ 

0° 

SSSS 178.0906 45 -45 -45 -45 

SSSC 210.7945 61 -58 -58 -58 

SSCC 227.9043 45 -45 -45 -45 

SCSC 286.8869 -90 -90 90 -87 

CCCS 290.2939 0 0 0 2 

CCCC 295.5449 0 -90 -5 90 

15° 

SSSS 188.6887 -53 38 37 37 

SSSC 225.4676 -71 47 -71 52 

SSCC 242.1253 -53 37 -52 38 

SCSC 308.4928 -90 -87 -90 -90 

CCCS 312.3703 -17 -18 -16 -17 

CCCC 318.5576 -88 -20 -19 89 

30° 

SSSS 225.0531 -60 30 -60 30 

SSSC 276.6221 -81 -83 28 36 

SSCC 295.0462 -60 30 -60 -62 

SCSC 382.7721 -90 90 -89 88 

CCCS 389.0818 -32 -34 -31 -32 

CCCC 403.7894 -53 -90 -16 -18 

45° 

SSSS 316.3431 -73 -58 22 22 

SSSC 401.6987 -90 90 90 -16 

SSCC 422.7459 -60 86 0 -54 

SCSC 559.6993 87 -90 -90 -90 

CCCS 572.9343 -45 -45 -45 -45 

CCCC 620.8962 -66 -64 90 19 

60° 

SSSS 597.2644 90 -57 -57 90 

SSSC 746.1258 -90 83 82 -39 

SSCC 782.7108 -58 80 86 90 

SCSC 1052.1406 84 -90 -90 -90 

CCCS 1080.1930 -58 -57 -57 -56 

CCCC 1252.8378 -75 -76 -75 -76 
 

 

 

applicability of the introduced method for solving the 

problem under consideration are shown. Then, the effects of 

different parameters such as skew angle, number of layers 

and aspect ratio on the maximum frequency of the 

laminated composite skew plate with different boundary 

conditions are studied. The presented results can be used as 

benchmark solution for the future works. 
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