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1. Introduction 
 

CNTs have superior properties such as high tensile 

strengths, high aspect ratio, high stiffness and low density 

and however, can be used as the reinforce phase for the 

composite materials. However, in this paper, the effect of 

CNTs on the forced vibration of micro cylindrical shell is 

presented. 

In nano and micro scales, considering size effect is 

essential. Mechanical analysis of nanostructures has been 

reported by many researchers (Zemri et al. 2015, Larbi 

Chaht et al. 2015, Belkorissat et al. 2015, Ahouel et al. 

2016, Bounouara et al. 2016, Bouafia et al. 2017, 

Besseghier et al. 2017, Bellifa et al. 2017, Mouffoki et al. 

2017, Li et al. 2017). 

In the field of forced vibration and nanocomposite 

structures, Virgin and Plaut (1993) presented effect of axial 

load on forced vibrations of beams. Orhan (2007) 

investigated analysis of free and forced vibration of a 

cracked cantilever beam Repetto et al. (2012) studied 

forced vibrations of a cantilever beam. Dynamic analysis of 

an embedded single-walled carbon nanotube (SWCNT) 

traversed by a moving nanoparticle, which is modeled as a 

moving load, was investigated by Simsek (2012). A forced 

vibration analysis of functionally graded (FG) nanobeams 

was considered by Uymaz (2013) based on the nonlocal 

elasticity theory. Bhushan et al. (2014) investigated the 

hardening–softening nature of primary resonance curves of 
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a doubly clamped cylindrical beam oscillator which 

represents a silicon nanowire. Forced vibrations of 

orthotropic shells when there is viscous resistance were 

considered by Ghulghazaryan (2015), when two versions of 

the spatial boundary conditions are given on the upper face 

of the shell, and the displacement vector is given on the 

lower face. A numerical approach was presented by Chen 

(2015) for the analysis of the forced vibration of a rigid 

surface foundation with arbitrary shape. The nonlinear 

forced vibration behavior of a cantilevered nanobeam was 

investigated by Dai et al. (2016), essentially considering the 

effect due to the surface elastic layer. Vibration analysis of 

embedded functionally graded (FG)-carbon nanotubes 

(CNT)-reinforced piezoelectric cylindrical shell subjected 

to uniform and non-uniform temperature distributions were 

presented by Madani et al. (2016). Chen et al. (2016) 

investigated the free and forced vibration characteristics of 

functionally graded (FG) porous beams with non-uniform 

porosity distribution whose elastic moduli and mass density 

are nonlinearly graded along the thickness direction. 

Akbarov and Mehdiyev (2017) studied forced vibration of 

the elastic system consisting of the hollow cylinder and 

surrounding elastic medium under perfect and imperfect 

contact. Su et al. (2018) studied the free and forced 

transverse vibrations of a nanowire on elastic substrate, in a 

systematic way. Nonlinear amplitude-frequency response, 

unstable boundary and dynamic responses of an axially 

moving viscoelastic sandwich beam under low- and high-

frequency principle resonances were discussed and 

compared by Li et al. (2018). Akbaş (2018) investigated 

forced vibration analysis of functionally graded porous deep 

beams under dynamically load. Mohamed et al. (2018) 

presented a novel numerical procedure to predict nonlinear 
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free and steady state forced vibrations of clamped–clamped 

curved beam in the vicinity of postbuckling configuration. 

In the field of nanocomposite structures, an 

investigation on the nonlinear dynamic response and 

vibration of the imperfect laminated three-phase polymer 

nanocomposite panel resting on elastic foundations was 

presented by Duc et al. (2015). Van Thu and Duc (2016) 

presented an analytical approach to investigate the non-

linear dynamic response and vibration of an imperfect 

three-phase laminated nanocomposite cylindrical panel 

resting on elastic foundations in thermal environments. Duc 

et al. (2017a, b, c) studied thermal and mechanical stability 

of a functionally graded composite truncated conical shell, 

plates and double curved shallow shells reinforced by 

carbon nanotube fibers. Based on Reddy’s third-order shear 

deformation plate theory, the nonlinear dynamic response 

and vibration of imperfect functionally graded carbon 

nanotube-reinforced composite plates was analyzed by 

Thanh et al. (2017). Duc et al. (2018) presented the first 

analytical approach to investigate the nonlinear dynamic 

response and vibration of imperfect rectangular 

nanocompsite multilayer organic solar cell subjected to 

mechanical loads using the classical plate theory. 

In this paper, the nonlinear forced vibration of micro 

cylindrical shell reinforced by FG-CNTs is studied based on 

sinusoidal beam model. The size-dependent are considered 

based on strain gradient theory. Based on energy method 

and Hamilton's principal, the motion equations are derived. 

Applying DQM and Newmark method, the frequency 

response of the structure is obtained. The effects of CNTs 

volume percent and distribution type, boundary conditions, 

size effect and length to thickness ratio are discussed in 

detail. 

 

 

2. Sinusoidal beam model 
 

Fig. 1 shows the geometry of the embedded micro 

cylindrical shell with radius, R, length, L, and thickness h. 

The structure is reinforced by FG-CNTs and is subjected to 

harmonic load. 

There are many new theories for modeling of different 

structures. Some of the new theories have been used by 

 

 

 

Fig. 1 The schematic of FG-CNT-reinforced cylindrical 

shell 

Tounsi and co-authors (Bessaim et al. 2013, Bouderba et al. 

2013, Belabed et al. 2014, Meziane et al. 2014, Zidi et al. 

2014, Bourada et al. 2015, Bousahla et al. 2016, Beldjelili 

et al. 2016, Boukhari et al. 2016, Draiche et al. 2016, 

Bellifa et al. 2015, Attia et al. 2015, Mahi et al. 2015, 

Bennoun et al. 2016, El-Haina et al. 2017, Menasria et al. 

2017, Chikh et al. 2017). Based on sinusoidal beam model, 

we have (Şimşek and Reddy 2013) 
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where u and w are the axial and the transverse 

displacement; φ and ϕ are the transverse shear strain of and 

the total bending rotation of the cross-sections, respectively; 

Φ(z) can be defined as 
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The strain relations of the structure can be expressed as 
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𝜋𝑧

ℎ
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𝜋𝑧

ℎ
 . 

 

 

3. Motion equations 
 

Based on the SGT, the potential strain energy of the 

structure can be expressed as (Lei et al. 2013) 
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where εij, γi, 𝜂𝑖𝑗𝑘
(1)

, χij represent the strain, the dilatation  

gradient, the deviatoric stretch gradient and  the symmetric 

rotation  gradient tensors, respectively, which are  defined 

by 
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where ui, δij and eijk are the displacement vector, the knocker 

delta and the alternate tensor, respectively. The classical 

stress tensor, ζij, the higher-order stresses, pi, 𝜏𝑖𝑗𝑘
(1)

 and mij 

are given by 
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where E and G are the bulk modulus and the shear modulus, 

respectively, (l0, l1, l2) are independent material length scale 

parameters. The kinetic energy of the structure can be 

expressed as 

 
2 2

2
2

0 0
2

1

2

h
l

x z
h

u u
K dxd dz

t t



 


     
     

      
  

 

(17) 

 

where ρ denotes the density of structure. The external work 

due to the harmonic transverse load can be given as 
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where f and ω are amplitude and excitation frequency, 

respectively. However, based on Hamilton’s principle, the 

motion equations can be written as 
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Where the following integrals are defined 
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In present work, three different types of boundary 

conditions are considered as following 
 

 Simply supported-Simply supported (SS) 
 

@ 0, 0,xx L u w M    
 

(24) 

 

 Clamped- Clamped (CC) 
 

@ 0, 0,x L u w     
 (25) 

 

 Clamped- Simply supported (CS) 
 

@ 0 0,

@ 0.x

x u w

x L u w M

    

    
 

(26) 

 

 

4. Mixture rule 
 

According to this theory, the effective Young and shear 

moduli of structure may be expressed as (Liew et al. 2014) 
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where Er11, Er22 and Em are Young’s moduli of CNTs and 

matrix, respectively; Gr11 and Gm are shear modulus of 

CNTs and matrix, respectively; VCNT and Vm show the 

volume fractions of the CNTs and matrix, respectively; ηj  

(j = 1, 2, 3) is CNT efficiency parameter for considering the 

size-dependent material properties. Noted that this 

parameter may be calculated using molecular dynamic 

(MD). However, the CNT distribution for the mentioned 

patters obeys from the following relations 
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where wCNT is the mass fraction of the CNT; ρm and ρCNT 

present the densities of the matrix and CNT, respectively; 

vr12 and vm are Poisson’s ratios of the CNT and matrix, 

respectively. 

 

 

5. Solution method 
 

The main idea of the DQM is that the derivative of a 

function at a sample point can be approximated as a 

weighted linear summation of the function value at all of 

the sample points in the domain. The functions f and their 

kth derivatives with respect to x can be approximated as 

(Madani et al. 2016) 
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(35) 

 

Eventually, the motion equations can be expressed in the 

matrix form as below 
 

 [ ][ ] [ ][ ] [ cos( t)],K d M d f  
 

(36) 

 

where [d] = [u w ϕ]T is the displacement vector; [K] the 

linear stiffness matrices, respectively. Furthermore [M] is 

the mass matrix. Finally, based on Newmark method, the 

frequency response of the structure can be calculated 

(Simsek and Kocatürk 2009). 

 

 

6. Numerical results 
 

The structure is made from Poly methyl methacrylate 

(PMMA) with the constant Poisson’s ratios of vm = 0.34, 

temperature-dependent thermal coefficient of αm = (1 + 

0.0005ΔT)×10‒6/K, and temperature-dependent Young 

moduli of Em = (3.52 ‒ 0.0034T) GPa in which T = T0 + ΔT  

and T0 = 300 K (room temperature) (Madani et al. 2016). 

The effect of distribution type of CNT on the frequency 

response of the structure is shown in Fig. 2. The CNT 

uniform distribution and three types of FG patterns namely 

as FGV, FGO and FGX are considered. It can be concluded 

that the FGX pattern is the best choice compared to other 

cases. It is because, in the FGX mode, the frequency of 

structure is maximum and the deflection is minimum with 

respect to other cases. It means the stiffness of system is 

higher with respect to other three patterns. Meanwhile, the  
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Fig. 2 The effect of CNT distribution on the frequency 

response of the structure 
 

 

 

Fig. 3 The effect of CNT volume percent on the 

frequency response of the structure 
 

 

 

Fig. 4 The effect of different theories on the frequency 

response of the structure 
 

 

Fig. 5 The effect of different boundary conditions on the 

frequency response of the structure 

 
 

frequency of structure with CNT uniform distribution is 

higher than FGV and FGO models. However, it can be 

concluded that the CNT distribution close to top and bottom 

are more efficient than those distributed nearby the mid-

plane. 

The effect of the CNT volume fraction on the frequency 

response of the cylindrical shell is illustrated in Fig. 3. It is 

observed that increasing the CNT volume fraction increases 

the frequency and decreases the deflection of the structure. 

This is due to the fact that the increase of CNT volume 

fraction leads to a harder structure. 

Fig. 4 is plotted to study the effect of different theories 

of strain gradient, couple stress and classical. As can be 

seen the deflection of the strain gradient theory is lower 

than couple stress and the deflection of the couple stress is 

lower than classical one. This since the strain gradient 

theory has the three additional expression consisting of 

dilatation gradient tensor, the deviatoric stretch gradient 

tensor and the rotation gradient tensor. 

 
 

 

Fig. 6 The effect of material length scale parameter on 

the frequency response of the structure 
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Fig. 7 The effect of length to radius ratio on the frequency 

response of the structure 

 

 

Fig. 5 represents the effect of boundary conditions on 

the frequency response of the system. It can be seen that by 

considering CC boundary condition, the maximum 

amplitude decreases and the frequency is increased. 

It is since the CC boundary condition leads to more 

bending rigidity. 

The effect of material length scale parameter on the 

frequency response of the structure is shown in Fig. 6. As 

can be seen, by increasing the material length scale 

parameter, the amplitude of the system will be reduced. 

The effects of length to radius ratio of the cylindrical 

shell on the frequency response of the structure are 

presented in Fig. 7. It is obvious that by increasing the 

length to radius ratio of the cylindrical shell, the structure 

becomes more softer, thus the deflection is increased. 
 

 

7. Conclusions 
 

Forced vibration of micro cylindrical shell reinforced by 

FG-CNTs was presented in this paper. The mixture rule was 

used for obtaining the effective material properties of the 

structure. Based on sinusoidal beam model, the motion 

equations were derived based on energy method. DQ and 

Newmark methods were used for obtaining the frequency 

response of the structure. The effect of different parameters 

including CNTs volume percent and distribution type, 

boundary conditions, size effect and length to thickness 

ratio on the frequency response of the of the system was 

studied. It can be concluded that the FGX pattern was the 

best choice compared to other cases. It was observed that 

increasing the CNT volume fraction increases the frequency 

and decreases the deflection of the structure. As can be seen 

the deflection of the strain gradient theory was lower than 

couple stress and the deflection of the couple stress was 

lower than classical one. In addition, by increasing the 

material length scale parameter, the amplitude of the system 

will be reduced. Furthermore, by considering CC boundary 

condition, the maximum amplitude decreases and the 

frequency is increased. 
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