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1. Introduction 

 
In the past decades, some innovative computational 

methods have been developed for geometrically nonlinear 

analysis of shells. As a tool, several new shell elements 

were proposed by using various types of formulation. It is 

well established that the most important developments of 

shell structure analyses are based on the finite element 

method. According to the related literature, flat facet 

element, solid 3D element, degenerated shell element and 

2D shell element based on the shell theory are the four 

types of finite element formulations used for these kinds of 

analyses. Among them, the last two methods are more 

applicable. The first motivation concerned the degenerated 

shell element theory was proposed by Ahmad et al. (1970) 

for analyzing the curved shell structures. After that, the 

researches of Hughes and Liu (1981a, b), Dvorkin and 

Bathe (1984), Park and Stanley (1986), and Liu et al. 

(1986) among the many other studies represented the same 

method for investigating the behavior of shell. Furthermore, 

the books of Bathe (1982) and Crisfield (1986), expressed 

the general subjects of the degenerated shell element 

procedure with some numerical examples. 

In spite of the merits of using degenerated elements, 

such as, simpler formulation and less computational efforts, 

the lower-order elements within this group suffer from 
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locking phenomenon. Among the different methods 
proposed for alleviating locking problems, one can note the 
Mixed Interpolation of Tensorial Components (MITC). The 
MITC formulation was widely used to develop shell 
elements for linear and nonlinear analyses. In 2004, Lee and 
Bathe (2004) presented an isotropic triangular shell finite 
element based on this approach. In addition to these, a finite 
element computational model for the nonlinear analysis of 
shell structures was proposed by Arciniega and Reddy 
(2007). They used a family of higher-order elements with 
Lagrangian interpolations to avoid the shear and membrane 
locking. Recently, some other researches were performed 
about employing MITC formulation to develop triangular 
shell element for nonlinear analysis of shell-like structures 
under mechanical and thermal loads (Masoodi and Arabi 
2018, Rezaiee-Pajand et al. (2018a). 

Nowadays, the use of composite materials, due to their 
modified properties, is widely developed in different 
industries. Among them, functionally graded and composite 
laminated materials have received more attention. As a 
result, the interests of studying the behavior of functionally 
graded material (FGM) components have increased in the 
recent years. This is also due to their functional gradation 
and avoiding the material mismatch. The potential reduction 
of in-plane and transverse through-the-thickness stresses, an 
improved residual stress distribution, enhanced thermal 
properties, higher fracture toughness, and reduced stress 
intensity factors are some of the benefits of utilizing FGMs 
in structures. In these materials, the ceramic part provides 
high-temperature resistance due to its low thermal 
conductivity while the structural strength is established by 
the ductile metal part. Hence, this material can be also used 
to control the thermal deformation (Wetherhold et al. 
1996). Using these materials in beam structures was widely 
investigated by researchers (Rezaiee-Pajand and Masoodi 
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2018, Rezaiee-Pajand et al. 2018b) while it has not been 
performed adequate studies on the behavior of FG shell 
structures, especially based on the equivalent single layer 
theory. 

Many researches were performed for various analyses of 
the FG shells. An analytical solution was presented for large 
deformation analysis of FG plates and shallow shells by 
Woo and Meguid (2001). The geometrically nonlinear 
analysis of FG shells was studied by Arciniega and Reddy 
(2007a). High-order Lagrangian interpolation functions 
were utilized to approximate the field variables to avoid 
membrane, shear, and thickness locking. Moreover, a four-
node quasi-conforming shell element was developed by 
Kim et al. (2008) for geometrically nonlinear analysis of the 
FGM plates and shells. They concentrated on the effects of 
the volume fractions in the mechanical properties of FG 
plates and shells. In another research, Barbosa and Ferreira 
(2009) studied the geometrically nonlinear analysis of FG 
plates and shells using Margurre shell element. 
Furthermore, the geometrically nonlinear analysis of FG 
shells was performed by Zhao and Liew (2009). They used 
a modified version of Sander’s nonlinear shell theory in 
which the von Karman strains used for geometric 
nonlinearity. Another research about the application of 
triangular element for geometrically nonlinear analysis of 
FG shells was incorporated by Levyakov and Kuznetsov 
(2011). In 2015, a review article was published about the 
theories for modeling and analysis of FG plates and shells 
by Thai and Kim (2015). Moreover, an enhanced assumed 
strain shell element was extended for nonlinear analysis of 
FG structures by Beheshti and Ramezani (2015). Recently, 
several researches were dedicated to buckling and nonlinear 
analysis of plates and shells made of isotropic FGMs 
including truncated conical and spherical shells (Kaci et al. 
2014, Uysal 2016, Khayat et al. 2017). 

On the other hand, increasing application of composite 
materials in engineering fields demands proper theories to 
take into account the effects of adopting these types of 
material on the behavior of structures, especially in the 
nonlinear analysis (Kapania 1989, Reddy and Arciniega 
2004). In 2009, large deflection analysis of FG plates under 
pressure loads was performed using first and third-order 
shear deformation theories by Khabbaz et al. (2009). 
Furthermore, high-order tetrahedral finite element was 
employed for geometrically nonlinear analysis of structures 
composed of FG rubber-like materials Pascon and Coda 
(2013). A review on the subject of different theories and 
solution methods of laminated and sandwich plate and 
shells was performed by Caliri Jr. et al. (2016). Besides, 
Tiar et al. (2016) presented a Total Lagrangian formulation 
for geometrically nonlinear analysis of 2-D fiber-reinforced 
composite structures. The formulation allowed modeling of 
both long and short fibers embedded in matrix phase. A 
four-node quadrilateral element and a 2-node truss element 
were utilized to model the matrix and the fibers, 
respectively. In another research, Liu and Paavola (2016) 
proposed an analytical sensitivity analysis for sandwich 
shells. Both classical and first-order shear deformation 
theories were taken into account. Moreover, Liang (2017) 
developed an extended version of Kioter-Newton method to 
analyze the nonlinear buckling behavior of thick and thin 
composite plates. Timoshenko laminated beam theory was 

used to eliminate the shear locking problem. In another 
article, the effects of different through the thickness 
approximation functions in conjunction with Carrera 
Unified Formulation for analysis of composite plate and 
shell structures were investigated by Carrera et al. (2016). 
A nine-node quadrilateral shell element with Mixed 
Interpolation of Tonsorial Component method was used in 
their work. Furthermore, Coda et al. (2017) proposed an 
enhanced Zig-Zag theory for analyzing the laminated plates 
and shells. Their formulation behaved well for both 
displacements, and transverse stresses predictions. 

Another research was dedicated to buckling analysis of 

laminated composite cylindrical shells using an analytical 

finite strip method by Khayat et al. (2016). Moreover, post-

buckling analysis of laminated composite shells subjected 

to shear loads by Jung et al. (2016). Alankaya and Oktem 

(2016) implemented the static analysis of laminated 

sandwich shallow shells. They used third order shear 
deformation theory. In addition, a 6-node triangular 

laminated element for geometrically nonlinear analysis of 

composite shells was presented by Rezaiee-Pajand and 

Arabi (2016). It should be added that Mixed Interpolation of 

Tonsorial Component method was employed to prevent the 

membrane and shear locking phenomenon. Some new 

researches were developed for nonlinear analysis of FG 

structures, especially cylindrical / hyperbolical FG shells 

and thick cross-ply panels by Chaudhuri et al. (Chaudhuri 

et al. 2014, 2015, Chaudhuri and Oktem 2015). 

In this paper, an iso-parametric six-node element 

hereafter named as TRI6 shell element is formulated for 

geometric nonlinear analysis of FG shells. The main scope 

of this paper is to predict the nonlinear behavior of FG 

shells by utilizing the equivalent single layer theories of 

laminates. It is worth mentioning that the direct formulation 

of FGMs is also included. In addition, the ceramic volume 

fraction is represented as a power function of the thickness 

coordinate. The nonlinear procedure is based on the Total 

Lagrangian formulation, including large displacements and 

rotations. Some popular benchmarks are analyzed. Findings 

declare the accuracy and correctness of the proposed 

methods. 
 

 

2. Finite element description 
 

In this section, the incremental displacement for the 

TRI6 shell element is presented. The Total Lagrangian 

formulation is employed for large displacements and 

rotations. This element has three corner and three mid-side 

nodes. In the following equations, a superscript t is used to 

show load step and configuration. It is assumed that the 

director vector of nodes stays straight and unstretched 

during deformation. The geometry configuration of the 

TRI6 shell element, at the time t, is shown in Fig. 1. 

The relation obtained for the geometry of the TRI6 shell 

element is as follows 
 

   

16 6

2

1 1
3

, ,
2

t jtt
j n

jt t t
j j j j n

j jt jtt
nj

x Vx

y N y t N V

z Vz


   

 

    
    

     
      

     
         

   (1) 

390



 

Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element 

 

 

Fig. 1 Geometry of TRI6 shell element 

 

 

In this relation, the two-dimensional interpolation 

functions of the six-node iso-parametric element are defined 

as Nj (ξ, η). In addition, ξ, η and ζ are the local coordinates. 

Furthermore, the position vector components of node j at 

the global Cartesian coordinate system is shown by xj, yj 

and zj. Furthermore, tj define the thickness and the 

components of director vector of node j are presented by 

𝑉𝑛1
𝑗

, 𝑉𝑛2
𝑗

 and 𝑉𝑛3
𝑗

. The following equation expresses the 

incremental displacement in the element configuration at 

the time t to t+Δt 
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where uj, vj and wj are the incremental displacement at the 

node j. To determine the orientation of director vector at the 

time t+Δt from time t, the finite rotation theory is utilized. 

Based on this scheme, two unit vectors of  𝑉1
𝑗𝑡    and 

 𝑉2
𝑗𝑡   are defined as follows 
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where eij are the components of unit vectors of Cartesian 

coordinates. After some simplification, the incremental 

displacement can be written in the subsequent form 
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here αj and βj are the rotation degrees of freedom at node j. 

It is worth mentioning that these rotations are about  𝑉1
𝑗𝑡   

and  𝑉2
𝑗𝑡   vectors. 

 

 

3. Strain formulation 
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In addition, the strain vector, at the time t with respect to 

time 0, has the following shape 
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Therefore, the subsequent incremental strains can be 

found as below 
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(7) 

 

Eq. (7) can be divided into linear and nonlinear parts, 

which are given in the short form as 
 

     0 0 0l nl   
 

(8) 

 

where subscript l and nl denote the linear and nonlinear 

strain, respectively. In order to alleviate the shear and 

membrane locking, the following interpolation functions are 

used for in-plane strains 
 

1 1 1a b c    
 

2 2 2a b c    
 

 3 3 3 1qq a b c       
 

(9) 

 

For the transverse shear strains, the subsequent 

interpolation functions are used 
 

2
1 1 1 1 1a b c d f        

 
2

2 2 2 2 2a b c d f        
 

(10) 

 

where the unknown coefficients in Eqs. (9) and (10) have 

been presented in Lee and Bathe (2004). Based on the Eq. 

(9), the in-plane shear strain is obtained as follow 
 

 
1

2
qq       

 
(11) 

 

 

4. FGM and equivalent single layer formulation 
 
In order to model the FG shells, a laminate composed of 

several laminas that are perfectly bonded together is 

assumed. Three models, including two, four and six layers 

are declared in Fig. 2. Each layer is considered to be 
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Fig. 2 The model of FG shell and the equivalent single 

layers: (a) The main model of FG shell; (b) The 

equivalent two layers; (c) The equivalent four layers; 

(d) The equivalent six layers 
 

 

isotropic. To find the material properties of each layer, the 

thickness coordinates of each lamina middle surface (zk) is 

substituted in the following volume fraction relations 
 

1

2

1

n

k

c

m c

z
f

t

f f

 
  
 

 
 

(12) 

 

where fc and fm are the ceramic and metal volume fraction in 

power law. The exponent of volume fraction is defined by 

n. After that, the material properties of each layer are 

determined by utilizing the rule of mixture. 
 

( )k c c m mE z E f E f 
 (13) 

 

The components of the reduced plane stress constitutive 

matrix of each layer are written in terms of the engineering 

constants as 
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 
 
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(14) 

 

In order to transfer the material matrix from local to 

global coordinates, the base vectors, which have been 

expressed in Eq. (5), can be used. 

 

 

5. Equilibrium equations 
 

The stiffness matrix of element is formulated in global 

coordinates system in which the metric vectors are utilized 

for transformation. Based on the principle of virtual work, 

the expression of the linearized equation of motion is given 
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(15) 

 

where the  𝑆0
𝑡   is the second Piola-Kirchhoff stress vector. 

Moreover, the linear and nonlinear components of the 

Green-Lagrange strain tensor are denoted by  𝜀0 𝑙   and 

 𝜀0 𝑛𝑙  , respectively. By substituting the incremental stress-

strain relations in the equilibrium equation, the linear and 

nonlinear stiffness matrix can be obtained, as follows 
 

      0 0 0
t t t t t

l nlK K d R F     
     

(16) 

 

In this relation, {d} is the vector of nodal degrees of 

freedom. Furthermore,  𝐾0
𝑡

𝑙   and  𝐾0
𝑡

𝑛𝑙   are the linear 

and nonlinear stiffness matrices. On the other hand, the 

external and internal forces are defined by  𝑅𝑡+Δ𝑡   and 

 𝐹0
𝑡  , respectively. 

 

 

6. Numerical study 
 

To show the correctness of the proposed formulation for 

modeling the FG shells, several popular benchmark 

structural shells are solved by employing proposed TRI6 

shell element. The results of these geometric nonlinear 

analyses are reported and compared by the solutions 

proposed in pervious investigations. In addition, a 

comparison will be performed to show the minimum layers, 

which can be used to simulate the FG shells for obtaining 

the accurate and correct responses. Note that the nonlinear 

solution approach used in numerical examples is the 

Generalized Displacement Control method. 

It is worth mentioning that the following assumptions 

are utilized for all the examples. First, the module of 

 

 

elasticity is changed FG along the shell thickness. Herein, 

seven different values, including 0.0, 0.2, 0.5, 1.0, 5.0, 10.0 

and 100.0 are considered for the amount of exponent n in 

power function of elastic modulus. Second, the materials 

used here are Zirconia and Aluminum as ceramic and metal 

for the bottom and top surfaces Arciniega and Reddy 

(2007b). Furthermore, the elastic modulus of each layer in 

equivalent layer modeling is determined based on the main 

power function and assumed to be constant. Their values 

are calculated for different amounts of the exponent n and 

reported in Table 1. Moreover, Poisson’s ratio is assumed to 

be constant in this model and equal to 0.3. 

It should be mentioned that at the first example, a 

comparison between the results obtained by the proposed 

equivalent layer formulation, including 2, 4 and 6 layers 

and the reference solutions are presented. Other examples 

will declare the responses of FG formulation and that of 

equivalent single layer theory. 
 

6.1 Shallow panel 
 

In this example, a shallow panel with two different 

amount of thickness is studied. The model of the shell 
 

 

  θ

P

z

y x

Free

FreeHinged

Hinged

R

L

A

 

Fig. 3 Shallow panel under middle point load 

 

 

Table 1 Elastic modulus of each layer for various values of exponent n and number of layers 

Number of layer Centre of layer position 
n 

0 0.2 0.5 1.0 5.0 100 

2 
3.175 151000 146471.1 140148.1 130750.0 89221.7 70000 

-3.175 151000 131386.5 110500.0 90250.0 70079.1 70000 

4 

4.763 151000 148865.4 145768.6 140875.0 111545.6 70000 

1.588 151000 143732.9 134036.1 120625.0 77724.8 70000 

-1.588 151000 136571.9 119602.2 100375.0 70600.7 70000 

-4.763 151000 123440.1 98637.8 80125.0 70002.5 70000 

6 

5.292 151000 149602.6 147551.6 144250.0 122425.5 70000 

3.175 151000 146471.1 140148.1 130750.0 89221.7 70000 

1.058 151000 142722.4 131864.8 117250.0 75471.0 70000 

-1.058 151000 137989.6 122285.3 103750.0 71017.3 70000 

-3.175 151000 131386.5 110500.0 90250.0 70079.1 70000 

-5.292 151000 119277.5 93382.7 76750.0 70000.3 70000 
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Fig. 4 Deformed configuration of shallow panel at the end 

of loading steps 

 

 
structure and its mesh pattern is illustrated in Fig. 3. Here, 

the performance of the TRI6 shell element will be 

investigated for large deformation analysis of FG shells by 

using a different number of layers, which are used 

throughout the thickness. This structure is analyzed by two 

different amount of thickness, equal to 12.7 mm and 6.35 

mm. The corresponding maximum load, which is applied in 

the center of the shallow panel, is equal to 200,000 N and 

100,000 N, respectively. 

The geometry characteristics of this structure are given 

below. 
 

L = 508 mm   R = 2540 mm   θ = 0.1 (rad) 
 

 

It should be added that the equilibrium paths for FG 

shallow panels with the different amount of power index n 

were previously obtained by Arciniega and Reddy (2007b). 

Due to symmetrical geometry of structure, only a quarter of 

the panel is modeled. The mesh of (5×5×2) is used for finite 

element discritization. The results are obtained for two 

different amount of thickness, including 12.7 mm and 6.35 

mm. Different volume fraction exponents n are investigated 

from fully metal to fully ceramic. Fig. 4 shows the last 

deformed configuration of the shallow panel. 

The deflection at center point of the shallow panel is 

depicted in Fig. 5 for the different number of layers (2, 4 

and 6 layers). In addition, the responses are compared with 

the results obtained by Arciniega and Reddy (2007b). 

The agreement between the results of present study and 

the reference solution demonstrates the accuracy of authors' 

scheme for nonlinear analysis of FG shells using equivalent 

single layer theory. The outputs are presented for three 

numbers of layers, including 2, 4 and 6. The obtain results 

declare that the 6-layer modeling results almost matches 

well with the reference responses. 

According to the given results in Fig. 5, it is observed 

that the deflections, which are achieved for various numbers 

of layers, are almost the same within the range of power 

index n smaller than 1.0. However, they show more 

differences when the factor n becomes greater than 1.0. 
 

 

 

Fig. 5 The equilibrium path of 12.7-thickness shallow panel at the point A for the different number of layers and 

values of power index n 
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It should be mentioned that in the case of using fully 

ceramic or metal, as the material properties are invariable 

along the thickness of the shell, the number of layers are not 

effective on the responses. Hence, an equivalent layer can 

be utilized for modeling the related shell structure. This fact 

is illustrated in Fig. 5(a). 

Based on the results obtained from Fig. 5, equivalent 6-

layer model is employed for analyzing the 6.35-thickness 

shallow panel. The load-deflection curves at the center 

point of structure are presented in Fig. 6 for different 

 

 

 

 

values of power exponent n. The comparison of the present 

results with the related FG model solutions shows the 

ability of the present formulation in predicting the snap-

through and snap-back behaviors. However, some minor 

drift are observed between the responses of the two 

formulations at the end part of the equilibrium path. 

To compare the obtained responses with the reference 

solutions, the results are presented for the thickness of 12.7 

mm shallow panel in Table 2. The results are provided for 

three states of FGM power exponent (n) including, 0.0, 1.0 

 

 

 

Fig. 5 Continued 

 

Fig. 6 Load vs. deflection of 6.35-thichness shallow panel at point A for different values of the power exponent n 
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and 100. This comparison shows the good agreement 

between the obtained outputs, and the responses reported by 

Arciniega and Reddy (2007b). It should be mentioned that 

the related reference reported the results in the equilibrium 

paths form. Therefore, the authors digitized the reference 

paths, and the values are reported in several steps of loading 

and compared with the obtained responses. 
 

6.2 Clamped semi-cylindrical shell 
 

Another popular benchmark problem is a semi-

cylindrical shell which is shown in Fig. 7. The shell is 

clamped at two ends, and the two sides of semi-cylindrical 

shell are assumed to be roller supported. The maximum 

point load which is incrementally applied at the center of 

the shell structure is equal to 100,000. The geometric 

properties of structure used in this problem are considered 

as follows 
 

L = 304.8 mm   R = 101.6 mm   t = 3.0 mm 
 

As it is seen in Fig. 7, one-half of the structure is 

modeled. To achieve the high accuracy, the number of TRI6 
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Fig. 7 Semi-cylindrical shell under the middle point load 
 

 

shell element used for this problem is equal to 200. The 

deformed shape of structure at the end of loading is 

illustrated in Fig. 8. 

Two cases of modeling are considered in this example. 

At first, the semi-cylindrical panel is analyzed using FG 

formulation. Next, the same structure is investigated 

considering the equivalent 6-layer model. Note that the 

analyses are performed for different values of FGM power 

 

Fig. 6 Continued 

Table 2 The results of vertical displacement of 12.7 mm-thickness shallow panel at point A 

n = 0.0 n = 1.0 n = 100.0 

P/Pmax 
Present 

formulation 

Arciniega and 

Reddy (2007) 
P/Pmax 

Present 

formulation 

Arciniega and 

Reddy (2007) 
P/Pmax 

Present 

formulation 

Arciniega and 

Reddy (2007) 

0.0484 0.55466 0.55468 0.0480 0.74586 0.74549 0.0468 1.16326 1.16443 

0.2546 3.30579 3.30586 0.1755 3.00201 3.00044 0.1602 4.69993 4.70463 

0.4191 6.33557 6.33567 0.2997 5.82024 5.81692 0.2555 11.9289 11.9408 

0.5379 11.1493 11.1495 0.4385 12.4657 12.4657 0.2015 15.0270 15.0571 

0.4055 15.1441 15.1445 0.3047 16.7420 16.7253 0.1280 16.6045 16.6378 

0.2546 16.6156 16.6160 0.1104 18.6664 18.6645 0.0593 20.0740 20.1345 

0.1206 19.7553 19.7568 0.0416 21.1337 21.0914 0.1550 25.1226 25.1982 

0.3074 24.7651 24.7566 0.2047 26.6007 26.5741 0.2650 27.8807 28.0490 

0.4048 26.0777 26.0687 0.4005 29.5875 29.4988 0.4318 30.9469 31.1651 

0.6249 28.4340 28.4243 0.6982 32.8891 32.7904 0.7616 35.4064 35.6560 

0.9991 31.4959 31.4855 1.0225 35.7077 35.5292 0.9800 37.7614 38.0659 
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Fig. 8 Deformed shape of clamped semi-cylindrical 

shell at the final load step 
 

 

exponent n. The equilibrium path of semi-cylindrical shell 

is obtained for the center point and is depicted in Fig. 9. The 

obtained results for FG model and related equivalent layer 

are quite similar to each other. This shows the accuracy and 

capability of proposed equivalent formulation for modeling 

FG shell structures. 

 

6.3 Hyperbolical shell 
 

A FG hyperbolical shell, under two inward and two 

outward point loads, is investigated here. Fig. 10 shows the 

configuration of this problem. The geometric properties of 
 

 

 

Fig. 9 Load-displacement curves of semi-cylindrical shell for different values of FGM power exponent n 
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Fig. 10 Hyperbolical shell under two inward and 

two outward point loads 
 

 

 

Fig. 11 Deformed shaped of hyperbolical shell at the 

end of analysis 
 

 

 
 

 
 

 

Fig. 12 Nonlinear displacements of points A, B, C and D versus point loads for various power law index n 
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this structure are found below. 
 

L = 20.0   R1 = 7.5   R2 = 15.0   t = 0.04 
 

where R1 and R2 are the minimum and maximum radius of 

hyperbolical shell at the middle and end sections, 

respectively. The units of all parameters are mm. 

Moreover, the maximum loads applied at the middle of 

the shell are equal to 4. The number of TRI6 shell elements 

employed in this model is assumed to be 400. Based on Fig. 

10 and owing to symmetry, only one-eighth of the shell is 

used for analyzing. In addition, the last deformed 

configuration of hyperbolical shell at the end of analysis is 

declared in Fig. 11. 

For different points: A, B, C and D, the load-

displacement curves obtained from the FG and equivalent 

6-layer models are provided in Fig. 12. The analysis is 

carried out for different values of power index n. The 

achieved responses clearly demonstrated that the obtained 

displacements of the FGM formulation and equivalent 6-

layer modeling are in good agreement. These show the 

accuracy and high applicability of the present formulation 

in modeling arbitrary shell geometries even with high 

geometric nonlinearity behaviors. 
 

 

 

 

6.4 Cylindrical shell subjected to pull-out forces 
 

This example is dedicated to solve a 0.094-thickness 

cylindrical shell structure under the pull-out forces. The 

elastic modulus and Poisson’s ratio of homogenous material 

are respectively equal to 10.5×106 and 0.3125. Fig. 13 

depicts the structural geometric properties. It is worth 

mentioning that the two ends of the cylinder are free. Due to 

symmetry, an octant of the cylinder is discretized by using 

10×10×2 triangular shell elements. 

This problem was also investigated by Sze et al. (2004). 

To show the locking phenomena in the nonlinear analysis of 

shell structures, especially thin shells, two states of 

formulation are considered in this study. In case one, the 

structure is analyzed using the mixed interpolation of strain 

formulation. On the other hand, the problem is also solved 

based on the iso-parametric formulation without any 

additional strain interpolation. The results of both states are 

presented in Table 3 and compared with the reference 

solution of Sze et al. (2004). According to the obtained 

responses, it can be concluded that the additional mixed 

interpolation, which is considered in the proposed 

formulation, can avoid locking phenomena in the nonlinear 

analysis of shell structures, especially thin shells. 
 

 

Fig. 12 Continued 

Table 3 The results of tip displacement of point A in a pull-out cylindrical shell 

P/Pmax 
Sze et al. 

(2004) 

Present 

formulation 

Without 

interpolation 
P/Pmax 

Sze et al. 

(2004) 

Present 

formulation 

Without 

interpolation 

0.000 0.0000 0.00000 0.00000 0.500 2.4730 2.46805 2.34455 

0.025 0.8190 0.81982 0.78335 0.525 2.5430 2.53791 2.36541 

0.050 1.2600 1.26012 1.20370 0.550 2.5770 2.61147 2.38456 

0.075 1.5270 1.52837 1.45677 0.600 2.6180 2.72141 2.45237 

0.100 1.7070 1.70888 1.63445 0.650 2.6480 2.75259 2.48225 

0.150 1.9360 1.93832 1.85263 0.700 2.6720 2.77754 2.51388 

0.200 2.0790 2.08110 1.99499 0.750 2.6920 2.79833 2.54700 

0.250 2.1800 2.18436 2.08118 0.800 2.7100 2.81704 2.55158 

0.300 2.2570 2.25993 2.14622 0.850 2.7260 2.83368 2.57759 

0.350 2.3210 2.32565 2.21197 0.900 2.7410 2.84927 2.59177 

0.400 2.3760 2.37909 2.25626 0.950 2.7550 2.86382 2.62497 

0.450 2.4250 2.42791 2.35072 1.000 2.7680 2.87733 2.63735 
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Fig. 13 The free-ends cylindrical shell under pull-out forces 

 

 

7. Conclusions 
 

In this study, the geometrically nonlinear analysis of FG 

shells based on the equivalent single layer theory, and direct 

FG formulation was performed. At first, the minimum 

number of layers, which were required for proper modeling 

of the FG shells, was evaluated. In this process, three cases 

were employed with a different number of layers, including 

two, four and six. Findings declared that the accurate, and 

near exact solutions can be concluded by using six layers 

throughout the thickness of the shell. Therefore, the other 

examples were investigated by using six layers. Moreover, 

the FG formulation was also included. It should be added 

that the authors employed a locking free six-node triangular 

element entitled TRI6 shell element utilizing the MITC 

approach. Furthermore, first-order shear deformation theory 

was used in the present formulation. In addition, the volume 

fraction of FGM was formulated as a power function with 

exponent of n. Finally, the results were obtained for the 

different values of n. It was observed that the differences 

between the results obtained from FGM model and the 

responses of equivalent layers scheme increases by 

enhancing the value of power exponent n. In other words, it 

seems that the equivalent layers model is more appropriate 

for lower values of the power exponent. Another interesting 

contribution of this article was analyzing the different type 

of curved shells, especially hyperbolical shell structures. 

The good agreement of the obtained results for this type of 

shell structures with complex geometry can prove the high 

capability of the proposed shell element. The hyperbolical 

shell analyzed in this research is very thin, and the obtained 

equilibrium paths showed the locking free of the new shell 

element. 

Based on the geometric properties of the other 

examples, it can be concluded that the element is applicable 

for analyzing the thin and moderately thick shell structures. 

Some other popular benchmarks of shell structures were 

also analyzed based on authors’ scheme. The outputs 

illustrated the validity and high accuracy of the present 

formulations. Finally, another benchmark problem was 

solved in two cases of with and without strain interpolation. 

It was found that the proposed mixed interpolation of 

strains can alleviate the occurrence of locking phenomena, 

especially in thin shell structures. 
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