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1. Introduction 

 

Nowadays, research and studies on micro/nano-electro-

mechanical (MEMS/NEMS) systems are growing 

significantly.  These microbeams can be used in atomic 

force microscope, microswitch (Ghayesh et al. 2014), 

micro-sensors, accelerometers, electrostatic micro-actuators 

and micro- pumps (Rashvand et al. 2013). The use of 

MEMs in science and engineering fields, such as 

biomedical engineering, optics, aerospace industry and 

smartphones, is extensive. The physical dimensions of the 

microbeams used in MEMs and NEMs are from sub-

microns to one millimeter (Lyshevski 2002). It has been 

proven experimentally that the effect of size on mechanical 

behaviour of a microbeam is important when its dimensions 

are micron and sub-micron (Mohammadimehr and Shahedi 

2016). According to the reports in the experimental trials it 

has been observed that by reducing the diameter and 

thickness in the twisting and bending test for the sub-

micron and micron size ranges, the phenomenon of 

hardening unexpectedly occurs and the classical theories of 

elasticity cannot analyse it (Stölken and Evans 1998, 

Simsek 2011). For this reason, the analysis of mechanical 

behavior of structures in the range of micron is inevitable. 

Therefore, different experimental and thesaurus studies 

have been conducted to measure the natural frequency. 

Some of these studies include determining the natural 
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frequency of the microbeams in vacuum and electrical 

measurement methods to obtain resonant frequency 

(Tilmans and Legtenberg 1994). Micro and sub-micron 

experiments are difficult and expensive. Therefore, suitable 

mathematical models for microstructure are presented, and 

researchers have used analytic, semi-analytic and numerical 

models (Mohammadimehr et al. 2016). However, 

behaviours relating to micro and submicron scale are not 

predictable and cannot be explained by classical continuum 

mechanics. Therefore, non-classical continuous theories 

were presented during the past few decades, including 

nonlocal theory of elasticity (Eringen and Edelen 1972). 

According to this theory, stress at a point not only depends 

on the strain at the same point, but also depends on strain in 

other parts of material. (Ghorbanpourarani Arani et al. 

2010). Also, according to this theory, extensive researches 

have been conducted on nonlinear Euler-Bernoulli beam 

model by carbon nanotubes (Tagrara et al. 2015). Another 

theory includes the theory of surface tension effects for 

material at micro and nano scale (Gurtin and Ian Murdoch 

1975). Sahmani et al. (2014) conducted nonlinear vibration 

analysis for thin-walled beams by combining Galerkin 

method and DQM. They also discussed the effect of 

softening and hardening behaviours of beams. The strain 

gradient can be mentioned as another theory. In this theory 

four constant materials (two constant classic numbers and 

two additional constant numbers) for micro material have 

been considered.  This theory has tensors of higher order 

such as Curvature gradient tensor, deviatory stretch gradient 

tensor and symmetric rotation gradient tensor. Ghorbanpour 

Arani et al. (2013) used strain gradient theory to investigate 

free vibration and stability of Euler-Bernoulli microbeam 

based on Pasternak foundation. Yang et al. (2002) offered a 
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more specific mode of strain gradient theory which only 

needed an additional constant related to length scale 

parameter. This mode is called modified couple stress 

theory (MFSDT). Different tests were conducted to 

determine length scale parameter in the modified couple 

stress theory which includes tests of twisting and bending 

and stretching microbeams (Lam et al. 2003). In this theory, 

strain energy density function depends on the strain tensor 

and the symmetric part of the curvature tensor. Moreover, 

due to the rotational effects and curve in the rotational 

gradient tensor, this theory has a good accuracy for 

materials at the micron scale. Yang et al. (2012) examined 

electrodynamic response of a microbeam. To do so, they 

considered the initial curve and nonlinear deformation, and 

they showed that as the length increases, the importance of 

studying the nonlinear frequency increases. Roque et al. 

(2013) studied static bending of composite beam 

Timoshenko with simple support using modified couple 

stress theory and meshless numerical method based on the 

order related to the radial basis functions. Kong et al. 

(2008) examined effects of the small-scale parameter on 

frequency ratio (linear frequency of the nonlocal to the 

linear frequency of the local). By choosing two rectangular 

and circular sections for the Euler-Bernoulli microbeam, 

they showed that by increasing the thickness or diameter to 

the size parameter of this frequency ratio decreases and 

equals one. Ke et al. (2012) investigated the nonlinear 

vibrations of Timoshinko’s microbeam of FGM and 

obtained effects of the small-scale parameter on the natural 

frequency using the differential quadrature method. They 

showed that both of the linear and nonlinear frequencies 

increase significantly when the thickness of the FGM 

microbeam is comparable to the material length scale 

parameter. Rahmani et al. (2017) by using this theory, 

analysis of size-dependent bending and buckling of 

functionally graded microbeams with higher-order shear 

deformation beam model has been done. Al-Basyouni et al. 

(2015) using high-order theories such as sinusoidal theory, 

showed the effects of the material length scale parameter, 

the power law index, and shear deformation on the bending 

and dynamic behaviors of FG microbeams. Static and 

dynamic analysis of FGM micro-beam was performed using 

modified coupling stress theory (Ghayesh et al. 2017). 

They showed that the increase and decrease of the 

frequency in fag material depends on the power index 

coefficient. Ghayesh and Amabili (2014) studied the effects 

of small-scale parameter and amplitude of the initial 

imperfection on the coupled longitudinal-transverse 

behaviour of a geometrically imperfect microbeam. Using 

Galerkin method and pseudo-arclength technique, they 

showed that the increase These parameters increases the 

nonlinear natural frequency and also examined the effects 

of these parameters on the frequency response. 

Subsequently, the effects of nonlinear foundation on the 

frequency and force-response were investigated (Ghayesh 

and Farokhi 2015). It is known that when the microbeam 

with constant end supports are placed under transverse 

vibration, axial tension has been created, that nonlinearly it 

has been proportionate to transverse deflection of the beam 

and microbeam vibrates in the nonlinear mode. Şimşek 

(2014), uses the semi-analytic He’s method to investigate 

the nonlinear nonlinear free vibration of the Euler-Bernoulli 

micro-beam on a nonlinear foundation. Ghayesh et al. 

(2013), used Galerkin method and arc-length to investigate 

forced vibration analysis of Euler-Bernoulli microbeam 

under dynamical forces using the modified couple stress 

theory and strain gradient. Kahrobaiyan et al. (2012) 

examined nonlinear static behaviour and free vibration of 

Euler-Bernoulli microbeam along with strain gradient 

theory and harmonic balance analysis method and 

compared it with modified couple stress theory. Nonlinear 

free size-dependent vibration behaviour in microbeams has 

been modified based on couple stress theory and has been 

investigated using Kantorovich and Shooting Method 

(Wang et al. 2013). In recent years, due to the applications 

of microbeam in intelligent systems, some studies have 

been conducted on nonlinear vibration under electrostatic 

tensile force and the important role of the length scale 

parameter on the hardening and softening has been 

investigated. Peng et al. (2017) performed a  Dynamic 

analysis of size-dependent microbeams with nonlinear 

elasticity under electrical operation. They showed that a 

microbeam exhibiting nonlinear elastic stress-strain 

relationship has reduced effective stiffness while the size 

effect has the opposite effect. Jia et al. (2015) studied the 

combined effects of the size effect, material gradient, 

temperature change and electrical actuation on the 

microbeam Bernoulli-Euler by DQM. Viscoelastic effects 

play an important role in free and forced vibration of 

microbeam. Recent studies by Farokhi and Ghayesh (2017) 

show that with damping the increase of the damming 

parameter, the phenomenon of softening occurs and the 

modulus of elasticity decreases in microbeam reduces. 

Moreover, by increasing the small scale parameter 

hardening phenomenon occurs and there will be an increase 

in modulus of elasticity. The present study has examined 

free and forced vibrations analysis of nonlinear Euler-

Bernoulli microbeams with different boundary conditions 

beased on orthotropic visco-Pasternak foundation. By using 

Newmark-beta method in each time step and differential 

quadrature method in each place step, the nonlinear to linear 

frequency ratio in free vibrations has been calculated. In the 

foundation, all the Winkler coefficients shear, nonlinear, 

orthotropic and damping coefficients are considered. 

Further, the temperature changes for materials whose 

temperature and mechanical properties are temperature 

dependent are investigated. Moreover, by changing the 

small-scale parameters, dynamic force range and all 

coefficients, deflection of microbeam in forced vibration 

has been investigated. The advantages of the proposed 

method are calculating the nonlinear frequency directly 

from the period of rotation, and contrary to many articles, it 

is not necessary to try and error to obtain nonlinear 

frequency from the linear frequency. 

 

 

2. Governing equations 
 

According to Euler-Bernoulli beam assumption that the 

vertical line to the neutral axis remains vertical after the 

150



 

Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak... 

deformation, the shear stresses are neglected. Therefore, the 

displacement field are expressed as follows 
 

( , )
( , , ) ( , ) , ( , , ) ( , )x z

w x t
u x z t u x t z u x z t w x t

x
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  
(1) 

 

(u,w) respectively, are longitudinal and transverse 

displacements at each point of the neutral axis. according to 

the assumption of small strain, the nonlinear strain-

displacement relations are assumed in the following form 
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In the above equation, xx is the total longitudinal strain 

which equals to sum of the two components of linear strain 

x
L and nonlinear strain x

NL (resulting from high transverse 

deformation). 
 

2.1 Modified couple stress theory 
 

The strain energy of a system occupying region Ω, on 

the basis of the modified couple stress theory, can be 

formulated as (Park et al. 2016) 
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Where 
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 is the symmetric part of stress tensor,  is strain tensor, 

m is deviatoric part of the couple stress tensor and   is 

symmetric part of the curvature tensor. λ and μ denote the 

Lam é constants, I stand for the second-order identity 

tensor, and l represents the material length-scale parameter. 

The components of the infinitesimal rotation vector θ are 

related to the components of the displacement vector field u 

as 

1

2
curl u 

 
(6) 

 

When length scale parameter has been considered equal 

to zero, the above equations are converted into the 

governing equations for beams in the macro scale. Vector 

rotation component can be obtained using Eq. (6) 
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By substituting Eq. (7) into Eq. (5), the curvature tensor 

can be expressed as 
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3. Nonlinear governing equations 
 

Hamilton’s principle is used herein to derive the 

equations of motion. The principle can be stated in 

analytical form as (Reddy 2002) 

 

int

0

( ) 0

t

e p extK U W W dt      
 

(9) 

 

Where U is the variation of strain energy, Ke is the 

variation of kinetic energy, Wp is the variation of external 

force  Caused by the effects of the orthotropic visco-

Pasternak foundation and Wext is the variation of external 

force (Ghorbanpour-Arani and Shokravi 2013). As shown in 

Fig. 1, this microbeam is resting on the orthotropic visco-

Pasternak foundation and L, A are the length and area of the 

micro-beam. 

By putting Eqs. (4)-(5) into the Eq. (3), and the first 

variations of strain energy equation at the time interval [0, t] 

can be written 
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where (N, M) are the stress resultants and Y is couple 

moment defined as 

 

( , , ) ( , , )xx xx xy

A
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(11) 

 

The variation of potential energy of the applied loads 

can be expressed as 

 

 

 

Fig. 1 Isotropic Euler-Bernoulli microbeam base on 

orthotropic visco-Pasternak foundation 
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Where q is transverse distributed load f is axial load. kL 

,kNL are, respectively, Winkler linear and nonlinear 

coefficients caused by vertical forces, kC is foundation 

damping coefficient caused by viscosity effects and kP is 

Pasternak coefficient caused by shear forces which changes 

under angle  due to its orthotropic property. The first 

variations of kinetic energy in the time interval are equal to 
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In the above equation  is the density of the microbeam. 

By substituting Eqs. (11)-(13) into Eq. (9), we can 

obtain the following equations of motion 
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3.1 Effects of temperature change 
 

In this section, we study the effects of temperature 

variations, whose mechanical and thermal  properties are 

temperature-dependent. The mechanical and thermal 

properties of the microbeam are as follows (Farokhi and 

Ghayesh 2015) 
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The E0 and μ0 are Young’s modulus, and shear modulus 

at the initial temperature of the room and α is the expansion 

coefficient. NT, MT are the stress resultants from change 

temperature defined as 
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Where T is the uniform temperature rise in the 

microbeam. To simplify further analysis, the equations of 

motion are dimensionless by defining 
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In the above equations, the value of 𝑅 =  𝐼/𝐴 is the 

radius of gyration for the cross-section of microbeam and r 

= R/L is expressed as dimensionless radius of gyration and 

for rectangle cross-section equal to r = (1/2√3)h/L Which 

represents the ratio of thickness to length. By putting the 

dimensionless parameters and Eqs. (16)-(17) into Eqs. (14)-

(15) can be rewritten as dimensionless equations of motion 
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Using the remaining terms of the integral in the Eq. (9), 

Boundary conditions are obtained, and for the different 

boundary conditions are given in Table 3 of Appendix B. 
 

 

4. Solution of the problem 
 

To solve the nonlinear governing Eqs. (19) and (20), 

which include partial differential equations, the DQ method 

for space function according to Appendix A is used and is 

used by the Newmark-beta method to function in the time 

domain. Substitution of Eq. (35) into Eqs. (19) and (20) for 

linear terms and Eq. (39) into Eqs. (19) and (20) for 

nonlinear terms yields the following expression 
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Where, ai are coefficients of the Eqs. (19) and (20). The 

Eqs. (21)-(22) can be written in matrix and compact form as 
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If the longitudinal and transverse displacements are 

described as an overall displacement V, and vector 

coefficients W have been factored out, Eq. (23) can be 

rewritten 
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         
_

( ) { }L NLM V C V K K W V F     
 

(24) 

 

In the above equation M is mass identity matrix and 

C is damping matrix and K is stiffness matrix which 

composed of two linear and nonlinear parts. Eq. (24) has 

been nonlinear eigenvalues problem and its solution can be 

done by application of iterative calculations (Zhong and 

Guo 2003). Typically, at first, the nonlinear term is 

considered equal to zero (KNL) and the resulting eigenvalues 

problem is solved. Values and linear eigenvectors (stiffness 

and system linear frequency) are achieved, and then the 

linear terms are placed in the overall equation to obtain the 

nonlinear term. The eigenvalues problem is solved again in 

order to obtain linear eigenvectors and eigenvalues again 

(stiffness and system nonlinear frequency). In the nonlinear 

analysis of eigenvalues problem, system stiffness matrix is 

a function of eigenvector and this makes computing 

eigenvalues (natural frequencies) more difficult. This 

problem complicates the calculation of frequencies since 

every multiple of an eigenvector is an eigenvector itself. In 

addition, this method ignores the effects of initial conditions 

problem in nonlinear vibrations. To solve this problem in 

this paper the following method will be used: 
 

Step one: When external forces is equal to zero, the 

system under initial conditions of displacement and without 

the initial velocity will be moved. The intended 

displacement at the initial time will perfectly match 

hypothetical mode shape of a system. 

Step two: Using the Newmark-beta method at each time 

step, beam response will be obtained. This issue will be 

dully explained in Section 5. 

Step three: Considering obtained free oscillations, the 

arc-length method can be used to obtain the period for free 

vibration mode. 

Step four: Nonlinear natural frequency can be obtained 

from ( = 2π/Tf). 

Step five: Using differential quadrature method in 

Appendix A, spatial solution is offered and frequency ratio 

can be calculated. 
 

Fortunately for the calculation of the period and the 

nonlinear natural frequency, examining response time over 

a period of oscillation is enough. Since in nonlinear mode 

by increasing the initial amplitude, the period decreases, 

therefore, in all analyses, examining response in period 

which is equivalent to a period in linear mode is sufficient. 

 

 

5. Newmark beta method 
 

Newmark method is a numerical method for solving 

differential equations of two order, in which is the 

acceleration variations can be approximated in sequential 

time intervals. According to partial differential Eq. (24), 

with the help of Newmark method this partial differential 

equation which is in terms of time and place can be defined 

in terms of place at certain time steps and then can be 

solved using differential quadrature method. Consider 

stiffness [K], mass [M], damping [C] and the force vector 

([F(t)]) matrices. Then the initial conditions are applied into 

the equation, i.e., X0, Ẋ0 and Ẍ0 which respectively 

represent the change of initial position, initial velocity, and 

initial acceleration of midpoint of microbeam (Newmark 

1959). By applying the initial conditions of the problem, 

general form of Eq. (24) is expressed as follows 
 

               


            
1

0 0 00 0 0 0X M F C X K X
 

(25) 

 

Determining the appropriate value for α and β in the 

time step Δt, and calculating the following coefficients play 

an important role in the convergence of problem. 
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(26) 

 

It should be noted that usually the following values for 

convergence are suggested 
 

   
1 1 1

2 6 4  
(27) 

 

For stability of solutions, observing the following 

condition for time step Δt for solving time Tf is necessary 
 

  






1 1

2 2f

t

T
 

(28) 

 

For β = 1/4, for stability of solutions, time intervals 

should be equal to (Δt/Tf) ≤ ∞, and for β = 1/6, is equal to 

(Δt/Tf) ≤ (√3/𝜋). The effective stiffness matrix is defined as 

follows 

                0 1K K a M a C
 

(29) 

 

For each time step, effective force vector is 

recommended based on its values at previous time of the 

following algorithm: 

Step A: Using Eq. (23) can be written 
 

          
      

      

    

0 2 3

1 4 5

t t t t t t t

t t t

F F M a X a X a X

C a X a X a X
 

(30) 

 

Step B: Using the following equation, displacement 

vector at the time t+Δt is calculated 
 

   


 
   

1

t t t tX K F
 

(31) 

 

Step C: Using the following equations, the velocity and 

acceleration at the time t+Δt are calculated 
 

          

          

 

 

   

   

1 4 5

0 2 3

t t t t t t t

t t t t t t t

X a X X a X a X

X a X X a X a X
 

(32) 
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Step D: With returning to the step A of the problem, the 

same steps are carried out for the next time step to converge 

the problem 
 

 

6. Numerical results 
 

In these examples, we characterize nonlinear natural 

frequency and response frequency of microbeam rest on 

nonlinear orthotropic visco-Pasternak foundation with 

temperature change. Our studies have been carried out in 

three stages, which include free vibration, compulsory and 

temperature changes.  At first, the temperature changes are 

ignored and only the effects of the foundation coefficients 

have been investigated, but in the end, the effects of 

temperature variations on materials whose mechanical and 

thermal properties are temperature dependent are 

investigated. 
 

6.1 Example 1 
 

For numerical illustrations of mechanical properties of 

microbeam, with different boundary conditions is herein 
considered Rao (2007) 

 

[𝑟 = 0.029; 𝑣 = 0.25;  𝜂 = 0; Δ𝑇 = 0] 
 

In this example, the nonlinear free vibration frequencies 

were calculated. For validation and comparison with Article 

Rao (2007), length scale parameter and damping coefficient 

of foundation length scale parameter are considered zero. 

As it is clear, the nonlinear natural frequency has been 

obtained with good accuracy according to Table 1. Then, by 

changing the parameter radius of gyration (r) for different 

support conditions, the nonlinear natural frequency is 

calculated. It should be noted that according to the type of 

dimensionless time in Eq. (18) and using equation ( =  

t), is obtained dimensional frequency. The value of  is the 

dimensional frequency and  is dimensionless frequency. In 

reference Rao (2007) the relationship of dimensionless 

frequency  with the dimensional frequency  is as follow 
 

r


 

 

(33) 

 

 

Table 1 Comparison of the nonlinear frequency for various 

boundary conditions 

N* 
C_C C_S S_S C_F 

ΩNL
* ΩNL

* ΩNL
* ΩNL

* 

7 4.756793 3.954783 3.151371 1.875362 

8 4.749756 3.946545 3.151478 1.875247 

9 4.749938 3.946447 3.151539 1.875109 

10 4.750046 3.946598 3.151592 1.875103 

11 4.750043 3.946605 3.151593 1.875104 

12 4.750041 3.946602 3.151593 1.875104 

Rao (2007) 4.749779 3.930137 3.149049 1.867153 
 

* ΩNL: Nonlinear frequencies; *N: Number of nodes 

In Table 1, nonlinear natural frequencies converge to 12 

points. 

As the Table 1 shows, the nonlinear frequency obtained 

in this article is greater than the frequency provided in the 
article (Rao 2007). This is Due to more nonlinear terms 

than Rao’s article  in governing equations which represents 

more hardening in the system. Now the effect of 

dimensionless parameter r (radius of gyration) on nonlinear 

frequency of the transverse vibrations is examined and here 

the small scale parameter is η = 0.1. The ratio of length to 

thickness and small scale parameter to thickness are L/h = 

10 and l/h = 1, As a result, the ratio small scale parameter to 

length is equal to (η = l/L 0.1). 

As the radius of gyration increases, the nonlinear 

frequency increases, and because of increasing the radius of 

gyration, the thickness of the microbeam increases with 

respect to its length. With the thickening and shortening of 

the microbeam, the natural frequency increases (Figs. 2-4). 

In other words, an increase in the radius of gyration caused 

hardening in the system and an increase in Poisson 

coefficient results in softening. Now, the effects of different 

 

 

 

Fig. 2 The effect of radius of gyration and Poisson’s 

ratio on the dimensionless frequency (C_C) 

 

 

 

Fig. 3 The effect of radius of gyration and Poisson’s ratio on 

the dimensionless frequency (C_S, non-sliding) 
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Fig. 4 The effect of radius of gyration and Poisson’s 

ratio on the dimensionless frequency (C_F) 

 

 

 

Fig. 5 The effect of length scale parameters under different 

boundary conditions on nonlinear natural frequencies 

 

 

boundary conditions and the length scale parameter on the 

nonlinear natural frequency are investigated. 

It has been shown that increasing length scale parameter 

results in an increase in all frequencies and this change 

reflects the beam stiffness increase by increasing this 

parameter. Moreover, as shown in the charts, as we move on 

from constrained support conditions like (C_C) to freer 

conditions of constrains such as (C_F), the nonlinear natural 

frequency reduces. 

 

6.1.1 Forced vibration 
To evaluate the effect of boundary conditions on the 

dynamic response of the beam in the longitudinal direction, 

assume a beam under dimensionless longitudinal load 

f*=0.1(1‒)sin(2) and non-damping zero initial conditions. 

In Figs. 6-7, the variations of midpoint of the beam ( = 

0.5) in both cases of boundary conditions are shown. As 

shown in these figures, in the case where both ends of the 

beam are constrained in the longitudinal direction (C_C), 

the oscillation amplitude will be less compared to (C_F) 

beam. In other words, as the constraints increases the 

 

Fig. 6 Time response of beam in forced longitudinal 

vibration under dynamic load (C_C) 

 

 

 

Fig. 7 Time response of beam in forced longitudinal 

vibration under dynamic load (C_F) 

 

 

natural frequency and decreases the range of motion in 

forced vibrations. 

In order to evaluate the effect of thickness to beam 

length ratio on the beam dynamic response in transverse 

vibrations, a two-hinged beam with υ = 0.3 and η = 0.1 

specifications under dimensionless transverse load 

q*=0.01exp(‒0.1)sin() and zero initial conditions has 

been considered. In this case, all the coefficients of the 

foundation other than the damping coefficient is considered 

zero (KC = 0.0001). Fig. 8 shows the changes in 

displacement time of midpoint of the beam in terms of time 

in different values of r. This figure indicates that by 

increasing the thickness to beam length ratio, the oscillation 

amplitude decreases. 

In order to evaluate the effect of length scale parameter 

on the beam dynamic response in transverse vibrations, a 

beam (C_F) with υ = 0.3 and r = 0.03 specifications under 

dimensionless transverse load q* = 0.0052sin(0.5) and 

zero initial conditions should be taken into account. Fig. 9 

shows changes in displacement time of the beam’s end 
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Fig. 8 Time response of beam in forced transverse 

vibration for different values of gyration radius 
 

 

 

Fig. 9 Time response of beam in forced transverse vibration 

for different values of small scale parameter. (C_F) 
 

 

point in terms of time for different values of η. As this 

diagram shows, as the small scale parameter and the 

stiffness of the beam increase, the beam oscillation 

amplitude decreases. 
 

6.1.2 changed temperature 
Using Eqs. (19) and (2), the effects of temperature 

variations on nonlinear frequency are investigated. The 

relevant material properties for temperature dependent 

material considered are as follows 
 

 𝑟 = 0.029;   𝜂 = 0.1;  Δ𝑇 = 0 𝑡𝑜 250 𝐾   

𝜇 𝑇 =
𝐸 𝑇 

2 1 + 𝑣 𝑇  
; 

 

In Fig. 10, the nonlinear natural frequency decreases 

with increasing temperature.  As it is known, the more 

restrictive the boundary conditions, the more expensive the 

system will be and the frequency will decrease later than the 

 

Fig. 10 The effect of temperature changes on the natural 

frequency with different boundary condition 

 

 

 

Fig. 11 The effect of temperature changes on the natural 

frequency 

 

 

temperature change.  This is the frequency reduction in the 

pre-buckling area, but the behavior of the system changes 

during post-buckling phenomenon.  In Fig. 11, the micro-

beam is temperature dependent and independent of 

temperature.  The nonlinear natural frequency for 

temperature dependent materials decreases with increasing 

temperature. As a result, the buckling phenomenon in these 

materials is faster and changes in the temperature of about 

ΔT =  120. The results are good overlap with Farokhi and 

Ghayesh (2015). 

 

6.2 Example 2 
 

In this example, according to the paper Şimşek (2014), a 

micro-beam under free and compulsive vibration, and 

finally, the effects of temperature changes, are analysed and 

validation. In order for the dimensionless parameters 

mentioned in this article be the same with the mentioned 

reference, the following values for these variables and 

coefficients and initial conditions have been suggested 
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.04; .08,; 10; 0; 0;

0.029; (0,0.025,0.05,0.075,0.1)

L P NL CK K K K

l
r

L





    

  
 

(34) 

 

Initially, the value L/h = 10 is chosen. As the ratio of the 

length to thickness parameter changes in the Şimşek (2014), 

between zero and one, the η ratio in this article varies from 

zero to 0.1. In two cases of (S_S) and (C_C) which have 

been evaluated in the following table, the value of 

dimensionless amplitude (X0) = Wmax/r is defined to achieve 

validation. 

In Table 2, by N = 11 nods and time step t = 0.01, the 

converges and the final obtained answer nicely to the papers 

(Azrar et al. 1999, Şimşek 2014). As shown in the table 

above, the ratio of the frequencies obtained in this paper is 

greater than Azrar et al. (1999), and  less than Şimşek 

(2014). In the first paper, linearization has been done and 

less nonlinear terms have been considered, but in the second 

paper, the semi-analytic method has been used. With more 

nonlinear terms, the stiffness of the system increases and 

nonlinear frequencies increase.  These two papers can be 

used for C-C and S-S boundary conditions, but the method 

presented in this paper is applicable to any boundary 

condition. 

 

 

Table 2 Comparison of the nonlinear frequency ratios 

obtained for various values of dimensionless 

amplitude for CC and SS 

Dimensionless 

amplitude 
C_C C_C C_C S_S S_S S_S 

X0 Present 
Simsek 

(2014) 

Azrar 

et al. 

(1999) 

Present 
Simsek 

(2014) 

Azrar 

et al. 

(1999) 

1 1.0225 1.0231 1.0221 1.0893 1.0897 1.0891 

2 1.0864 1.0897 1.0856 1.3219 1.3228 1.3177 

3 1.1913 1.1924 1.1831 1.6381 1.6393 1.6256 

4 1.3194 1.3228 1.3064 1.9840 2.000 - 
 

 

 

The reason for this is that unlike the linear mode in 

which natural frequencies are only a function of the 

geometry of the system, in nonlinear natural frequencies, in 

addition to the geometry of the system, it also depends on 

initial conditions. In order to show this issue, an (S_S) beam 

with regard to initial conditions W(, 0) = Wmax sin() is 

considered. In addition, for (C_C) beam, W(, 0) = 

Wmax/2[1‒cos(2)] which exactly matches the first 

microbeam mode, has been taken into account. Then by 

assuming the other parameters to be constant and taking 

into account damping coefficient KC = .0008, the variations 

of foundation coefficients on the frequency ratio has been 

investigated. Fig. 12(a) is related to the two ends of simple 

support (S-S) and Fig. 12(b) is related to the two ends of the 

clamp support (C-C) for all the following figures. 

By assuming all coefficients and changes of Winkler 

coefficient to be constant, as it is shown in Figs. 13(a)-(b), 

as this coefficient increases, the frequency ratio decreases. 

As it is specified, the frequency ratio for (S-S) mode is 

greater; however, its reduction compared to (C-C) mode is 

greater. This shows that by increasing the constraints, the 

system stiffness increases and the frequency ratio decreases. 

Variations of frequency ratio for length scale parameter are 

the same’ i.e., as the length scale parameter increases, the 

frequency ratio decreases. 

In Figs. 12(a)-(b), by assuming Winkler coefficient (KL 

= 0.08) to be constant, the Pasternak coefficient on the 

frequency ratios has been evaluated. As specified in Figs. 

12(a)-(b), by increasing Pasternak coefficients and length 

scale parameter, the frequency ratio reduces. According to 

orthotropic property of the foundation, Pasternak coefficient 

which is caused by shear stresses depends on the shear 

angle. For this reason, Figs. 14(a)-(b) has examined this 

coefficient and its effects of its changes that and as it is 

observed as the shear angle increases, in contrast to the 

previous modes, the frequency ratio increases. The increase 

of the frequency ratio for (S_S) mode by changing the shear 

angle is greater than (C_C) mode and it shows that when 

the angle increases, as the body is more constrained, the 

frequency rate is less. In the following, nonlinear coefficient 

on the frequency ratio will be discussed. In this case, as 

 

  

(a) Simple_simple (b) Clamp_clamp 

Fig. 12 Variation of the nonlinear frequency ratio with the Pasternak parameter (shear parameter) for various values 

of the dimensionless length scale parameter 
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(a) Simple_simple (b) Clamp_clamp 

Fig. 13 Variation of the nonlinear frequency ratio with the Winkler parameter for various values of the dimensionless 

length scale parameter 

  

(a) Simple_simple (b) Clamp_clamp 

Fig. 14 Variation of the nonlinear frequency ratio with the Orthotropic angle parameter for various values of the 

dimensionless length scale parameter 

  

(a) Simple_simple (b) Clamp_clamp 

Fig. 15 Variation of the nonlinear frequency ratio with the nonlinear parameter for various values of the 

dimensionless length scale parameter 
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shown in Figs. 15(a)-(b), as the nonlinear coefficient 

increases, frequency ratio increases and unlike the two 

Winkler and Pasternak coefficients, it is in foundation. It 

also shows the importance of evaluation of nonlinear mode 

in the foundation. Figs. 16(a)-(b) shows that as the damping 

coefficient increases, frequency ratio decreases. Moreover, 

the effects of gyration radius on the frequency ratio have 

been investigated for a micobeam with rectangular cross 

section. This coefficient is directly proportional to the 

thickness. As it is specified in Figs. 17(a)-(b), as the radius 

of gyration increases, frequency ratio decreases. This is due 

to an increase in the thickness of the beam and an increase 

in the stiffness of the system. As the radius of gyration 

increases, the frequency ratio converges towards one and 

whatever the radius is less, the frequency ratio is greater. 

This shows that evaluation of nonlinear mode for thin-

walled and small beams is very important. Initial conditions 

Wmax play an important role on the frequency ratio. As Figs. 

18(a)-(b), suggests, as this coefficient increases, the 

frequency ratio increases. The same evaluation has been  

 

 

 

 

performed in Figs. 19(a)-(b) on beam midpoint displace-

ment and it is observed that when the damping coefficient is 

zero, the range of motion is harmonic and with no decrease 

over time. However, by increasing the damping coefficient, 

amplitude of oscillation reduces and system becomes 

damped. The comparison of these two graphs perfectly 

confirms that in linear mode, natural frequency (vibration’s 

period) is completely independent of the initial conditions. 

However, in nonlinear mode, an increase in amplitude in the 

initial conditions decreases the oscillation period. In other 

words, the natural frequencies increase. 

 

6.2.1 Forced vibration analysis 
In this section, regardless of longitudinal load (f* = 0), 

microbeam forced vibration under dynamic force q* = 

q0exp(‒0.1τ)sin(πξ) has been investigated. An increase in 

the amplitude of the applied force, the beam oscillations 

amplitude will also increase that it is quite obvious. Another 

thing that can be concluded is that in all modes, oscillations 

amplitude in less nonlinear mode has been less than the 

  

(a) Simple_simple (b) Clamp_clamp 

Fig. 16 Variation of the nonlinear frequency ratio with the Damping parameter for various values of the dimensionless 

length scale parameter 

  

(a) Simple_simple (b) Clamp_clamp 

Fig. 17 Variation of the nonlinear frequency ratio with the dimensionless radius of gyration parameter for various 

values of the dimensionless length scale parameter 
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(a) Simple_simple (b) Clamp_clamp 

Fig. 18 Variation of the nonlinear frequency ratio with the dimensionless of maximum deflection parameter for 

various values of the dimensionless length scale parameter 

  

(a) Simple_simple (b) Clamp_clamp 

Fig. 19 Variation of the dimensionless midpoint displacement with the dimensionless time for Kc = .08 and for various 

values of the maximum deflection 

  

(a) Simple_simple (b) Clamp_clamp 

Fig. 20 Variation of the dimensionless midpoint displacement with the dimensionless time for q0 = 0.1, η = .075   

and for linear and nonlinear microbeam. 
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(a) Simple_simple (b) Clamp_clamp 

Fig. 21 Variation of the dimensionless midpoint displacement with the dimensionless time for q0 = 0.1, and for 

various values of the length scale parameters 

  

(a) q0 = 0.1, simple_simple (b) q0 = 0.1, clamp_clamp 

Fig. 22 Variation of the dimensionless midpoint displacement with the dimensionless time for 𝜂 = 0.075, and for 

various values of the amplitude force 

  

(a) 𝜂 = 0.075, simple_simple (b) 𝜂 = 0.075, clamp_clamp 

Fig. 23 Variation of the dimensionless midpoint displacement with the dimensionless time for 𝜂 = 0.075, and for 

various values of the angles of orthotropic foundation 
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amplitude of oscillations in linear mode. In other words, 

regardless of the nonlinear terms, the system’s stiffness has 

been considered less than what it is, and the amplitude of 

fluctuations has been estimated more than what it actually 

is. Another interesting point which can be concluded from 

these figures is that with an increase in amplitude of the 

applied force, the differences between the results in linear 

and nonlinear modes will increase. The reason is that with 

an increase in amplitude of the applied force and the 

amplitude of fluctuations, nonlinear terms also become 

more significant and ignoring them will result in more 

errors. As it is specified Figs. 20(a)-(b), as the constraints of 

the system increases, i.e., in (C_C) mode, the differences 

between linear and nonlinear modes decrease. Figs. 21(a)-

(b) shows the importance of studying the length scale 

parameter in microbeams, because with an increase in the 

scale parameter, oscillation amplitude decreases and the 

period decrease as well. As it is clear, when the body is 

more constrained, this effect will be greater and there will 

be less range of motion whit an increase in the length scale 

parameter. In Figs. 22(a)-(b), with an increase in the 

amplitude of force q0, the displacement also increases. 

Then we will discuss the effect of change in angle of 

orthotropic foundation on the amount of displacement with 

dynamic force (Figs. 23(a)-(b)). In this mode, as the angle 

increases, the displacement, force amplitude and also the 

period increase. As can be seen in forced vibrations, the 

force amplitude decreases over time and this is due to the 

effect of damping coefficient of foundation. With an 

increase in this coefficient, amplitude force decreases with 

time. Increasing in foundation coefficients including 

Winkler, nonlinear coefficient, and Pasternak lead to a 

reduction in displacement amplitude. 

  

6.2.3 Changed temperature 
In this example, materials whose mechanical and 

thermal properties are temperature-dependent are also 

studied. The nonlinear natural frequency, when the 

temperature changes are zero, is shown by λ0NL
 and the 

nonlinear frequency ratio to λ0NL is investigated.  In Figs. 

24(a)-(b), useful results are obtained from temperature and 

 

 

small scale parameter variations  in terms of nonlinear 

frequency ratio. By increasing the length parameter, the 

effects of the rigidity matrix are reduced and the natural 

frequency decreases. As the temperature rises, the system is 

softened and decreases by decreasing the natural frequency 

hardness matrix. 

 

 

7. Conclusions 
 

In this paper a nonlinear Euler-Bernoulli beam model 

based on the nonlinear orthotropic visco-

Pasternak foundation has been developed by using the 

modified couple stress theory. This nonclassic continuum 

theory is capable of prediction and explanation of size 

effects. In numerical examples, changes of the length scale 

parameter and foundation coefficients on the nonlinear 

frequency ratio and midpoint deflection of microbeam in 

free and forced vibration are presented that following 

results were obtained: 

 

(1) The length scale parameter, which plays a major 

role in analysing the behaviour of microbeams, has 

been examined in this research. The results show 

that increasing the length scale parameter leads to 

an increase in nonlinear frequency; however, it 

reduces the frequency ratio. This displacement 

reflects the increased stiffness of the beam which is 

due to an increase in the length scale parameter. 

(2) With an increase in Winkler, Pasternak and 

damping coefficients, frequency ratio decrease; 

moreover, the system becomes stiffer and 

nonlinear frequency increases. 

(3) With an increase in nonlinear coefficients and 

orthotropic shear angle, frequency ratio increases 

and nonlinear frequency decreases which is due to 

an increase in softness of the system. 

(4) As the radius of gyration increases, frequency ratio 

decreases and nonlinear frequency increases and 

the system becomes stiffer. As the charts and tables 

show with an increase in r (increasing the 

  

(a) Simple_simple (b) Clamp_clamp 

Fig. 24 Variation of the nonlinear frequency ratio with the temperature change for various values of the 

dimensionless length scale parameter. 
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thickness of beam), the difference between linear 

and nonlinear frequency reduces. In other words, 

when the beam is thinner and taller, ignoring the 

nonlinear effects will lead to more errors. 

However, with an increase in the initial 

displacement, i.e., Wmax, the opposite of this mode 

happens and the system becomes softer. 

(5) With an increase in the amplitude of applied force, 

obviously, the beam oscillation amplitude will also 

increase oscillations amplitude in linear mode. In 

other words, ignoring the nonlinear terms 

considers the system’s stiffness less than what it is 

and estimates the oscillations amplitude more than 

what it actually is. Therefore, with an increase in 

the amplitude of the applied force, the differences 

between the results in linear and nonlinear modes 

will increase. The reason is that with an increase in 

amplitude of the applied force and increase in the 

amplitude of oscillations, nonlinear terms also 

become more significant and ignoring them will 

lead to more errors. 

(6) The comparison of linear and nonlinear analysis 

results has nicely confirmed that in linear mode, 

natural frequency (vibrations period) is completely 

independent of the initial conditions; however, in 

nonlinear mode, as the amplitude increases in the 

initial conditions, oscillation period reduces; in 

other words, the natural frequencies increase. 

(7) The present study shows that in Euler-Bernoulli 

microbeam, with an increase in range of motion at 

the initial time, nonlinear frequency of the beam 

increases as well which represents the increase of 

the system’s stiffness parallel to the increase in 

range of motion. This phenomenon indicates that, 

in practice, if for any reason the range of a system 

starts to increase, the system itself will resist 

against increase of the range by increasing its 

stiffness. 

(8) Comparison of different boundary conditions 

indicate that in clamp, in order to observe and 

make a difference between linear and nonlinear 

modes, it is necessary to apply more force or much 

more initial displacement to the beam; in other 

words, when boundary conditions are more 

constrained, the linear solution can be considered 

acceptable in a broader range of initial conditions. 

In addition, whatever boundary conditions are 

freer, ignoring nonlinear terms will result in more 

errors 
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Appendix A 
 

According to the differential quadrature rule, derivatives 

of a function in x = xi is expressed in terms of the value of 

function in throughout domain as 
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(35) 

 

where A(r) are the weighting coefficients associated with the 

rth order derivative and N is the number of grid points in 

the x-direction. These coefficients for the first-order 

derivatives are given by Bellman and Roth (1979) 
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The weighting coefficients of higher-order derivatives 

are extracted from the following recurrence relation 
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A convenient choice for the grid points are the equally 

spaced points. Another option which gives more accurate 

results is unequally spaced grid points. A well-accepted set 

of the grid points is the Gauss–Lobatto–Chebyshev points 

given for interval [0, L] by 
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(38) 

 

The main advantage of this set is compression of the 

points in two ends which provides high accuracy in 

estimation of the value of the derivatives of function in the 

boundary points. When the desired function has nonlinear 

derivatives, Eq. (35) can be expressed as follows (Kuang 

and Chen 2004) 
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Where ʘ represents Hadamard multiplication. 

 

 

 

 

 

 

 

 

 

Appendix B 
 

Table 3 types of boundary conditions 

Dimensionless B.C Boundary conditions 

0

0

0

U

W

W











 

 

Clamp 

(C) 

2

2

0

0

0

U

W

W










  

 

Simply 

supported 

(non-sliding) 

(S) 

2

2

2

1
0

2

0

0

U W
T

W

W


 



  
    

  






  

 

Simply 

supported 

(sliding) 

(S*) 

3

3

0

cos( ) 0

0

p

U

W W
K

W








 
 







 

 

Hinged 

(H) 

2

3

3

2

2

1
0

2

cos( ) 0

0

p

U W
T

W W
K

W


 






  
    

  

 
 






  

 

Free 

(F) 

 

 

 

165




