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1. Introduction 

 

There are various benefits over the composite materials 

such as withstanding very high temperature gradients, less 

stress concentrations, further corrosive resistance, higher 

toughness and higher fracture resistance, therefore many 

researchers have focused on mechanical behavior of 

structures made of functionally graded materials (FGMs) 

(Xiong and Tian 2017, Ghadiri et al. 2017, Moradi-

Dastjerdi and Momeni-Khabisi 2016, Rajanna et al. 2016, 

Sharma et al. 2017, Ehyaei et al. 2017, Ebrahimi and Jafari 

2016, Arefi 2015, She et al. 2017a, b, c). These materials 

have continuous changes in thermo-mechanical properties 

according to a change in the microstructure or atomic order 

with a specific gradient. These types of materials are for 

achieving and designing specific properties for potential 

applications such as biological implants (Suresh and 

Mortensen 1998), biosystems, transport systems, energy 

conversion systems, semiconductors, cutting tools, wear 

resistant structures, thermal barrier coatings used in gas 

turbines and rocket nozzles (Movchan and Yakovchuk 

2004) ballistic impact resistance, multi-functional structures 

(Vecchio 2005), optics (Miyamoto et al. 2013), biomedical 

engineering, electrical devices, diodes, computer circuit 

boards, sensors, turbine blades, car engine cylinders, inner 

wall of nuclear reactors, optical fibers, etc. (El-Wazery and 
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El-Desouky 2015). 

Research on nanostructures has become an important 

issue with the development of nanotechnology. Given the 

fact that classical theories do not have the ability to consider 

this effect, the use of size dependent continuum theories 

such as nonlocal elasticity theory (Eringen and Edelen 

1972), strain gradient theory (Papargyri-Beskou and Beskos 

2008), and nonlocal strain gradient theory (Lim et al. 2015) 

are developed to consider the small scale effects. The 

nonlocal and strain gradient elasticity theories is used to 

study the mechanical behaviors of nanostructures by many 
investigators (Bouafia et al. 2017, Besseghier et al. 2017, 

Mouffoki et al. 2017, Shahsavari et al. 2017, Hanifi 

Hachemi Amar et al. 2017, Karami et al. 2017a, Shahsavari 

and Janghorban 2017, Karami et al. 2018f, Karami and 

Janghorban 2016). Investigation of size effects on thermal 

buckling analysis of embedded FG nanoplates resting on an 

elastic medium is performed by Khetir et al. (2017). The 

analysis of size effects on wave propagation behavior of 

nanoplates resting on an elastic medium is studied by Wang 

et al. (2010a). Wang et al. (2010b) have also studied the 

size effects on axial wave propagation of nanoplates via 

nonlocal elasticity. Small size effect on the wave 

propagation of a piezoelectric nanoplate is investigated by 

Zhang et al. (2014) based on nonlocal elasticity theory. 

However, there are researchers who have discussed the 

limitations and inabilities of nonlocal theory of elasticity: 

the efficiency of differential form of nonlocal elastic law is 

predicting mechanical responses of nanobeams, especially 

those with clamped-free boundary conditions was examined 
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by Romano et al. (2017). They discussed on the inability of 

nonlocal differential elasticity in analysis of nano-

cantilevers and proposed a solution for such problems. 

Recently, it has been shown that nonlocal differential 

elasticity based model maybe ill-posed. Of course, 

according to the simplification of the nonlocal differential 

elasticity, some works have been focused on the size-

dependent behaviors based upon the nonlocal differential 

models. More recently, it is shown that the nonlocal 

differential and integral elasticity based models may be not 

equivalent to each other. A nonlocal integral model to 

analyze the twisting static response of through-radius FG 

nanotubes was presented by Zhu and Li (2017d) using 

Eringen’s nonlocal integral elasticity. The authors have 

shown that in comparison to the widely-used nonlocal 

differential model in the literature, the nonlocal integral 

model developed there was self-consistent and well-posed. 

Longitudinal and torsional dynamic problems for small-

scaled rods were modeled by utilizing an integral formula 

of two-phase nonlocal theory by Zhu and Li (2017b). 

Koutsoumaris et al. (2015) examined the application of 

bi-Helmholtz nonlocal elasticity model incorporating two 

nonlocal parameters in vibration analysis of carbon 

nanotubes. By comparing obtained results with those of 

molecular dynamics simulation, they concluded that present 

bi-Helmholtz nonlocal elasticity in more appropriate than 

one parameter nonlocal elasticity in predicting the 

mechanical behavior of nanostructures. It was seen by Shaat 

and Abdelkefi (2017) that the wave dispersion curves of 

nanobeams cannot be matched with experimental results by 

using nonlocality with one length scale parameter. So, they 

adopted a general nonlocal elasticity theory containing two 

length scale parameters to study the wave propagation in 

nanobeams with more accuracy. Therefore, the nonlocal 

strain gradient elasticity theory is used to investigate the 

mechanical response of different nanostructures (Karami et 

al. 2018a, b, c, 2017c, Shahsavari et al. 2018a, She et al. 

2017d, 2018). Li et al. (2015) studied the wave dispersion 

of FG nanobeams using the nonlocal strain gradient theory, 

in which the stress accounts for not only the nonlocal elastic 

stress field but also the strain gradients stress field. A size-

dependent Timoshenko beam model, which accounts for 

through-thickness power-law variation of a two-constituent 

functionally graded (FG) material, was derived in the 

framework of the nonlocal strain gradient theory by Li et 

al. (2016b). The longitudinal dynamic problem of a size-

dependent elasticity rod was formulated by utilizing an 

integral form of nonlocal strain gradient theory by Zhu and 

Li (2017c). In another study, a size-dependent integral 

elasticity model was developed for a small-scaled rod in 

tension based on the nonlocal strain gradient theory by Zhu 

and Li (2017a). Based upon the nonlocal strain gradient 

theory wave propagation of fluid-conveying double-walled 

carbon nanotube was investigated by Zeighampour et al. 

(2017). Also, the effect of van der Waals force between the 

two intended walls and the DWCNT surroundings was 

modeled as Winkler foundation. Karami et al. (2018d) 

studied the wave propagation of single layer graphene 

sheets under the magnetic field effects using bi-Helmholtz 

nonlocal strain gradient theory. A size-dependent Euler–

Bernoulli beam model was formulated and devoted to 

investigating the scaling effect on the post-buckling 

responses of FG nano-size beams with the von Kármán 

geometric nonlinearity using nonlocal strain gradient theory 

by Li and Hu (2017). Li et al. (2018) present a nonlocal 

strain gradient beam model incorporating the thickness 

effect for the size-dependent buckling analysis of 

nanobeams for the first time, and closed-form solutions 

were derived for post-buckling configuration and critical 

buckling force. 

Up to now, one can find confusing results from studying 

length scale parameters including nonlocal and strain 

gradient theories in open literature. Researches on the basis 

of nonlocality have been reported a stiffness-softening 

behaviors in contrast with stiffness-hardening behaviors 

seen in conventional strain gradient theory. Besides, on the 

basis of nonlocal-strain gradient elasticity by Lim et al. 

(2015) with considering experimental data, it was shown 

that wave dispersion of nanobeams could not have accurate 

results with just using nonlocal elasticity or strain gradient 

theories. Most recently, few studies have been carried out to 

examine combined effects of nonlocal and strain gradient 

elasticity in wave propagation, vibration and buckling 

analysis of nanostructures (Karami et al. 2017b, Ebrahimi 

and Barati 2017, Li et al. 2016a, 2017, Barati 2017a, b). 

Up to now, several different theories have been derived 

to study the static, vibration, buckling and wave dispersion 

of different structures like plates. The simplest and the most 

user friendly theory is called classical plate theory (CPT) 

which ignores the shear deformation influences. The 

assumptions of this theory cause inaccurate results in some 

cases. Next, we have first order shear deformation theory 

(FSDT) which has some limitations such as shear correction 

factor which is unknown. The limitations of above theories 

were solved by introducing higher order shear deformation 

theories (HSDT). Some of these higher order theories were 

considered the thickness stretching effect in their suggested 

displacement fields. A large application of the thickness 

stretching effect in FG plates has been proved in the study 
of Carrera et al. (2011). Buckling, bending and vibration of 

functionally graded sandwich beams were studied by 

Bennai et al. (2015) based on used a new higher-order shear 

and normal deformation theory; Atmane et al. (2015) 

investigated the effect of thickness stretching and porosity 

on mechanical behaviors of a FG beams resting on elastic 

foundations. This effect has an important role in moderately 

thick FG plates and beams; it was taken into account 

Shahsavari et al. (2018b), Hamidi et al. (2015), Chaht et al. 

(2015), Atmane et al. (2017). 

It is obvious that based on the size-dependent quasi 3D 

theory, vibration and buckling analysis of FG structures are 

studied several times, however, there are few articles that 

investigate the wave propagation of such structures. Wave 

propagation analysis of FG nanobeams in thermal 

environment were studied by Ebrahimi and Barati (2016) 

based on nonlocal strain gradient theory and quasi-3D 

theory. Therefore, there isn’t any research on wave 

propagation of an FG nanoplate subjected to hygro-thermal 

loading via higher-order nonlocal strain gradient theory and 

quasi-3D plate theory. 
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In this work, a new size-dependent five-variable plate 

theory is developed to investigate the wave propagation of 

FG nanoplates by introducing the thickness stretching effect 

of FGM plates. In order, to consider the small size effects a 

higher-order nonlocal strain gradient elasticity theory 

incorporating three scale factor is used. The governing 

equations are obtained based on Hamilton’s principle and an 

analytical solution is applied to find the wave frequency and 

phase velocities of FG nanoplate. Influences of different 

parameters such as temperature and moisture rise, 

nonlocality, length scale parameter, material composition, 

elastic foundation parameters and wave number on wave 

characteristics of rectangular FG nanoplate are investigated. 

 

 

2. Formulation of the problem 
 

The configuration of rectangular functionally graded 

plate with the length a, the width b and the thickness h and 

resting on Winkler-Pasternak elastic foundation is 

illustrated in Fig. 1. The plate referred to a system of 

rectangular coordinate system xyz. 

 

2.1 Generalized higher-order nonlocal strain 
gradient theory of elasticity 

 

Due to the generalized higher-order nonlocal strain 

gradient elasticity theory that reported by Lim et al. (2015), 

the nonlocal stress at a reference point x depends not only 

on the strain at that point, but also on the strains at all other 

points within the volume V. Hence, the stress can be 

expressed by 

 
 1(0)

jij ij i   
 

(1) 

 

in which ζij and ζ1
ij denote to strain εij and strain gradient 

εij, respectivly and the stress can be writen as follows 
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where Qijkl are the elastic coefficients, λ is the strain 

gradient length scale, which is introduced to consider the 

significance of strain gradient stress field, e0a and e1a are 

lower and higher order nonlocal parameters, which are 

 

 

 

Fig. 1 Geometry of functionally graded nanoplates 

introduced to consider the significance of nonlocal elastic 

stress fields. α0 (x, x′, e0a) and α1 (x, x′, e1a) are the nonlocal 

functions for the classical stress tensor and the strain 

gradient stress tensor, respectively (Eringen 1983). The 

linear nonlocal differential operator Lli, which can be 

written as the following form, is applied to the both sides of 

Eq. (1). 
 

 
2 21 for 0,1i ie a i   Ll

 
(4) 

 

in which 2 is the Laplacian operator. Due to this fact that 

solving differential equations are easier than integral 

equations, Lim et al. (2015) reported a general and 

extended constitutive equation for the higher-order nonlocal 

strain gradient theory as 
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where 
 

0 0 1 1e a, e a  
 (6) 

 

The equivalent format of Eq. (5) is presented as 
 

ij ijkl kl lQ L L
 (7) 

 

where the linear operators are defined as 
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(8) 

 

2.2 Kinematics 
 

To owning the governing equations, the displacement 

field of present theory is chosen on the basis of following 

assumptions: (1) the transverse displacement is partitioned 

into bending, shear and stretching components; (2) the in-

plane displacement is partitioned into extension, bending 

and shear components; (3) the bending parts of the in-plane 

displacements are similar to those given by CPT; and (4) 

the shear parts of the in-plane displacements give rise to the 

hyperbolic variations of shear strains and hence to shear 

stresses through the thickness of the plate in such a way that 

the shear stresses vanish on the top and bottom surfaces of 

the plate. According to these assumptions, the following 

displacement field relations can be obtained 
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  

 

 
  

 

  
 

(9) 

 

in which u0 and v0 are the displacements along the x and y 

coordinate directions of a point on the mid-plane of the 

plate; wb and ws are the bending and shear components of 

the transverse displacement, respectively; and the additional 
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displacement θ accounts for the effect of normal stress 

(stretching effect). In this study, the shape functions f(z) and 

g(z) are chosen based on the hyperbolic function presented 

by Shahsavari et al. (2018b) as 
 

  1 2 sinh
z z

f z r r h
h h

    
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And 
 

( ) 1 ( )g z f z 
 (12) 

 

The shape function that may be chosen to satisfy the 

following conditions. 
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The common two-dimensional theories (Reddy 1984, 

Mahi and Tounsi 2015) satisfy the first conditions. The 

second condition show that the transverse shear stress is 

vanished at the top and bottom surfaces plate. While, the 

third condition means that the shape function should be odd 

function.  

One can find that with the divide of displacement in 

thickness direction w into bending, shearing and stretching 

parts (i.e., w = wb = ws = g(z)θ) and by considering 

following assumptions defined as 𝜃1 =
𝜕𝑤𝑠

𝜕𝑥
 and 𝜃2 =

𝜕𝑤𝑠

𝜕𝑦
 

where θ1 and θ2 are rotations of the yz and xz planes, the 

displacements introduced in present paper becomes simpler. 

According to strain-displacement relations and with 

considering the displacement field in Eq. (9), the strains 

defined as follow 
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and 
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2.3 Equation of motion 
 

Based on the Hamilton’s principle theory we try to find 

the Euler-Lagrange equations of FG nanoplate in thermal 

environment 
 

0
( ) 0

t

U K V dt     
(17) 

 

where δU is the variation of strain energy; δK is the 

variation of kinetic energy and δV is the variation of work 

done by external (applied) forces. The variation of strain 

energy is 
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where the stress resultants N, M, and Q are defined by 
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and 
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The first variation of work done by applied forces can 

be stated as 
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in which kw and kP are linear and shear coefficient of elastic 

foundation parameters; and the external forced NT and NH 

according to changes of temperature and moisture for 

FGMs are 
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(23) 

 

where ΔT = T – T0 and ΔH = H – H0 where T0 and H0 can 

introduce as the reference temperature and moisture, 

respectively. 

The variation of kinetic energy of the plate can be 

written in the form 
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In above relation, the differentiation with respect to the 

time variable t is defined with the dot-superscript; and (I0, 

I1, J1, I2, J2, K2) are mass inertias introduced as below 
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Now, by substituting the expressions for δU, δV and δK 

from Eqs. (18), (21), and (24) into Eq. (17) and applying 

integrating by parts, with collecting the coefficients of δu0, 

δv0, δwb, δws and δθ, following equilibrium equations are 

achieved 
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2.4 Constitutive equations 
 

The effective material properties of FG plate change 

continuously in the thickness direction according to the 

power-law distribution. The effective material properties 

(Pf) of FGM plate by using the power-law rule of mixture 

can be expressed by Reddy (2000) 
 

f c c m mP PV P V 
 (31) 

 

where Pc and Pm are the material properties of ceramic and 

metal sides, and Vc and Vm are the volume fraction of 

ceramic and metal surfaces, respectively, and are related by 
 

1c mV V 
 (32) 

 

Then the volume fraction of ceramic side is defined as 

follows 
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(33) 

 

where (n ≥ 0) is a non-negative parameter (power-law index 

or the volume fraction index) which determines the material 

distribution across the plate thickness. 

According to Eqs. (31)-(32), the effective material 

properties of FG plates are variable across the thickness 

direction with the following form 
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(34) 

 

In the present investigation, the material properties such 

as Young’s modulus E, Poisson’s ratio v, thermal expansion 

α, moisture expansion coefficient β, shear modulus G, and 

mass density ρ can be determined by Eq. (33). 

The linear constitutive relations of a FG plate can be 

written as 
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(35) 

 

where (ζx, ζy, ζz, ηyz, ηxz, ηxy) and (εx, εy, εz, γyz, γxz, γxy) are the 

stress and strain components, respectively. 

According to the value of εz, the elastic constants should 

have different relations. If we ignore the strain in the z 
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direction, the elastic constants versus the material properties 

of FG plate can be written as follow 
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If thickness stretching is considered, εz ≠ 0, then Cij are 

the three-dimensional elastic constants, given by 
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where 𝜆 𝑧 =
𝑣𝐸(𝑧)

 1−2𝑣 (1+𝑣)
 and  𝜇 𝑧 = 𝐺 𝑧 =

𝐸 𝑧 

2(1+𝑣)
 are 

Lamé’s coefficients. By substituting Eq. (14) into Eq. (35) 

and the subsequent results into Eqs. (19)-(20), the stress 

resultants are readily obtained as 
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   

 

, , , , , ,

, ,

b b b b

x y xy x y xy

s s s s

x y xy

N N N N M M M M

M M M M

 


 

(40) 

 

   

 

0 0 0, , , , , ,

, ,

b b b b

x y xy x y xy

s s s s

x y xy

k k k k

k k k k

    


 

(41) 

 

11 12 11 12

12 22 12 22

66 66

11 12

12 22

66

0 0

0 , 0 ,

0 0 0 0

0

0

0 0

A A B B

A A A B B B

A B

D D

D D D

D

   
   

 
   
      

 
 


 
    

(42) 

 

11 12 11 12

12 22 12 22

66 66

11 12

12 22

66

0 0

0 , 0 ,

0 0 0 0

0

0

0 0

s s s s

s s s s s s

s s

s s

s s s

s

B B D D

B B B D D D

B D

H H

H H H

H

   
   

    
   
   

 
 

  
 
   

(43) 

 

    44

55

2

2

0
, , , , ,

0

1

( ) ( )( )

1
( )

s

s s s

xz yz xz yz s

a
h

h

a

A
Q Q Q A

A

L
z

L
z g z dzf z

R

g zR

  









 
    

 

 
 

 
 

    
   

   
       



 

(44) 

 

Here the stiffness coefficients are defined as 
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and 
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2.5 Equations of motion in terms of displacements 
 

Due to generalized nonlocal strain gradient elasticity 

theory relations and introducing Eqs. (38)-(44) into Eqs. 

(26)-(30), the size-dependent equations of motion can be 

expressed in terms of displacements (δu0, δv0, δwb, δws, δθ) 

and the appropriate equations take the form 
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in which di, dij, dijl and dijlm are the following differential 

operators 
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3. Solution procedure 
 

This section is devoted to the solution of the governing 

equations of a functionally graded (FG) nanoplate. To this 

end, assuming the displacement fields of the waves 

propagating in the x-y plane with the following form of 

displacement field. 
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where A1 – A4 are the coefficients of wave amplitude which 

must be determined; kx and ky are the wave numbers of 

wave propagation along x- and y- directions, respectively; i 

=  −1; and   is eigenfrequency. Substituting Eq. (54) 

into Eqs. (48)-(52) gives 
 

     2 0K M    (55) 

 

in which [K] and [M] are the stiffness matrix and the mass 

matrix, respectively and the eigenvector can be given Δ = 

{A1, A2, A3, A4}
T. 

The dispersion relations of wave propagation in the FG 

nanoplate can be developed by setting the following 

determinant to zero 
 

   2 0K M   (56) 

 

 

Fig. 2 Comparison of phase velocity in rectangular FG 

nanoplates versus wave number 
 

 

By setting kx = ky = k, the phase velocity can be defined 

as 

C
k


  (57) 

 

The phase velocities of FG nanoplate at n = 1, λ = 0.2, 

μ0 = μ1 = μ = 1.0 are compared with those of presented by 

(Karami et al. 2018e) and the results are plotted in Fig. 2. 

It is revealed that presented model and solution can 

accurately predict the wave behaviors of FG nanoplates. 

 

 

4. Numerical results 
 

An analytical model is developed to represent a size-

dependent wave propagation analysis of FG nanoplate made 

of Al and Al2O3 while is resting on elastic Winkler-

Pasternak foundation and under hygrothermal environment. 

Also, the material properties of Al/Al2O3 FG plate are 

tabulated in Table 1. Governing equations to describe the 

problem are obtained based on a new size-dependent quasi 

3D plate theory. A three parametric nonlocal strain gradient 

theory of elasticity is applied in order to capture the small-

scale effects. In this study, various non-dimensional 

parameters are used as follows 
 

4 2

2

W P

3
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11 11

K )a (d ) 1,K , n ( 2(1 )m
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Relying on various theories of elasticity, the wave 

dispersion relations between the phase velocity and the 

wave number are studied and these results are illustrated in 

Fig. 3 for different values of power-law indices. As 

expected, the wave dispersion relations for different 

material distributions seem to be similar, and the power-law 
 

 

Table 1 Material properties of the used (Al/Al2O3) FG 

nanoplate 

Material 
E 

(GPa) 

ρ 

(kg/m3)  
v 

α 

(/K) 

β 

 (wt.%H2O)-1 

Aluminum (Al) 70 2702 0.3 23×10-6 0.44 

Alumina (Al2O3)  380 3800 0.3 7×10-6 0.001 
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(a) n = 0.2 (b) n = 0.5 

 

  
(c) n = 1 (d) n = 2 

Fig. 3 Wave dispersion curves of FG nanoplate versus wave number for different material distributions and different 

elasticity theories 

  
(a) λ = 0.05 nm (b)  λ = 0.1 nm 

 

  
(c) λ = 0.15 nm (d) λ = 0.3 nm 

Fig. 4 Wave dispersion curves of FG nanoplate versus wave number for different nonlocal and strain gradient 

parameters (n = 1) 
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index n plays a significant role on the wave dispersion 

relations between phase velocity and wave number of FG 

nanoplate. With increasing the power-law index n the phase 

velocities will decrease for all values of wave number. For 

low wave numbers, the phase velocities of various 

continuum theories (CET: Classical Elasticity Theory; NET: 

Nonlocal Elasticity Theory; SGT: Strain Gradient Theory; 

NSGT: Nonlocal Strain Gradient Theory; B-H NSGT: Bi-

Helmholtz Nonlocal Strain Gradient Theory) remain almost 

unchanged. One of the interesting results is that the phase 

velocities of different elasticity theories are almost identical 

when the wave number is smaller than 0.1 1/nm. It means 

that when k < 0.1 1/nm, all the five continuum theories can 

product good results. However, when k > 0.1 1/nm, 

different continuum theories product different trends. 

The variation of phase velocity in FG nanoplate under 

the nonlocal and strain gradient effects is plotted in Fig. 4 at 

power law index n = 1. Generally, the phase velocities are 

almost identical for different nonlocal strain gradient 

parameters before the certain value of wave number. Due to 

presented model, the variation of phase velocity after that 

certain wave number depends on the values of nonlocal 

strain gradient parameters. It is concluded that, the phase 

velocities become more affected by these scale parameters 

at higher wave numbers. Especially, by ignoring the 

nonlocality, the numerical results of conventional strain 

gradient theory are rendered. In this situation, one can 

observe that after a certain value of wave number, phase 

velocity of the system tends to infinity. It is also concluded 

that when strain gradient parameter is smaller than nonlocal 

parameters, raising wave number after the peak value leads 

to decrease in phase velocity of FG nanoplate. But, when 

strain gradient parameter is larger than a nonlocal 

parameter, raising wave number leads to larger phase 

velocities. Expressing in a different way, according to 

stiffness-hardening mechanism observed for strain gradient 

elasticity, with the increase of strain gradient parameter, we 

have larger phase velocities. Another significant note is that 

higher order nonlocal parameter has more reducing 

influence on phase velocities in comparison with the lower 

order nonlocal parameter. Thus, it is very important to have 

two nonlocal parameters and a strain gradient parameter for 

wave propagation study in nanostructures. 

 

 

To study the environmental effect, the variation of phase 

velocity in FG nanoplate under the temperature and also 

moisture differences versus lower and higher order nonlocal 

parameters at k = 1/nm, μ1 = 0.2, n = 1 is plotted in Fig. 5. 

Generally, the FG nanoplate without environmental impact 

has larger phase velocities than similar nanoplate including 

that. However, the moisture effect due to the fact that 

adsorption of water molecules produces swelling and 

degradation is more efficient than the temperature deference 

to decrease the phase velocities in FG nanoplate. Also, with 

an increase in temperature or moisture, the role of size 

effects on the wave characteristics in FG nanoplate is 

increased. 

Frequency of FG nanoplates versus Winkler-Pasternak 

parameters for different power-law index is plotted in Fig. 6 

at k = 0.1/nm, l = 0.1, μ0 = 0.2, μ1 = 0.5. One can observe 

that increasing in the stiffness of elastic foundation 

parameters enhances the rigidity of nanoplates and leads to 

higher frequencies for all of power-law index. In addition, it 

is seen that the influence of the Pasternak parameter on the 

wave frequency is more prominent than that of the Winkler 

parameter. 

As final study on the wave characteristics, the variation 

of phase velocity of FG nanoplate on elastic foundation 

with respect to lower order and higher order nonlocal 

 

 

 

Fig. 6 The effects of material composition on the frequency 

of FG nanoplates for various Winkler-Pasternak 

parameters 

  
(a) (b) 

Fig. 5 Phase velocity variation of FG nanoplate under thermal (a) and moisture (b) differences versus lower-order 

nonlocal and strain gradient parameters 
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parameters for different length scale parameters at a fixed 

wave number k = 1 1/nm is plotted in Fig. 7 when n = 1, Kw 

= 100, KP = 20.Generally, the phase velocities decreases for 

every value of length scale parameter for increasing lower 

order and higher order nonlocal parameters. Although, with 

the increase of length scale parameter, one can see enlarges 

of the phase velocities according to the stiffness-hardening 

behavior. 

 
 

5. Conclusions 
 

A new size-dependent quasi-3D plate theory with 

stretching effect for the wave dispersion analysis of 

functionally graded plates while resting on elastic 

foundation and under the hygrothermal environment is 

presented in this paper. The main advantage of this 

approach is that, in addition to incorporating the thickness 

stretching effect. The equations of motion are obtained 

based on quasi-3D plate theory in conjunction with bi-

Helmholtz nonlocal strain-gradient elasticity theory by 

utilizing the principle of virtual work using Hamilton's 

principle. The stiffness-softening mechanism in 

nanostructures is captured via two nonlocal parameters, 

while the stiffness-hardening mechanism is considered via a 

strain gradient parameter. It is concluded that nonlocal and 

strain gradient parameters exert stiffness-softening and 

stiffness-hardening mechanisms at large wave numbers. 

Although, influences of nonlocality and strain gradient are 

negligible at small wave numbers in our study. Also, with 

an increase in the power-law index, the phase velocity of 

FG nanoplate will decrease. Moreover, it is shown that 

hygrothermal environment may play important roles on the 

variation of phase velocities in some cases. 
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