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1. Introduction 

 

Aeronautical, space and marine structures are among 

main fields where both the structural weight and the overall 

strength are key design criteria. Nowadays, the thin-walled 

structures are major structural elements especially wherever 

the stiffness to weight ratio is a main affording issue. The 

stiffness to weight efficiency and in demand stiffening is 

also a main gain of utilizing composite reinforced laminated 

materials. As a result, the design and application of thin-

walled plate and shell laminated composite material 

arrangements is a well-known field of study. The common 

composite designs consider constant physical lamina 

properties throughout entire ply area by usage of either 

prepreg or woven strengthening fibers. But a ply with 

variable mechanical properties could be achieved by 

changing the fiber placement characteristics for example by 

change in orientation angle with respect to the locality. With 

growing automated fiber placement technologies, it is 

possible to fabricate composite plies with variable fiber 

orientations within their geometrical domain. As a result of 

changing the fiber orientation angle, the ply advantages 

variable directional stiffness properties through the 

geometry surface and may be called as a variable stiffness 

composite laminate (VSCL). 

A widespread defect of laminated structures is the ply 

debonding phenomenon called delamination. The 

delamination occurrence makes total strength reduction of 
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the structure and activates low energy local instability and 

failure modes. So the estimation and calculation of the 

stiffness reduction effects of delamination damage on the 

structure‟s mechanical and stability behavior is of high 

demand. In the interior parts of the aforementioned 

engineering structures, the need for cable and pipe 

transmission or applying weight reduction design policies 

leads to design and application of perforated panels. The 

knowledge about the mechanical behavior of these type of 

structural elements receives high interests. During sizing 

design procedure of plate and shell structures under in-plane 

excitations, the stability becomes a critical design criterion. 

Under a general in-plane dynamic loading scheme, with a 

constant mean value and a varying harmonic part with an 

arbitrary loading frequency, it is possible for instability 

conditions to emerge called parametric or dynamic 

instability conditions. The excitation conditions are 

prevalent in case of mechanical structures as well as fluid-

structural interactions. 

Early reported studies on curvilinear fiber VSCL 

structures could be traced back to the work by Hyer and Lee 

(1991) on flat plates. More recently, Akhavan and Ribeiro 

(2011) studied the free vibration of VSCL plates made from 

curvilinear fibers based on a third-order shear deformation 

theory. An extended review on works that investigate the 

mechanical behavior of variable stiffness composite 

laminated panels is reported by Ribeiro et al. (2014). Their 

review is concerned the buckling, failure and vibrations in 

laminates reinforced by curvilinear fibers with some other 

issues also being addressed. Doubly-curved panels 

reinforced by curvilinear fibers are studied by Tornabene et 

al. (2016) using higher order theories. Numerical 
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applications based on both higher-order equivalent single 

layer (ESL) and layer-wise (LW) theories are presented to 

evaluate the curvilinear fiber influence on the static analysis 

by using the generalized differential quadrature (GDQ) 

method. 

The problem of free vibration of squared and circular 

composite plates with delaminations around internal cutouts 

were concerned by Ju et al. (1995) by using a finite element 

approach. Numerical examples including composite plates 

with delaminations around circular holes or square cutouts 

were presented. It was noted that the effect of the 

delamination on the natural frequencies is mode-dependent 

while there are cases where delaminations may change the 

natural frequencies, even though the mode shapes are not 

significantly affected. Parhi et al. (2001) presented dynamic 

analysis of a squared plate with delamination. A first order 

shear deformation finite element formulation was utilized 

by employing an eight-node isoparametric element. The 

effects of delamination in conjunction with various 

boundary conditions, lay-ups and geometries were studied. 

Hu et al. (2002) studied the vibration response of 

moderately thick laminated plates containing delamination 

using a simple higher order finite element method. Two 

different approaches were investigated to detect a 

delamination in laminates. Sahu and Datta (2002) analyzed 

the parametric instability behavior of curved panels with 

cutouts subjected to in-plane static and periodic 

compressive edge loads by using a first order finite element 

method. Sanders‟ beside the Love‟s and Donnell‟s shallow 

shell theories were assumed. The effects of static and 

dynamic load factors, geometry, boundary conditions and 

the cutout geometry on the principal instability region of 

curved panels with cutouts were studied in detail using 

Bolotin‟s method. The effects of time variation in external 

pressure and material properties on the dynamic buckling 

time response of orthotropic cylindrical shells of variable 

thickness are studied by Sofiyev et al. (2003) by using a 

Galerkin approach and Ritz typr variational method. Kumar 

and Shrivastava (2005) developed a higher order shear 

deformation finite element formulation to study the free 

vibration response of moderately thick square composite 

plates with a central rectangular cutout and a delamination 

around the cutout. The effects of material orthotropy, 

boundary conditions, thickness ratio, and delamination size 

and location around the cutout on the free vibration 

response were studied. Yang and Fu (2007) examined the 

parametric instability of a thin-walled laminated cylinder 

with delamination. The Rayleigh-Ritz method and 

Heaviside-type displacement function technique were 

utilized. The problem governing Mathieu equations were 

solved through Bolotin‟s approximation method and the 

effects of external excitation amplitude, delamination 

location and size, and the material properties were studied. 

The free vibration analysis of laminated composite skew 

plates with delamination around a centrally located 

quadrilateral cutout is carried out by Park et al. (2009). The 

high-order shear deformation theory (HST) finite element 

formulation was utilized for the analysis of presence of 

delamination around cutout. The effect of the interactions 

between the skew angle and cutout size, delamination area, 

and length-to-thickness ratio was studied. Fazilati and 

Ovesy (Ovesy and Fazilati 2012, Fazilati and Ovesy 2013) 

developed versions of finite strip methods, namely semi-

analytical and B-spline methods, based on higher order 

shear deformation theory and analyzed the static buckling, 

free vibration and parametric instability problem of 

longitudinally stiffened panels having rectangular internal 

cutouts. Two different cutout modeling approached were 

introduced and examined. The effects of perforations on the 

instability characteristics of the panels were investigated. 

Noh and Lee (2014) studied the parametric instability of 

delaminated composite skew plates under periodic in-plane 

loads based on the higher order shear deformation finite 

element method. The upper and lower boundaries of the 

instability regions were determined using Bolotin‟s method. 

The behavior of laminated skew plate structures with 

various delamination sizes, skew angle and layups beside 

the effect of the parametric loading on the dynamic 

instability regions was also analyzed. Ovesy et al. (2014) 

developed a layer-wise B-spline finite strip formulation 

based on first order shear deformation theory and analyzed 

the stability problem of laminated plates containing through 

the width delamination. The delamination region simulated 

using step displacement approximation functions. The 

influence of length and also the position of delamination on 

the buckling behavior and natural frequencies of the 

structure were investigated. Mohanty et al. (2015) 

investigated the parametric instability of laminated plates 

containing delamination internal region. A first order shear 

deformation finite element approach beside the Bolotin‟s 

first order approximation was utilized. Sofiyev and 

Kuruoglu (2015) studied the parametric instability of 

sandwich cylindrical shell with FG core under static and 

time dependent periodic axial compressive loads. The 

governing equations are derived using Galerkin‟s method 

based on FST Donnell‟s shell theory. Hirwani and coauthors 

(Hirwani et al. 2016) studied the effects of delamination on 

the free vibration behavior of laminated composite curved 

panels of different geometries. The laminated structure with 

seeded delamination was modelled using a higher order 

shear deformable finite element approach. Some 

experimental results were also presented for a laminated 

plate with different delamination size, location and 

positions. The effects of size, location and position of the 

delamination on the free vibration behavior of laminated 

composite shell panel has been investigated. Recently, 

Sofiyev et al. (2017) investigated the dynamic instability of 

truncated orthogonal FG conical shells under dynamic axial 

load based on FST Donnell‟s theory by using the Galerkin‟s 

approach. The effects of material mixture, orthotropy, and 

geometry on the main areas of the instability are then 

discussed. The dynamic behavior of variable stiffness 

composite laminated (VSCL) plates with curvilinear fiber 

orientation subjected to inplane end-loads was investigated 

by Fazilati (2017). The panel assumed containing internal 

square delamination region. B-spline finite strip method 

based on both classical as well as higher order shear 

deformation plate theories was adopted to explain the 

structural behavior. The effects of change in curvilinear 

fiber orientation angles and some model specifications on 
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the structural stability have been studied. 

The current research, for the first time, is dealing with 

the numerical analysis of the flat as well as moderately 

thick variable stiffness laminated curved cylindrical panels 

containing internal cutout and delamination region. A B-

spline finite strip formulation is developed based on the 

higher order shear deformation theory in conjunction with 

the Koiter-Sanders theory of shallow shells. Variable 

stiffness due to fiber orientation variation through the 

longitude is considered. The static buckling, natural 

frequencies and parametric instability problems are 

concerned under uniform in-plane end loading scheme. A 

longitudinal uniform throughout the whole panel pre-stress 

loading is assumed including a constant and a time-

harmonic component. The instability load frequency 

regions corresponding to the assumed parametric loading is 

derived using the Bolotin‟s first order approximation. The 

friction effects, contact conditions, and delamination growth 

phenomenon at delaminated interfaces and edges are 

overlooked. In order to demonstrate the capabilities of the 

developed formulation in predicting stability behavior of 

the thin-walled VSCL structures, some representative 

results are obtained and compared with those from the 

literature wherever available. Various examples are 

employed to verify the justification, accuracy and efficiency 

of the present novel formulation. It is shown that the B-

spline FSM is a proper tool for extracting the stability 

boundaries of perforated and delaminated VSCL curved 

panels. 
 

 

2. Formulation 
 

A typical 3-D curved cylindrical laminated panel with a 

squared embedded cutout and a delamination region is 

considered. The delamination may be generally of either 

through-the-width or embedded type, with single or 

multiple occurrence in thickness direction. There is no 

limitation for the delamination either on its position or 

geometry. The panel laminates are stiffened using equally 

spaced curvilinear fibers where the fiber orientations 

changes linearly in the axial longitude. The geometry is 

divided into numbers of longitudinally adjacent cylindrical 

finite strips with curved crossway. Fig. 1 shows a typical 

panel geometry of total width b, length L and total thickness 

t beside a typical numerical mesh. The curved strips have 

length L and curved width bs. Typical cutout zone and 

 

 

 

Fig. 1 Typical curved panel containing single embedded 

cutout surrounded by delamination with the finite 

strip mesh (left), typical curved finite strip (middle) 

and curvilinear fiber placement (right) 

embedded single delamination region are also indicated in 

the figure. 

The displacement field inside the strip is approximated 

based on a Reddy-type third order shear deformation theory 

which assures zero shear stresses at both top and bottom 

surfaces of the shell and is expressed as (Fazilati and Ovesy 

2013) 
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Where u, v, w are the displacement components of any 

arbitrary point, u0, v0, w0 are the corresponding displace-

ment components on the strip mid-surface, and bx, by are the 

rotations around y and x axis, respectively. 

In the context of B-spline finite strip method, the mid-

surface displacement field is approximated using series of 

multiplication sets of independent functions in longitudinal 

and crosswise directions. Series of B3-splines functions are 

utilized in longitudinal direction while inplane linear 

Lagrangian functions in conjunction with out of plane third 

order Hermitian ones are assumed in transverse direction 

(Fazilati and Ovesy 2013). Any type of boundary 

constraints (i.e., free, simply supports, clamped) may be 

implemented according to the approximation displacement 

functions chosen. 

The linear strains on cylindrical curved geometry 

according to Koiter-Sanders theory of shallow shells may 

be expressed as 
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where „,‟ defines a differentiation operator. Substituting the 

displacement functions (Eq. (1)) into the strain equations 

(Eq. (2)), the strip strain could be expanded as 
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The solution of the stability problem is sought through 

the application of the principle of virtual work. The total 

energy of a strip may be defined as summation of kinetic 

(T), geometrical pre-stress strain energy (Ug), and elastic 

strain (Ue) energy components 
 

Π = 𝑈𝑒 − 𝑈𝑔 − 𝑇 (5) 
 

The energy terms could be expressed as 
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With denoting of an unchanged material mass density as 

𝜌, differentiation with respect to time as upper dot and a 

matrix transpose operator as superscript T. The force 

resultants (N, 𝑀, O, P, Q, R, T, U) are location dependent 

due to change in the fiber orientation angles on all plies and 

can be related to the strain terms via the curvilinear fiber 

laminated material equivalent stiffness matrices through: 

(Fazilati and Ovesy 2013) 
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Applying a longitudinal uniform loading scheme as 

superposition of a constant (static) component beside a 

harmonically changing (dynamic) one 

 

𝑁𝑥 = 𝑎𝑆𝑁𝑐𝑟 + 𝑎𝐷𝑁𝑐𝑟 cos⁡(𝜔𝑡) (8) 

 

where w, aS, aD and Ncr are the exciting load frequency, 

unchanged loading component coefficient, varying loading 

component coefficient, and the static buckling load of the 

panel, respectively. Substituting of the strain and force 

resultants and loading scheme in energy integral Eq. (6), 

integrating the energies throughout the strip area, 

minimizing the energy equilibrium Eq. (5), factorizing with 

respect to the degrees of freedom vector, and some further 

handlings including assembling the strip equations and 

implementing of necessary boundary conditions, the 

governing equation of the parametric instability of the 

VSCL curved panel will be obtained and simplified as 
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Where M, K, Kg
S, and Kg

D are the global structural 

matrices corresponding respectively to kinetics energy, 

elastic strain energy and geometrical prestress energies 

corresponding to static and dynamic components of loading. 

d is the global vector of unconstrained degrees of freedom. 

By implementing of the Bolotin‟s first order approximation 

corresponding to excitation frequency of twice the 

fundamental frequency of the model, which gives more 

critical conditions, the time varying vector, d, may be 

approximated as 
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With time-independent coefficient vectors, A and B, 

which are called degrees of freedom vectors. Substitution of 

Eq. (10) into Eq. (9), factorization of harmonic terms and 

setting their coefficients to zero leads to a set of 

homogenous equations. For a non-trivial solution of 

unknown degrees of freedom vectors, A and B, the 

determinants of the coefficient matrices should be set to 

zero. The governing Eq. (9) is then reduced to two 

subsequent eigenvalue problems as 
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Those equations are corresponding to vectors A and B 

and could be solved separately. The solution process reveals 

two boundaries of the instability region of the structure in 

terms of loading parameter sets of (aS, aD, w). It is to be 

remarked here that the governing Eq. (9) in case of time 

independent conditions (i.e., zero dynamic loading) would 

reduce to a well-known static buckling equation. Further-

more, in case when no loading exists, the equation reduces 

to a free vibration problem governing equation. The 

frequencies and mode shapes in all types of problems may 

be extracted by utilizing a QR eigenvalue decomposition 

algorithm. 

Effects of existence of any defect including either cutout 

or delamination on the structural behavior and its governing 

equation may be taken into account by employing proper 

techniques. The modeling of the cutout defect is formulated 

through using the “Negative stiffness approach” as is 

completely characterized previously in (Ovesy and Fazilati 

2012). In this approach a perfect numerical model is utilized 

and the effects of the cutout is established through 

excluding the cutout zone from the energy integrations 

intervals of Eq. (6). 

The technique for modeling the delamination effects is 

through using multiple numerical models of the same 

geometry but different in the through-thickness definitions. 

In the delamination region, the plate is actually a set of two 

tangent separate thinner surfaces. To bring a single 

delamination defect into consideration, the main idea is to 

use double strips in the thickness direction in order to 

separately simulate two surfaces. This means that the whole 

plate or shell is numerically modeled as composition of two 

analogous layers of strip meshes with dissimilar lay-ups 

characteristics. Inside the delamination zone, the two layers 

are unconnected while out of the delamination zone, all of 

degrees of freedom of the two layer must rigidly linked to 

each other via knots‟ merging process. The corresponding 

strips in upper and lower layers have the same geometrical 

and numerical characteristics but are different in layup. 

According to Fig. 2, the strip knots of the same planar 

positions are merged together in all the perfect panel areas 

and also at the edges of the delamination zone. So, it is 

necessary to have knots placed on the edges of the 

delamination region. This approach could also be 

generalized for the case of a geometry with N delamination 

in thickness direction with defining N + 1 separate tangent 

layers. Every strip layer has the same geometry properties 

but are different in bending stiffness. To fulfill the true 

bending properties of every layer in a strip with respect to 
 

 

the plate mid.-surface, every layer lay-up is considered 

similar to the whole plate layup with the redundant layers‟ 

material changed to a null, stiff-less and weight-less one as 

is shown in Fig. 2. These consideration guarantees the 

physical conditions at the edges of the delamination zone. 

As a variable stiffness ply, it is assumed that the fiber 

orientation angle changes linearly along the axial direction 

of the strip geometry. The changing fiber angle is denoted 

by a two-angle set <T0, T1> where the former one and the 

latter represent the fiber angle at the strip‟s middle length 

and the strip‟s two ends, respectively (Fazilati2017). 

Diagram of Fig. 1 depicts the typical changing fiber 

orientation scheme. The fiber angle at every arbitrary point 

in the geometry may be expressed by the following linear 

equation 
 

𝜃 𝑥 = 𝑇0 +
 𝑥 − 𝐿/2 

𝐿/2
 𝑇1 − 𝑇0 ,     0 < 𝑥 < 𝐿 (12) 

 

 

3. Results and discussion 
 

In this section the results of some representative 

structural stability problems of curved VSCL panels 

containing cutout and delamination defects are extracted 

using the developed higher order finite strip method and 

compared with some available in the literature. Some 

parametric studies are also provided using the developed 

numerical tool. 

An isotropic square cylindrical panel containing a 

central square perforation is considered with all edges 

clamped. The cutout area is 25% of total panel area. The 

geometry specifications as well as material properties are 

given as follows 
 

 
 
 

 
 
𝐸 = 68.796𝐺𝑃𝑎  , 𝜐 = 0.3  ,   𝜌 = 2720 𝑘𝑔𝑚−3

𝐿 = 𝑏 = 0.5 𝑚  ,
𝐿

𝑡
= 250  ,

𝐿

𝑅
= 0.25

𝑐𝑥 = 𝑐𝑦 = 𝑐  ,
𝑐

𝐿
= 0.5

𝑑𝑥 = 𝑑𝑦 = 𝑐  (𝑛𝑜 𝑑𝑒𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

  (13) 

 

The convergence study on first four natural frequencies 

of the panel is performed by using the higher order FSM 

and compared with the results reported by Sahu and Datta 

(2002) and Sivasubramonian et al. (1999). Table 1 presents 

the convergence of the calculated FSM results with increase 

in number of strips. The spline FSM frequencies are 
 

 

 

Fig. 2 Delamination modeling approach overview for a mid-thickness delamination on typical four-layer laminate 
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Fig. 3 First two free vibration mode shapes of the 

perforated curved panel 
 

 

relatively in good agreement compared to those extracted 

from FEM. The two first free vibration mode shapes of the 

perforated curved panel are also acquired and plotted in Fig. 

3. 

A squared flat laminated plate containing a central 

square cutout is considered. A 40-layer lay-up of [(45/02)3 

(90/02/90)2]S is assumed and simply supported end 

constraints are applied. The square cutout located at the 

center of the panel with edge fractions of (c/L) 0, 0.2 and 

0.4. The orthotropic ply material properties and panel 

geometry specifications are 

 

 

 
 
 
 
 

 
 
 
 
𝐸1 = 130 𝐺𝑃𝑎,   𝜐12 = 0.35,    𝜌 = 1500 𝑘𝑔𝑚−3

  
𝐸1

𝐸2
= 13,   

𝐺12

𝐸2
= 0.5,   

𝐺23

𝐸2
= 0.33

𝐿 = 𝑏 = 0.45 𝑚,
𝐿

𝑡
= 75,

𝐿

𝑅
= 0

𝑐𝑥 = 𝑐𝑦 = 𝑐,
𝑐

𝐿
= 0.0; 0.2; 0.4

𝑑𝑥 = 𝑑𝑦 = 𝑐  (𝑛𝑜 𝑑𝑒𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

  (14) 

 

The first four natural frequencies of the perforated 

laminated plate are extracted using the HST-FSM 

formulation and are compared with those from the first 

order shear deformation theory (FST) as well as third order 

shear deformation theory (HST) finite element formulations 

of Kumar and Shrivastava (2005) and Park et al. (2009) as 

given in Table 2. The results show a very good accuracy of 

HST-FSM calculations in comparison with results from the 

literature. It is notable that the natural frequency of the 

panel with larger cutout is higher than the perfect panel but 

for the case of higher more complex modes, larger cutout 

area corresponds with lower frequencies. 

The same laminated flat panel is considered with central 

cutout and a delamination region surrounding the perfora-

tion. A central square cutout of size (c/L) 0.1 is considered 

while surrounded by delamination with width fractions ((d ‒ 

c)/2L) of 0, 0.1 and 0.2. The results presented in Table 3 

shows a very good accuracy of FSM calculations in 

comparison with reported ones. 

In the remainder of this section, some parametric studies 

are performed on the effects of different geometrical as well 

as lay-up specifications on the panel‟s static as well as 

dynamic instability criteria. The parameters under 

investigation are involving variable fiber orientation lay-

ups, delamination region area, panel curvature, and delami-

nation position in the laminate thickness. The assumed 

typical geometry specifications could be summarized as 
 

1.0 , / 10

/ 0.0 / 0.25 / 0.5 / 1.0 / 2.0 / 4.0

, / 0.1

, ( ) / 0.0 / 0.1 / 0.3 / 0.5 / 0.7

x y

x y

L b m  L t

L R

c c c c L

d d d d c L

  



  

   






  

(15) 

Table 1 First four natural frequencies in Hz for full clamped isotropic curved panel with central 

square cutout (no delamination) 

Method Strips Mode I Mode II Mode III Mode IV 

Present FSM 

16 207.66 213.84 317.07 355.35 

20 198.77 203.59 309.68 337.57 

24 194.28 198.51 306.49 330.17 

28 191.63 195.54 304.81 326.39 

32 190.01 193.75 303.86 324.38 

FST* FEM 

 (Sahu and Datta 2002) 
 184.73 187.52 295.68 310.3 

FEM 

(Sivasubramonian et al. 1999) 
 185.3 188.2 295.9 309.7 

 

* FST: first order shear deformation theory 
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The panel is laid-up from 4 or 8 layers of variable 

stiffness plies. The ply orthotropic material properties are 

assumed as follows 
 

1 1 2 12 2

3

23 2 12

130 , / 13 , / 0.5

/ 0.33, 0.35 , 1500

E GPa E E G E

G E kgm 


  

  



  

(16) 

 

 

 

 

3.1 Effects of fiber angle variation 
 

A fully-simply supported four-layer VSCL curved panel 

is considered containing an internal central square cutout 

and a central mid-thickness delaminated region. A length to 

radius ratio (L/R) of 1.0, cutout size ratio (c/L) of 0.2 and 

mid-thickness delamination size ratio ((d-c)/L) of 0.3 is 

Table 2 Normalized first four natural frequencies for simply supported square flat laminate with 

different central square cutout sizes without delaminations (𝑤 = 𝜔𝑏2/(ℎ 𝐸2/𝜌) 

  
Present 

FSM 

FEM 

(Kumar and 

Shrivastava 2005) 

FEM  

(Kumar and 

Shrivastava 2005) 

FEM 

(Park et al. 2009) 

FEM  

(Park et al. 2009) 

c/L Mode (HST) (FST) (HST) (FST) (HST) 

0 

1 13.58 13.59 13.71 13.68 13.59 

2 29.07 29.11 29.5 29.89 29 

3 37.63 37.79 38.3 39.1 37.66 

4 53.70 53.93 54.85 55.56 53.6 

0.2 

1 13.28 13.15 13.4 13.16 13.11 

2 28.44 28.39 29.06 29.21 28.24 

3 36.98 35.79 36.9 37.15 35.52 

4 52.29 52.4 53.42 53.88 51.96 

0.4 

1 14.10 14.24 14.86 14.22 14.17 

2 26.05 25.65 26.68 26.21 25.64 

3 28.72 28.64 29.91 29.38 28.6 

4 48.64 48.71 49.76 50.18 48.26 
 

Table 3 Normalized first four natural frequencies for simply supported square flat laminate with 

central square cutout and different delamination sizes. (𝑤 = 𝜔𝑏2/(ℎ 𝐸2/𝜌) 

  
Present 

FSM 

FEM (Kumar and 

Shrivastava 2005) 

FEM (Kumar and 

Shrivastava 2005) 

FEM (Park 

et al. 2009) 

(d – c) / 2L Mode (HST) (FST) (HST) (HST) 

0 

1 13.53 13.60 13.40 13.401 

2 29.28 29.57 29.07 29.062 

3 37.60 38.33 37.65 37.583 

4 53.59 54.51 53.51 53.832 

5 55.18 55.41 55.08 -- 

6 76.39 78.51 78.16 -- 

0.1 

1 13.52 13.41 13.35 13.272 

2 28.35 28.98 28.04 27.972 

3 35.14 36.33 34.86 35.184 

4 53.35 54.36 52.84 53.805 

5 54.85 54.08 53.54 -- 

6 74.40 77.79 74.92 -- 

0.2 

1 13.37 13.26 13.25 12.984 

2 25.08 25.71 25.01 25.421 

3 28.43 29.44 28.32 28.938 

4 47.67 49.07 46.9 44.159 

5 48.23 49.47 47.72 -- 

6 49.96 61.97 49.86 -- 
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Fig. 4 Natural frequencies (up) and DIR (down) of 

simply supported curved VSCL panel with 

layup [ < 45, θ >]S (a
s = 0) 

 

 

assumed. The plies are assumed strengthened using 

curvilinear fibers where either middle-length angle (T0) or 

end angles (T1) is kept unchanged and the other alters. The 

fixed fiber angle is taken 45 degrees with respect to the 

longitude. The study on the first five natural frequencies as 

well as dynamic instability regions (DIR) under uniform 

longitudinal excitations are performed while ply layups 

varies. Fig. 4 depicts the results for change in natural 

frequencies and DIR of the panel with frozen middle-length 

angle but different end fiber angles of [ < 45, θ >]S. The 

results show that the stability characteristics of the laminate 

improves as the end fiber angle increases. But it is also 
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Fig. 5 natural frequencies (left) and DIR (right) of 

simply supported curved VSCL panel with 

layup [ < θ, 45>]S (a
s = 0) 

 

 

notable that the maximum stability (high natural frequency 

and high-frequency instability region) are obtained in case 

of layup [ < 45, 75 >]S, i.e., the tow-steered layup with 

middle-length angle 45 and end fiber angles of 75. 

Fig. 5 presents natural frequencies and DIR changes as 

the middle-length angle variates and the end fiber angle is 

fixed at 45. The uppermost stability of the laminate is 

obtained for the case of [ < 60, 45 >]S and [ < 75, 45 >]S 

layups while the worst instability characteristics are 

observed for T0 = 0. A sample fundamental vibration mode 

shape of the perforated curved VSCL panel with 
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delamination is illustrated in Fig. 6 where the opening of 

the delamination region is noticeable. 

 

3.2 Effects of change in delamination size 
 

The same fully-simply supported four-layer VSCL 

curved panel with layups [ < 45, 60 >]S and [ < 60, 45 >]S 

are considered with an embedded central square cutout and 

central delaminated regions of different areas. A length to 

radius ratio (L/R) of 1.0, cutout length ratio (c/L) of 0.1 and 

mid-thickness delamination size ratios (d/L) of 0.1, 0.2, 0.4, 

0.6, and 0.8 (equal to (d-c)/L ratios of 0.0, 0.1, 0.3, 0.5, and 

 

 

 

 

0.7) are assumed. Illustrations of Figs. 7-9 show the 

stability properties of the perforated curved VSCL panel 

with different central delamination region sizes. The study 

on the buckling critical load, natural frequencies and 

dynamic instability regions under uniform longitudinal 

excitations shows that a delamination region smaller than 

0.2 edge ratio could not noticeably affect the stability 

properties of the curved panel. But wider delaminations can 

primarily weaken the stability behavior. This reduction 

especially affects the static instability (buckling) and load 

tolerating characteristics. Furthermore, the panel with 

higher T0, i.e., 60, provides the most stable design layup. 
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Fig. 6 The fundamental vibration mode shape of curved VSCL panel with cutout and delamination 

  

Fig. 7 The first five critical buckling load ratio (σcr/E2) of perforated VSCL curved panel with different delamination areas 

[ < 60, 45 >]S (left), [ < 45, 60>]S (right) 
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3.3 Effects of curvature 
 

The panel layups [ < 45, 60 >]S and [ < 60, 45 >]S are 

considered with an internal central square cutout and an 

edge delaminated region. The panel curvature ratio (L/R) is 

varied from 0.0. to 4.0 while a constant cutout edge ratio 

(c/L) of 0.1 and mid-thickness delamination edge ratio ((d-

c)/L) of 0.1 are assumed. The extracted results for critical 

buckling load, natural frequencies and dynamic instability 

regions of perforated VSCL panel with different curvatures 

and lay-ups are presented in Figs. 10, 11, and 12, 

 

 

 

 

respectively. The study on the buckling critical load, natural 

frequencies and dynamic instability regions under uniform 

longitudinal excitations shows that the curved panels are 

more stable than a flat panel both statically and 

dynamically. In case of a lower radius of curvature, the 

dynamic instability region of the panel shifts toward higher 

loading frequencies with meaning-less changes in the 

instability region size. This means that higher curvatures 

(with lower radius) makes the panel more stable. The results 

depicted in figures shows that the curvature effects is more 

considerable in layup [ < 60, 45 >]S. 

 

 

 

 

  

Fig. 8 The first five natural frequencies of perforated VSCL curved panel with different delamination areas 

[ < 60, 45 >]S (left), [ < 45, 60>]S (right) 

  

Fig. 9 The dynamic instability regions of perforated VSCL curved panel with different delamination areas 

[ < 60, 45 >]S (left), [ < 45, 60>]S (right) 
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3.4 Effects of delamination location 
 

Finally a simply supported perforated curved VSCL 

panel with 8-layer layup [ < 60, 45 >]S is considered and 

the effects of change in the delamination position through 

the laminate thickness is examined. The panel curvature 

ratio (L/R) is kept fixed at 1.0 along with a cutout edge ratio 

(c/L) of 0.1 and delamination edge ratio ((d-c)/L) of 0.3. 

The square central delamination region is considered in the 

mid-thickness beside three through the thickness possible 

 

 

 

 

positions. 

Fig. 13 shows the first five natural frequencies as well as 

DIR of the curved panel with altered delamination positions 

through the thickness. Results show that the change of the 

delamination position has limited effects on the reduction of 

natural frequencies especially in first mode. But a 

delamination located at higher position levels reduces the 

load tolerance of the structure. It is also shown that the 

dynamic instability regions of the panel are not changed in 

base frequencies when the delamination travels towards the 

  

Fig. 10 The first five critical buckling load ratios (σcr/E2) of perforated VSCL panel with different curvatures 

[ < 60, 45 >]S (left), [ < 45, 60>]S (right) 

  

Fig. 11 The first five natural frequencies of perforated VSCL panel with different curvatures 

[ < 60, 45 >]S (left), [ < 45, 60>]S (right) 
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upper position, but it is also notable that a delamination at 

position 1 or 2 provides a narrower DIR zone which means 

a more limited instability. A delamination in position 3, 

instead, shows reduction in natural frequency and more 

critical DIR as well. 

 

 

4. Conclusions 
 

The research is dealing with the numerical analysis of 

 

 

 

 

the flat as well as curved cylindrical moderately thick 

laminated panels containing internal perforation and 

rectangular delamination region. The panel is assumed 

made from layered variable stiffness lamina (VSCL) where 

the material properties are varied according to a linear fiber 

orientation angle function along the longitude. An enhanced 

B-spline finite strip formulation is developed based on the 

higher order shear deformation theory and the Koiter-

Sanders theory of shallow cylindrical shells. The static 

buckling, natural frequencies and parametric instability 

  

Fig. 12 the dynamic instability regions of perforated VSCL panel with different curvatures 

[ < 60, 45 >]S (left), [ < 45, 60>]S (right) 

  

Fig. 13 The natural frequencies (left) and dynamic instability regions (right) of perforated VSCL panel with change 

in delamination through the thickness positions 
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problems are concerned under uniform inplane harmonic 

end-loading scheme. A longitudinal uniform through the 

whole panel pre-stress loading is assumed consisting of a 

constant as well as time-harmonic component. The 

instability load frequency regions corresponding to the 

assumed in-plane parametric loading is derived using the 

Bolotin‟s first order approximation. The friction dissipation 

effects, contact conditions, and delamination growth 

phenomenon at delaminated interfaces and edges are 

overlooked. In order to demonstrate the capabilities of the 

developed formulation in predicting stability behavior of 

the thin-walled VSCL structures, some representative 

results are obtained and compared with those in the 

literature wherever available. The effects of material lay-

ups, cutout size, delamination region and position on the 

stability of structure are studied. The accuracy and 

efficiency of the B-spline FSM calculation on the stability 

boundaries of perforated delaminated VSCL curved panels 

is shown through some different verification case studies. It 

is shown that the panels with larger cutout area have lower 

natural frequencies. This behavior is not observed for the 

fundamental frequency in case of panel with cutout edge 

ratio of 0.4. Additionally, for a perforated panel with edge 

delamination, it is shown that the delaminations of size 

smaller than delamination edge ratio of 0.2 has nearly no 

effect on the dynamic stability but the larger delamination 

sizes reduce the instability frequencies. It is also shown that 

the location of delamination occurrence in panel thickness 

direction weakly affects the fundamental vibration 

frequency but has considerable effects on the load bearing 

of the structure. For the case with fixed mid length fiber 

orientation on 45 degrees, higher orientation angles at the 

two ends makes the panel more stable. Finally, the stronger 

stability behaviors are observed in case of cylindrical panels 

with lower radius of curvature. 
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