
Steel and Composite Structures, Vol. 27, No. 4 (2018) 479-493 

DOI: https://doi.org/10.12989/scs.2018.27.4.479 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 

 

Advances in production of new materials and structures 

such as nano materials and curved structures leads to 

significant progress in theoretical investigations of these 

structures subjected to various types of loadings. The 

curved structures such as curved beam and panels and 

doubly curved shells have been manufactured by engineers 

and designers for application in bodies of aerospace 

vehicles such as airplanes and space crafts. One can find 

various curved structures in these structures that must be 

analyzed theoretically and experimentally. Due to vast 

application of single and doubly curved structures in 

aerospace industries and many other applications, 

comprehensive studies on the analysis of these structures 

are required. In addition, these structures can be applied in 

small scales such as nano and micro. It can be observed that 

a few works on the bending, vibration and buckling 

analyses of curved structures in nano or micro scale were 

developed. Based on our investigations, the number of 

works in scope of doubly curved structures in nano or micro 

scales is not adequate for researchers. A comprehensive 

study on the literature review can show necessity of this 

work. 

Bhimaraddi (1991) studied free vibration analysis of 

homogeneous and laminated doubly curved shells with very 

small ratio of thickness to radius of curvature based on three 

dimensional elasticity theory. The results were validated 

using comparison with results of two-dimensional shell 

theories. Qatu and Leissa (1991a) studied free vibration 

analysis of aminated plates and shallow shells using Ritz 

method with algebraic polynomial displacement functions. 

Qatu and Leissa (1991b) studied natural frequencies of 

cantilevered doubly-curved laminated composite shallow 
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shells using Ritz method. The influence of various 

parameters such as number of layers, fiber orientation and 

radii of curvature was studied on the free vibration 

responses. Orthogonal curvilinear coordinate system was 

used to derive governing equations of orthotropic doubly 

curved shells with simply supported boundary condition 

was studied by Fan and Zhang (1992). Chakravorty et al. 

(1996) employed finite element approach for free vibration 

analysis of doubly curved laminated composites shell based 

on first order shear deformation theory. Influence of fibre 

orientations, lamination schemes and thickness to radius 

ratio was studied on the responses of structure. Vibration 

analysis of imperfect single and multilayered composite 

doubly curved panels was studied by Librescu and Chang 

(1993) subjected to a system of tangential compressive/ 

tensile edge loads in the pre- and postbuckling ranges due to 

influence of transverse shear deformations. Lee and Hsiao 

(2002) studied free vibration analysis of curved non-

uniform beam. Two six-th governing equations of motion 

with variable coefficients were derived based on Hamilton’s 

principle in terms of longitudinal and transverse 

displacements. Shi et al. (2003) studied free vibration 

analysis of symmetrically laminated curved panel using a 

modified Galerkin method based on first-order shear 

deformation theory. They mentioned that in-plane boundary 

constraints have significant effects on the vibration behavior 

of the symmetrically laminated curved panel. In addition, it 

was concluded that radius of curvature, thickness and 

lamination schemes have important influences on the 

vibration responses. Large amplitude nonlinear vibration 

analysis of doubly curved shell with simply supported 

boundary condition due to harmonic excitation was studied 

by Amabili (2005). They used two different non-linear 

strain–displacement relationships based on the Donnell’s 

and Novozhilov’s shell theories. The influence of various 

dimensionless geometric parameters was studied on the 

nonlinear responses of system. 

Alijani et al. (2011) presented nonlinear forced 

 
 
 

Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell 
 

Mohammad Arefi 
 

 
Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan, Kashan 87317-51167, Iran 

 
 

(Received December 14, 2017, Revised March 22, 2018, Accepted March 23, 2018) 

 
Abstract.  In this paper nonlocal free vibration analysis of a doubly curved piezoelectric nano shell is studied. First order shear 

deformation theory and nonlocal elasticity theory is employed to derive governing equations of motion based on Hamilton’s 

principle. The doubly curved piezoelectric nano shell is resting on Pasternak’s foundation. A parametric study is presented to 

investigate the influence of significant parameters such as nonlocal parameter, two radii of curvature, and ratio of radius to 

thickness on the fundamental frequency of doubly curved piezoelectric nano shell. 
 

Keywords:  doubly curved piezoelectric nano shells; nonlocal parameter; first-order shear deformation theory; 

Pasternak’s foundation; free vibration 

 

479



 

Mohammad Arefi 

vibrations of FGM doubly curved shallow shells based on 

Donnell’s nonlinear shallow-shell theory. Galerkin method 

was used to convert governing differential governing 

equations of motion to a system of infinite nonlinear 

ordinary differential equations with quadratic and cubic 

nonlinearities. Kiani et al. (2012) presented thermo-elastic 

analysis of a functionally graded doubly curved panel based 

on first-order shear deformation theory with modified 

Sanders assumptions. All material properties except Poisson 

ratio were assumed variable along the thickness direction. 

Five coupled differential equations were derived based on 

Hamilton’s principle and they were reduced to five ordinary 

differential equations using Navier’s solution. Duc et al. 

(2015) studied nonlinear dynamic analysis and vibration 

imperfect functionally graded materials thick double curved 

shallow shells integrated with piezoelectric actuators 

subjected to electrical, thermal, mechanical and damping 

loadings. In addition, temperature dependency was assumed 

for all material properties. Higher order shear deformation 

theory including thermo-piezoelectric effects was employed 

for formulation of the problem. Influence of elastic 

foundation and various types of loadings was studied on the 

responses of the structure. Tornabene and Ceruti (2013) 

investigated static and dynamic analysis of laminated 

doubly-curved shells and panels resting on Winkler-

Pasternak elastic foundations using Generalized Differential 

Quadrature method based on first-order shear deformation 

theory. The influence of the both shell curvatures was 

included from the beginning of the theory formulation in 

the kinematic model. Validation of numerical results was 

performed through comparison with results of commercial 

programs. They mentioned that the results are in good 

agreement with literature. Nonlinear analysis of 

functionally graded circular and square sandwich plates 

integrated with piezoelectric layers was studied by Arefi 

and Allam (2015) and Arefi (2015). In addition, two and 

three dimensional electro-magneto-elastic analysis of 

cylindrical shell and thick shell of revolution were studied 

by Arefi and Rahimi (2014a, b) and Arefi (2014). Nonlinear 

analyses of functionally graded square and circular plates 

was studied by Arefi and Rahimi (2011, 2012c). Some 

useful relation about piezoelectric materials can be 

observed in literature (Arefi et al. 2011, Arefi and Rahimi 

2014b, Arefi 2014) 

Pouresmaeeli and Fazelzadeh (2016) studied the 

influence of carbon nanotube reinforcement on the vibration 

characteristics of the thick doubly curved functionally 

graded composite panels. Five different patterns of carbon 

nanotubes along the thickness direction were used for 

reinforcements. First order shear deformation theory was 

used to derive governing equations of motion based on 

Hamilton’s principle. The influences of volume fraction of 

carbon nanotubes, thickness ratio, aspect ratio and curvature 

ratio was studied on the responses. Tornabene et al. (2016) 

studied influence of Carbon Nanotube agglomeration on the 

free vibrations of laminated composite doubly-curved shells 

and panels. Alankaya and Oktem (2016) employed third-

order shear deformation theory for static analysis of cross-

ply doubly-curved shells is presented. They presented some 

numerical results for panel subjected to point load in terms 

of important parameters of the problem. 

The effect of thermal loads on the bending and free 

vibration results of sandwich functionally graded materials 

was studied based on new higher order shear deformation 

theory (Beldjelili et al. 2016, Bouderba et al. 2013, Attia et 

al. 2015, Hamidi et al. 2015, Menasria et al. 2017). Free 

vibration, buckling and bending analyses of functionally 

graded sandwich plates subjected to mechanical loads was 

studied based on some new higher order hyperbolic and 

trigonometric shear deformation theories and new shear and 

normal deformation theory (Bourada et al. 2015, Bennoun 

et al. 2016, Bessaim et al. 2013, Bellifa et al. 2017, Houari 

et al. 2016). Combination of nonlocal elasticity theory with 

new higher order shear deformation theory such as quasi 3D 

theory, refined four variable shear deformation theory and 

trigonometric shear deformation theory was proposed for 

size dependent bending, free vibration and buckling 

analyses of isotropic and functionally graded nanobeams 

and nanoplates (Bouafia et al. 2017, Zemri et al. 2015, 

Karami et al. 2017, Larbi Chaht et al. 2015, Belkorissat et 

al. 2015, Besseghier et al. 2017). 

Free vibration analysis of thick doubly curved sandwich 

panel was studied by Nasihatgozar et al. (2017). Static 

analysis of single and doubly curved panels was studied by 

Bahadur et al. (2017) based on the higher order shear 

deformation theory and principle of virtual work. The 

influence of span to thickness ratio, radius of curvature to 

span ratio and power index was investigated on the results. 

Thakur et al. (2017) studied higher order shear deformation 

analysis of a doubly curved laminated composite shell.  A 

new displacement function was proposed for static and free 

vibration analysis of the doubly curved shell. They 

mentioned that used method in this paper is sufficient for 

true determination of shear stress distribution along the 

thickness direction. Free vibration analysis of a size-

dependent doubly curved shell in micro scale was studied 

by Veysi et al. (2017) based on a nonlinear analysis. To 

account size dependency and nonlinearity in the governing 

equations of motion, modified couple stress theory and 

nonlinear Von-Karman relations were used. Multiple scales 

method was used to obtain an approximate analytical 

solution for nonlinear frequency response. Arefi and 

Zenkour (2017a) used sinusoidal shear deformation theory 

for thermo-magneto-electro-elastic analysis of a three 

layered curved nanobeam. Nonlocal elasticity relations and 

Hamilton’s principle was employed for derivation of the 

governing equations of motion. They mentioned that 

applied electric and magnetic potential leads to important 

changes of responses. Bending analysis sof sandwich 

curved nanobeam was presented by Arefi and Zenkour 

(2017b). The sandwich structure was made from a nano 

core and two piezomagnetic face-sheets. Influence of 

nonlocal parameter, applied electric and magnetic potentials 

and two parameters of Pasternak’s foundation was studied 

on the responses of the system. The numerical results 

indicate that increase of nonlocal parameters leads to 

decrease of stiffness of structure. Chen et al. (2017) studied 

free vibration analysis of a doubly curved shell made from 

functionally graded materials. A new shear deformation 

theory was employed to account stretching effect in 
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governing equations of motion.  Static analysis of a single 

layered curved nano beam was studied based on higher 

order shear deformation theory by Arefi and Zenkour 

(2017c). Deformation and stress analysis of the curved nano 

beam was performed in terms of thermal loads and two 

parameters of foundation. Magneto-electro-elastic analysis 

of sandwich curved beam was studied by Arefi and Zenkour 

(2017d). 

A comprehensive literature review on the various 

analysis of doubly curved structures especially vibration 

analysis was performed. This review indicates that although 

some valuable works on the vibration analysis of doubly 

curved have been presented, however no vibrational 

parametric study on the piezoelectric doubly curved nano 

shell was presented in detail. One can conclude that 

combination of size-dependent theories with curvilinear 

coordinate system for a doubly curved piezoelectric nano-

shell leads to significant improvement of previous studies. 

In this work, first order shear deformation theory, Eringen’s 

nonlocal theory and piezoelasticity relations are used to 

derive governing equations of motion for a doubly curved 

piezoelectric nano shell. The influence of nonlocal 

parameter and various geometric parameters are 

investigated on the free vibration responses of structure. 

 

 

2. Formulation of doubly curved piezoelectric 
nano shells 
 

In this section the governing equations of motion for a 

doubly curved piezoelectric nano shell is presented. The 

nano shell is subjected to applied electric potential along the 

thickness direction. Fig. 1 shows the schematic of a 𝛼,𝛽, 𝑧 

are indicated coordinates along two plannar and thickness 

direction. In addition, two principle radii of curvature are 

depicted with 𝑅1,𝑅2. First order shear deformation theory 

is used for description of deformations in doubly curved 

piezoelectric nano shell as follows (Arefi and Rahimi 2011, 

2012a, b, 2014a) 

 

𝑢 =  1 +
𝑧

𝑅1
 𝑢 + 𝑧𝜙1

𝑣 =  1 +
𝑧

𝑅2
 𝑣 + 𝑧𝜙2

𝑤 = 𝑤

 (1) 

 

in which 𝑢 , 𝑣 .𝑤  are displacement field and 𝑢. 𝑣.𝑤 are 

displacements of middle surface of doubly curved 

piezoelectric nano shell. In addition, 𝜙1,𝜙2  are rotation 

functions about 𝛽,𝛼  curves. Based on first order shear 

deformation theory, strain components are derived as 

follows 

 

휀1 = 휀1
0 + 𝑧𝑘1

휀2 = 휀2
0 + 𝑧𝑘2

휀4 = 휀4
0

휀5 = 휀5
0

휀6 = 휀6
0 + 𝑧𝑘6

 (2) 

 

in which the above variables are expressed as 

 

Fig. 1 The schematic of a doubly curved piezoelectric 

nano shell 
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𝑧
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𝑅2  1 +
𝑧
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𝜕𝛽
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1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝑤

𝜕𝛽
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𝑣
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휀5
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1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝑤

𝜕𝛼
−

𝑢

𝑅1
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1

𝑅1  1 +
𝑧
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1
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𝑧
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1

𝑅2  1 +
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1
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1
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1
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𝑧
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1

𝑅2  1 +
𝑧
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(3) 

 

The nonlocal stress-strain relations based on nonlocal 

piezo-elasticity relations for doubly curved piezoelectric 

nano shell are expressed as (Arefi 2016a, b, Arefi and 

Zenkour 2016a, b, c, 2017e, f, g, h, i) 
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(4) 

 

in which μ = e0a is nonlocal parameter. In addition, e0 is 
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nonlocal material constant and determined from experi-

mental or by dynamics simulations results. a defines 

internal characteristic scale and external characteristic scale 

correspondingly. This parameter show the size-dependency 

associated with Eringen’s nonlocal elasticity theory. To 

predict the behavior of structures in nano scale, this theory 

is employed with change of nonlocal parameter. The 

electric displacement relations are expressed as 
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(5) 

 
Electric potential distribution is assumed a combination 

of linear function that reflects applied voltage and a cosine 

function that satisfies homogeneous boundary conditions. 

Based on these expressions, the electric potential is 

expressed as follows (Arefi and Zenkour 2017j, k, l, m) 

 

Ψ =
2𝑧

ℎ
Ψ0 −𝛹(𝛼,𝛽)cos

𝜋𝑧

ℎ
 (6) 

 
Electric field components are derived using electric 

potential distribution as follows 

 

𝐸𝛼 = −
1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝛹 

𝜕𝛼
=

1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝛹

𝜕𝛼
cos

𝜋𝑧

ℎ
 

𝐸𝛽 = −
1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝛹 

𝜕𝛽
=

1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝛹

𝜕𝛽
cos

𝜋𝑧

ℎ
 

𝐸𝑧 = −
2

ℎ
𝛹0 −

𝜋

ℎ
𝛹(𝛼.𝛽)sin

𝜋𝑧

ℎ
 

(7) 

 
In this stage and with substitution of strain and electric 

filed components into stress and electric displacement 

relations, the stress and electric displacement components 

can be updated as follows 

 
 1 − 𝜇2∇2 𝜍𝛼  

= 𝑄11  
1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝑢

𝜕𝛼
+
𝑤

𝑅1

+ 𝑧
1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝜙1

𝜕𝛼
  

+𝑄12  
1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝑣

𝜕𝛽
+
𝑤

𝑅2
+ 𝑧

1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝜙2

𝜕𝛽
  

−𝑒13{−
2

ℎ
Ψ0 −

𝜋

ℎ
Ψ(𝛼.𝛽)sin

𝜋𝑧

ℎ
} 

(8) 

 1 − 𝜇2∇2 𝜍𝛽  

= 𝑄12  
1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝑢

𝜕𝛼
+
𝑤

𝑅1
+ 𝑧

1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝜙1

𝜕𝛼
  

+𝑄22  
1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝑣

𝜕𝛽
+
𝑤

𝑅2
+ 𝑧

1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝜙2

𝜕𝛽
  

−𝑒13{−
2

ℎ
Ψ0 −

𝜋

ℎ
Ψ(𝛼,𝛽)sin

𝜋𝑧

ℎ
} 

 

 1 − 𝜇2∇2 𝜍𝛽𝑧  

= 𝑄44  𝜙2 +
1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝑤

𝜕𝛽
−

𝑣

𝑅2
  

−𝑒42{
1

𝑅2  1 +
𝑧

𝑅2
 

𝜕Ψ

𝜕𝛽
cos

𝜋𝑧

ℎ
} 

 

 1 − 𝜇2∇2 𝜍𝛼𝑧  

= 𝑄55  𝜙1 +
1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝑤

𝜕𝛼
−

𝑢

𝑅1
  

−𝑒51  
1

𝑅1  1 +
𝑧

𝑅1
 

𝜕Ψ

𝜕𝛼
cos

𝜋𝑧

ℎ
  

 

 1 − 𝜇2∇2 𝜍𝛼𝛽  

= 𝑄66{
1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝑣

𝜕𝛼
+

1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝑢

𝜕𝛽
 

+𝑧  
1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝜙2

𝜕𝛼
+

1
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𝑧

𝑅2
 

𝜕𝜙1

𝜕𝛽
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1
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1
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1
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1
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𝑧

𝑅1
 

𝜕𝑣

𝜕𝛼
−

1
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𝑧

𝑅2
 

𝜕𝑢

𝜕𝛽
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1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝑤

𝜕𝛼
−
𝑢

𝑅1
  

−𝑘11  
1

𝑅1  1 +
𝑧

𝑅1
 

𝜕Ψ

𝜕𝛼
cos

𝜋𝑧

ℎ
  

𝐷𝛽 = 𝑒24  𝜙2 +
1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝑤

𝜕𝛽
−

𝑣

𝑅2
  

−𝑘22  
1

𝑅2  1 +
𝑧

𝑅2
 

𝜕Ψ

𝜕𝛽
cos

𝜋𝑧

ℎ
  

𝐷𝑧 = 𝑒31  
1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝑢

𝜕𝛼
+
𝑤

𝑅1
+ 𝑧

1

𝑅1  1 +
𝑧

𝑅1
 

𝜕𝜙1

𝜕𝛼
  

+𝑒32  
1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝑣

𝜕𝛽
+
𝑤

𝑅2

  

 +𝑧
1

𝑅2  1 +
𝑧

𝑅2
 

𝜕𝜙2

𝜕𝛽
  

(8) 
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−𝑘33  −
2

ℎ
Ψ0 −

𝜋

ℎ
Ψ(𝛼,𝛽)𝑠𝑖𝑛

𝜋𝑧

ℎ
  (8) 

 

After completion of stress and electric displacement 

relations, the strain energy of doubly curved is defined as 

follows 

 

𝑈 =
1

2
   [𝜍𝛼휀𝛼 + 𝜍𝛽휀𝛽 + 𝜏𝑦𝑧𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛾𝑥𝑧

𝑧𝛽𝛼

 

+𝜏𝑥𝑦𝛾𝑥𝑦 − 𝐷𝛼𝐸𝛼 − 𝐷𝛽𝐸𝛽 − 𝐷𝑧𝐸𝑧]𝑑𝑉 

(9) 

 

The work done by external forces including uniform 

transverse loads and reaction of Pasternak’s foundation is 

calculated as 

 

𝛿𝑊 =   −𝑞  1 +
ℎ

2𝑅1
  1 +

ℎ

2𝑅2
   

 +𝑅𝑓  1 −
ℎ

2𝑅1
  1 −

ℎ

2𝑅2
  𝑅1𝑅2𝛿𝑤𝑑𝛽𝑑𝛼 

(10) 

 

in which reaction of foundation 𝑅𝑓 = 𝐾1𝑤 − 𝐾2𝛻
2𝑤. 

Variation of kinetic energy is defined as follows 

 

𝛿𝑇 =  𝜌 𝑢 𝛿𝑢 + 𝑣 𝛿𝑣 + 𝑤 𝛿𝑤  𝑑𝑉 (11) 

 

Arranging the variables after substitution of variation of 

strain energy and external works into Hamilton’s principle 

𝛿𝑊 + 𝛿𝑇 − 𝛿𝑈  and arranging the variables leads to 

following governing equations 

 

𝛿𝑢:    
𝜕

𝜕𝛼
 
𝑁𝛼
𝑅1
 +

𝜕

𝜕𝛽
 
𝑁𝛽𝛼

𝑅2
 +

𝑁𝛼𝑧
1

𝑅1
 

−
1

2
 

1

𝑅1
−

1

𝑅2
 
𝜕

𝜕𝛽
 
𝑀𝛽𝛼

𝑅2
 = 𝐼1𝑢 + 𝐼2𝜙 1 

𝛿𝜙1 :   
𝜕

𝜕𝛼
 
𝑀𝛼

𝑅1
 − 𝑁𝛼𝑧

1 +
𝜕

𝜕𝛽
 
𝑀𝛽𝛼

𝑅2
 = 𝐼2𝑢 + 𝐼3𝜙 1 

𝛿𝑣:     +
𝜕

𝜕𝛽
 
𝑁𝛽

𝑅2
 +

𝜕

𝜕𝛼
 
𝑁𝛼𝛽

𝑅1
 +

𝑁𝛽𝑧
1

𝑅2
 

+
1

2
 

1

𝑅1
−

1

𝑅2
 
𝜕

𝜕𝛼
 
𝑀𝛼𝛽

𝑅1
 = 𝐼4𝑣 + 𝐼5𝜙 2 

𝛿𝜙2 :   
𝜕

𝜕𝛽
 
𝑀𝛽

𝑅2
 − 𝑁𝛽𝑧

1 +
𝜕

𝜕𝛼
 
𝑀𝛼𝛽

𝑅1
 = 𝐼5𝑣 + 𝐼3𝜙 2 

𝛿𝑤:     −
𝑁𝛼

1

𝑅1
−
𝑁𝛽

1

𝑅2
+

𝜕

𝜕𝛽
 
𝑁𝛽𝑧

𝑅2
 +

𝜕

𝜕𝛼
 
𝑁𝛼𝑧
𝑅1

  

= 𝑞  1 +
ℎ

2𝑅1
  1 +

ℎ

2𝑅2
  

−𝑅𝑓  1 −
ℎ

2𝑅1
  1 −

ℎ

2𝑅2
 + 𝐼6𝑤  

𝛿𝛹:     +
𝜕

𝜕𝛼
 
𝐷 𝛼
𝑅1
 +

𝜕

𝜕𝛽
 
𝐷 𝛽

𝑅2
 + 𝐷 𝑧 = 0 

(12) 

 

in which the integration constants 𝐼𝑖  are defined as 

 𝐼1. 𝐼2. 𝐼3  

=  𝜌   1 +
𝑧

𝑅1
 

2

. 𝑧  1 +
𝑧

𝑅1
 . 𝑧2 

+ℎ 2 

−ℎ 2 

 

𝑅1  1 +
𝑧

𝑅1

 𝑅2  1 +
𝑧

𝑅2

 𝑑𝑧 

 𝐼4. 𝐼5. 𝐼6  

=  𝜌   1 +
𝑧

𝑅2
 

2

. 𝑧  1 +
𝑧

𝑅2
 . 1 

+ℎ 2 

−ℎ 2 

 

𝑅1  1 +
𝑧

𝑅1
 𝑅2  1 +

𝑧

𝑅2
 𝑑𝑧 

(13) 

 

In addition, the resultant components are defined as 

follows 

 

 1 − 𝜇2∇2 𝑁𝛼 = 𝐴1

𝜕𝑢

𝜕𝛼
+ 𝐴2𝑤 + 𝐴3

𝜕𝜙1

𝜕𝛼
+ 𝐴4

𝜕𝑣

𝜕𝛽
 

+𝐴5𝑤 + 𝐴6

𝜕𝜙2

𝜕𝛽
+ 𝐴7Ψ + 𝑁𝛼

Ψ  

 1 − 𝜇2∇2 𝑁𝛼
1 = 𝐴8

𝜕𝑢

𝜕𝛼
+ 𝐴9𝑤 + 𝐴10

𝜕𝜙1

𝜕𝛼
+ 𝐴11

𝜕𝑣

𝜕𝛽
 

+𝐴12𝑤 + 𝐴13

𝜕𝜙2

𝜕𝛽
+ 𝐴14Ψ + 𝑁𝛼

1Ψ  

 1 − 𝜇2∇2 𝑀𝛼 = 𝐴15

𝜕𝑢

𝜕𝛼
+ 𝐴16𝑤 + 𝐴17

𝜕𝜙1

𝜕𝛼
+ 𝐴18

𝜕𝑣

𝜕𝛽
 

+𝐴19𝑤 + 𝐴20

𝜕𝜙2

𝜕𝛽
+ 𝐴21Ψ + 𝑀𝛼

Ψ  

 1 − 𝜇2∇2 𝑁𝛽 = 𝐴4

𝜕𝑢

𝜕𝛼
+ 𝐴5𝑤 + 𝐴6

𝜕𝜙1

𝜕𝛼
+ 𝐴22

𝜕𝑣

𝜕𝛽
 

+𝐴23𝑤 + 𝐴24

𝜕𝜙2

𝜕𝛽
+ 𝐴7Ψ + 𝑁𝛽

Ψ  

 1 − 𝜇2∇2 𝑁𝛽
1 = 𝐴11

𝜕𝑢

𝜕𝛼
+ 𝐴12𝑤 + 𝐴13

𝜕𝜙1

𝜕𝛼
+ 𝐴25

𝜕𝑣

𝜕𝛽
 

+𝐴26𝑤 + 𝐴27

𝜕𝜙2

𝜕𝛽
+ 𝐴14Ψ + 𝑁𝛽

1Ψ  

 1 − 𝜇2∇2 𝑀𝛽 = 𝐴18

𝜕𝑢

𝜕𝛼
+ 𝐴19𝑤 + 𝐴20

𝜕𝜙1

𝜕𝛼
+ 𝐴28

𝜕𝑣

𝜕𝛽
 

+𝐴29𝑤 + 𝐴30

𝜕𝜙2

𝜕𝛽
+ 𝐴21Ψ + 𝑀𝛼

Ψ  

 1 − 𝜇2∇2 𝑁𝛽𝑧 = 𝐴31𝜙2 + 𝐴32

𝜕𝑤

𝜕𝛽
− 𝐴33𝑣 − 𝐴34

𝜕Ψ

𝜕𝛽
, 

(1 − 𝜇2∇2)𝑁𝛽𝑧
1 = 𝐴39𝜙2 + 𝐴40

𝜕𝑤

𝜕𝛽
− 𝐴41𝑣 − 𝐴42

𝜕Ψ

𝜕𝛽
 

 1 − 𝜇2∇2 𝑁𝛼𝑧 = 𝐴35𝜙1 + 𝐴36

𝜕𝑤

𝜕𝛼
− 𝐴37𝑢 − 𝐴38

𝜕Ψ

𝜕𝛼
, 

(1 − 𝜇2∇2)𝑁𝛼𝑧
1

= 𝐴43𝜙1 + 𝐴44

𝜕𝑤

𝜕𝛼
− 𝐴45𝑢 − 𝐴46

𝜕Ψ

𝜕𝛼
 

 1 − 𝜇2∇2 𝑁𝛼𝛽 = 𝐴47

𝜕𝑣

𝜕𝛼
+ 𝐴48

𝜕𝑢

𝜕𝛽
+ 𝐴49

𝜕𝜙2

𝜕𝛼
 

+𝐴50

𝜕𝜙1

𝜕𝛽
+ 𝐴51

𝜕𝑣

𝜕𝛼
− 𝐴52

𝜕𝑢

𝜕𝛽
 

 1 − 𝜇2∇2 𝑁𝛽𝛼 = 𝐴53

𝜕𝑣

𝜕𝛼
+ 𝐴54

𝜕𝑢

𝜕𝛽
+ 𝐴55

𝜕𝜙2

𝜕𝛼
 

+𝐴56

𝜕𝜙1

𝜕𝛽
+ 𝐴57

𝜕𝑣

𝜕𝛼
− 𝐴58

𝜕𝑢

𝜕𝛽
 

(14) 
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 1 − 𝜇2∇2 𝑀𝛼𝛽 = 𝐴59

𝜕𝑣

𝜕𝛼
+ 𝐴60

𝜕𝑢

𝜕𝛽
+ 𝐴61

𝜕𝜙2

𝜕𝛼
 

+𝐴62

𝜕𝜙1

𝜕𝛽
+ 𝐴63

𝜕𝑣

𝜕𝛼
− 𝐴64

𝜕𝑢

𝜕𝛽
 

 1 − 𝜇2∇2 𝑀𝛽𝛼 = 𝐴65

𝜕𝑣

𝜕𝛼
+ 𝐴66

𝜕𝑢

𝜕𝛽
+ 𝐴67

𝜕𝜙2

𝜕𝛼
 

+𝐴68

𝜕𝜙1

𝜕𝛽
+ 𝐴69

𝜕𝑣

𝜕𝛼
− 𝐴70

𝜕𝑢

𝜕𝛽
 

𝐷 𝛼 = 𝐴71𝜙1 + 𝐴72

𝜕𝑤

𝜕𝛼
− 𝐴73𝑢 − 𝐴74

𝜕Ψ

𝜕𝛼
 

𝐷 𝛽 = 𝐴75𝜙2 + 𝐴76

𝜕𝑤

𝜕𝛽
− 𝐴77𝑣 − 𝐴78

𝜕Ψ

𝜕𝛽
 

𝐷𝑧 = 𝐴79

𝜕𝑢

𝜕𝛼
+ 𝐴80𝑤 + 𝐴81

𝜕𝜙1

𝜕𝛼
+ 𝐴82

𝜕𝑣

𝜕𝛽
 

+𝐴83𝑤 + 𝐴84

𝜕𝜙2

𝜕𝛽
+ 𝐷𝑧

Ψ + 𝐴85Ψ 

(14) 

 
Substitution of resultant components into governing 

equations leads to final governing equations in terms of 

primary displacement field as follows 

 

𝛿𝑢:     
𝐴1

𝑅1

𝜕2𝑢

𝜕𝛼2
+  

χ[𝐴70 − 𝐴66] + 𝐴54 − 𝐴58

𝑅2
 
𝜕2𝑢

𝜕𝛽2
 

−
𝐴45

𝑅1
𝑢 +

𝐴3

𝑅1

𝜕2𝜙1

𝜕𝛼2
+  

𝐴56 − χ𝐴68

𝑅2
 
𝜕2𝜙1

𝜕𝛽2
 

+
𝐴43

𝑅1
𝜙1 +

𝐴4

𝑅1

𝜕2𝑣

𝜕𝛼𝜕𝛽
 

+ 
𝐴57 + 𝐴53 − χ 𝐴65 + 𝐴69 

𝑅2
 
𝜕2𝑣

𝜕𝛼𝜕𝛽
 

+  
𝐴6

𝑅1
+
𝐴55 − χ𝐴67

𝑅2
 
𝜕2𝜙2

𝜕𝛼𝜕𝛽
 

+  
𝐴5 + 𝐴2 + 𝐴44

𝑅1
 
𝜕𝑤

𝜕𝛼
+  

𝐴7 − 𝐴46

𝑅1
 
𝜕Ψ

𝜕𝛼
 

= −
𝜕

𝜕𝛼
 
𝑁𝛼

Ψ

𝑅1
 +  1 − 𝜇2∇2 (𝐼1𝑢 + 𝐼2𝜙 1) 

(15a) 

 

𝛿𝜙1 :    
𝐴15

𝑅1

𝜕2𝑢

𝜕𝛼2
+
 𝐴66 − 𝐴70 

𝑅2

𝜕2𝑢

𝜕𝛽2
 

+
𝐴17

𝑅1

𝜕2𝜙1

𝜕𝛼2
+
𝐴68

𝑅2

𝜕2𝜙1

𝜕𝛽2
− 𝐴43𝜙1 

+  
𝐴65 + 𝐴69

𝑅2
+
𝐴18

𝑅1
 
𝜕2𝑣

𝜕𝛼𝜕𝛽
+ 𝐴45𝑢 

+  
𝐴20

𝑅1
+
𝐴67

𝑅2
 
𝜕𝜙2

𝜕𝛼𝜕𝛽
+  

𝐴19 + 𝐴16

𝑅1
− 𝐴44 

𝜕𝑤

𝜕𝛼
 

+  
𝐴21

𝑅1
+ 𝐴46 

𝜕Ψ

𝜕𝛼
 

= −
𝜕

𝜕𝛼
 
𝑀𝛼

Ψ

𝑅1

 + (1 − 𝜇2∇2)(𝐼2𝑢 + 𝐼3𝜙 1) 

(15b) 

 

𝛿𝑣:     
𝐴4

𝑅2
+
χ[𝐴60 − 𝐴64] + 𝐴48 − 𝐴52

𝑅1
 
𝜕2𝑢

𝜕𝛼𝜕𝛽
 

+  
𝐴50 + χ𝐴62

𝑅1
+
𝐴6

𝑅2
 
𝜕2𝜙1

𝜕𝛼𝜕𝛽
 

(15c) 

+ 
𝐴47 + 𝐴51 + χ 𝐴59 + 𝐴63 

𝑅1
 
𝜕2𝑣

𝜕𝛼2
 

+
𝐴22

𝑅2

𝜕2𝑣

𝜕𝛽2
−
𝐴41

𝑅2
𝑣 +  

𝐴49 + χ𝐴61

𝑅1
 
𝜕2𝜙2

𝜕𝛼2
 

+
𝐴24

𝑅2

𝜕2𝜙2

𝜕𝛽2
+
𝐴39

𝑅2
𝜙2 

+  
𝐴40 + 𝐴5 + 𝐴23

𝑅2
 
𝜕𝑤

𝜕𝛽
+  

𝐴7 − 𝐴42

𝑅2
 
𝜕Ψ

𝜕𝛽
 

= −
𝜕

𝜕𝛽
 
𝑁𝛽

Ψ

𝑅2
 + (1 − 𝜇2∇2)(𝐼4𝑣 + 𝐼5𝜙 2) 

(15c) 

 

𝛿𝜙2 :     
𝐴18

𝑅2
+
𝐴60 − 𝐴64

𝑅1
 
𝜕2𝑢

𝜕𝛼𝜕𝛽
+ 𝐴41𝑣 

+  
𝐴62

𝑅1
+
𝐴20

𝑅2
 
𝜕2𝜙1

𝜕𝛼𝜕𝛽
+  

𝐴59 + 𝐴63

𝑅1
 
𝜕2𝑣

𝜕𝛼2
 

+
𝐴28

𝑅2

𝜕2𝑣

𝜕𝛽2
+  

𝐴30

𝑅2
+
𝐴61

𝑅1
 
𝜕2𝜙2

𝜕𝛼2
− 𝐴39𝜙2 

+  
𝐴29 + 𝐴19

𝑅2
− 𝐴40 

𝜕𝑤

𝜕𝛽
+  

𝐴21

𝑅2
+ 𝐴42 

𝜕Ψ

𝜕𝛽
 

= −
𝜕

𝜕𝛽
 
𝑀𝛼

Ψ

𝑅2
 + (1 − 𝜇2∇2)(𝐼5𝑣 + 𝐼3𝜙 2) 

(15d) 

 

𝛿𝑤:    −
𝐴11

𝑅2
−
𝐴8 + 𝐴37

𝑅1
 
𝜕𝑢

𝜕𝛼
 

+  
𝐴35 − 𝐴10

𝑅1
−
𝐴13

𝑅2
 
𝜕𝜙1

𝜕𝛼
 

+  −
𝐴33 + 𝐴25

𝑅2
−
𝐴11

𝑅1
 
𝜕𝑣

𝜕𝛽
−
𝐴27

𝑅2

𝜕𝜙2

𝜕𝛽
 

+  −
𝐴9 + 𝐴12

𝑅1
−
𝐴12 + 𝐴26

𝑅2
 𝑤 

+  −
𝐴13

𝑅1
−
𝐴31

𝑅2
 
𝜕𝜙2

𝜕𝛽
+
𝐴36

𝑅1

𝜕2𝑤

𝜕𝛼2
 

+  
𝐴32 − 𝐴34

𝑅2
 
𝜕2Ψ

𝜕𝛽2
−
𝐴38

𝑅1

𝜕2Ψ

𝜕𝛼2
 

+  −
𝐴14

𝑅2
−
𝐴14

𝑅1
 Ψ 

= +
𝑁𝛼

1Ψ

𝑅1
+
𝑁𝛽

1Ψ

𝑅2
 

+ 1 − 𝜇2∇2  𝑞  1 +
ℎ

2𝑅1
  1 +

ℎ

2𝑅2
   

 −𝑅𝑓  1 −
ℎ

2𝑅1
  1 −

ℎ

2𝑅2
  + (1 − 𝜇2∇2)(𝐼6𝑤 ) 

(15e) 

 

𝛿Ψ:     −
𝐴73

𝑅1
+ 𝐴79 

𝜕𝑢

𝜕𝛼
+  

𝐴71

𝑅1
+ 𝐴81 

𝜕𝜙1

𝜕𝛼
 

+  𝐴82 −
𝐴77

𝑅2
 
𝜕𝑣

𝜕𝛽
+  

𝐴75

𝑅2
+ 𝐴84 

𝜕𝜙2

𝜕𝛽
 

+
𝐴72

𝑅1

𝜕2𝑤

𝜕𝛼2
+
𝐴76

𝑅2

𝜕2𝑤

𝜕𝛽2
+  𝐴80 + 𝐴83 𝑤 

−
𝐴78

𝑅2

𝜕2Ψ

𝜕𝛽2
−
𝐴74

𝑅1

𝜕2Ψ

𝜕𝛼2
+ 𝐴85Ψ = −𝐷𝑧

Ψ  

(15f) 
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Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell 

3. Solution procedure 
 

In this section, solution of the governing equations is 

proposed. The simply-supported boundary conditions are 

assumed for doubly curved piezoelectric shell. In addition, 

homogeneous electrical boundary conditions are considered 

for piezoelectric doubly curved nano shell. For this type of 

boundary conditions, the Navier’s solution is proposed for 

six variables as follows (Arefi et al. 2017) 
 

 
 
 

 
 
𝑢
𝜙1

𝑣
𝜙2

𝑤
Ψ 
 
 

 
 

= 𝑒𝑖𝜔𝑡

 
 
 

 
 
𝑈cos𝜆𝑚𝛼sin𝜇𝑛𝛽
Φ1cos𝜆𝑚𝛼sin𝜇𝑛𝛽
𝑉sin𝜆𝑚𝛼cos𝜇𝑛𝛽
Φ2sin𝜆𝑚𝛼cos𝜇𝑛𝛽
𝑊sin𝜆𝑚𝛼sin𝜇𝑛𝛽
Ψsin𝜆𝑚𝛼sin𝜇𝑛𝛽  

 
 

 
 

 (16) 

 

The solution presented by Eq. (16) is applicable for 

simply-supported doubly curved shell with homogeneous 

electric potential distribution. It can be recognized that the 

boundaries (𝛼 = 0,
𝐿1

𝑅1
) has no transverse displacement while 

can be moved freely along the 𝛼 direction. The similar 

conclusion can be presented for the boundaries (𝛽 = 0,
𝐿2

𝑅2
) 

has no transverse displacement while can be moved freely 

along the 𝛽  direction. In which the 
 𝑋 =  𝑈.Φ1.𝑉.Φ2.𝑊.Ψ 𝑇 are unknown amplitudes and 

𝜆𝑚 =
𝑚𝑅1

𝐿1
. 𝜇𝑛 =

𝑛𝑅2

𝐿2
. Substitution of proposed solution from 

Eq. (16) into governing equations of electro-elastic bending 

leads to following well-known format as follows 

 

 𝐾  𝑋 + 𝜔2 𝑀  𝑋 =  𝐹  (17) 

 

Elements of stiffness matrix are derived as 
 

𝐾11 = −
𝐴1

𝑅1
𝜆𝑚

2 −
χ[𝐴70 − 𝐴66] + 𝐴54 − 𝐴58

𝑅2
𝜇𝑛

2 −
𝐴45

𝑅1
, 

𝐾12 = −
𝐴3

𝑅1
𝜆𝑚

2 −  
𝐴56 − χ𝐴68

𝑅2
 𝜇𝑛

2 +
𝐴43

𝑅1
, 

𝐾13 = − 
𝐴4

𝑅1
+
𝐴57 + 𝐴53 − χ 𝐴65 + 𝐴69 

𝑅2
 𝜆𝑚𝜇𝑛 , 

𝐾14 = − 
𝐴6

𝑅1
+
𝐴55 − χ𝐴67

𝑅2
 𝜆𝑚𝜇𝑛 , 

𝐾15 =  
𝐴5 + 𝐴2 + 𝐴44

𝑅1
 𝜆𝑚 ,          𝐾16 = (

𝐴7 − 𝐴46

𝑅1
)𝜆𝑚  

𝑀11 =  1 + 𝜇2 𝜆𝑚
2 + 𝜇𝑛

2  𝐼1, 

𝑀12 =  1 + 𝜇2{𝜆𝑚
2 + 𝜇𝑛

2} 𝐼2.𝐹1 = −
𝜕

𝜕𝛼
 
𝑁𝛼

Ψ

𝑅1
  

𝐾21 = −
𝐴15

𝑅1
𝜆𝑚

2 −  
𝐴66 − 𝐴70

𝑅2
 𝜇𝑛

2 + 𝐴45 ., 

𝐾22 = −
𝐴17

𝑅1
𝜆𝑚

2 −
𝐴68

𝑅2
𝜇𝑛

2 − 𝐴43 

𝐾23 = − 
𝐴65 + 𝐴69

𝑅2
+
𝐴18

𝑅1
 𝜆𝑚𝜇𝑛 , 

𝐾24 = − 
𝐴20

𝑅1
+
𝐴67

𝑅2
 𝜆𝑚𝜇𝑛 ,  

𝐾25 = +  
𝐴19 + 𝐴16

𝑅1
− 𝐴44 𝜆𝑚 , 

𝐾26 =  
𝐴21

𝑅1
+ 𝐴46 𝜆𝑚 , 

𝑀21 =  1 + 𝜇2 𝜆𝑚
2 + 𝜇𝑛

2  𝐼2, 

𝑀22 =  1 + 𝜇2 𝜆𝑚
2 + 𝜇𝑛

2  𝐼3, 

𝐹2 = −
𝜕

𝜕𝛼
 
𝑀𝛼

Ψ

𝑅1
 , 

𝐾31 = − 
𝐴4

𝑅2
+
χ[𝐴60 − 𝐴64] + 𝐴48 − 𝐴52

𝑅1
 𝜆𝑚𝜇𝑛 ., 

𝐾23 = − 
𝐴50 + χ𝐴62

𝑅1
+
𝐴6

𝑅2
 𝜆𝑚𝜇𝑛 , 

𝐾33 = − 
𝐴47 + 𝐴51 + χ 𝐴59 + 𝐴63 

𝑅1
 𝜆𝑚

2
 

−
𝐴22

𝑅2
𝜇𝑛

2 −
𝐴41

𝑅2
, 

𝐾34 = − 
𝐴49 + χ𝐴61

𝑅1
 𝜆𝑚

2 −
𝐴24

𝑅2
𝜇𝑛

2 +
𝐴39

𝑅1
, 

𝐾35 = +  
𝐴5 + 𝐴23 + 𝐴40

𝑅2
 𝜇𝑛 , 

𝐾36 = +  
𝐴7 − 𝐴42

𝑅2
 𝜇𝑛 , 

𝑀33 =  1 + 𝜇2 𝜆𝑚
2 + 𝜇𝑛

2  𝐼4, 

𝑀34 =  1 + 𝜇2 𝜆𝑚
2 + 𝜇𝑛

2  𝐼5, 

𝐹3= −
𝜕

𝜕𝛽
 
𝑁𝛽

Ψ

𝑅2
 , 

 𝐾41 = − 
𝐴18

𝑅2
+
𝐴60 − 𝐴64

𝑅1
 𝜆𝑚𝜇𝑛 , 

𝐾42 = − 
𝐴62

𝑅1
+
𝐴20

𝑅2
 𝜆𝑚𝜇𝑛 , 

𝐾43 = − 
𝐴59 + 𝐴63

𝑅1
 𝜆𝑚

2 −
𝐴28

𝑅2
𝜇𝑛

2 + 𝐴41 , 

𝐾44 = −
𝐴61

𝑅1
𝜆𝑚

2 −
𝐴30

𝑅2
𝜇𝑛

2 − 𝐴39 

𝐾45 =  
𝐴29 + 𝐴19

𝑅2
− 𝐴40 𝜇𝑛 , 

𝐾46 =  
𝐴21

𝑅2
+ 𝐴42 𝜇𝑛 , 

𝑀43 =  1 + 𝜇2 𝜆𝑚
2 + 𝜇𝑛

2  𝐼5, 

𝑀44 =  1 + 𝜇2 𝜆𝑚
2 + 𝜇𝑛

2  𝐼3, 

𝐹4 = −
𝜕

𝜕𝛽
 
𝑀𝛼

Ψ

𝑅2
 , 

𝐾51 =  
𝐴11

𝑅2
+
𝐴8 + 𝐴37

𝑅1
 𝜆𝑚 ., 

𝐾52 = − 
𝐴35 − 𝐴10

𝑅1
−
𝐴13

𝑅2
 𝜆𝑚 , 

𝐾53 =  
𝐴33 + 𝐴25

𝑅2
+
𝐴11

𝑅1
 𝜇𝑛 , 

𝐾54 =  
𝐴27 − 𝐴31

𝑅2
+
𝐴13

𝑅1
 𝜇𝑛 , 
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𝐾55 = −
𝐴36

𝑅1
𝜆𝑚

2 −
𝐴32

𝑅2
𝜇𝑛

2 −  
𝐴9 + 𝐴12

𝑅1
+
𝐴12 + 𝐴26

𝑅2
  

+ 1 + 𝜇2 𝜆𝑚
2 + 𝜇𝑛

2   1 −
ℎ

2𝑅1
  1 −

ℎ

2𝑅2
  

 𝐾𝑤 + 𝐾𝐺(
𝜆𝑚

2

(𝑅1 −
ℎ

2
)2

+
𝜇𝑛

2

(𝑅2 −
ℎ

2
)2

) , 

𝐾56 =
𝐴38

𝑅1
𝜆𝑚

2 +
𝐴34

𝑅2
𝜇𝑛

2 −  
𝐴14

𝑅2
+
𝐴14

𝑅1
 , 

𝑀55 =  1 + 𝜇2 𝜆𝑚
2 + 𝜇𝑛

2  𝐼6, 

𝐹5 = +
𝑁𝛼

1Ψ

𝑅1
+
𝑁𝛽

1Ψ

𝑅2
 

+ 1 + 𝜇2{𝜆𝑚
2 + 𝜇𝑛

2} 𝑞  1 +
ℎ

2𝑅1
  1 +

ℎ

2𝑅2
  

𝐾61 =  
𝐴73

𝑅1
− 𝐴79 𝜆𝑚 , 𝐾62 = − 

𝐴71

𝑅1
+ 𝐴81 𝜆𝑚 , 

𝐾63 =  
𝐴77

𝑅2
− 𝐴82 𝜇𝑛 , 𝐾64 = − 

𝐴75

𝑅2
+ 𝐴84 𝜇𝑛 , 

𝐾65 = −
𝐴72

𝑅1
𝜆𝑚

2 −
𝐴76

𝑅2
𝜇𝑛

2 +  𝐴80 + 𝐴83 , 

𝐾65 = +
𝐴78

𝑅2
𝜇𝑛

2 +
𝐴74

𝑅1
𝜆𝑚

2 + 𝐴85 , 

𝐹6 = −𝐷𝑧
Ψ  

 

 

4. Numerical results and discussion 
 

In this section the numerical results of the problem is 

presented. Before presentation of full numerical results, the 

material properties of piezoelectric doubly curved shell are 

presented. 
 

𝑄11 = 138.499 𝐺𝑃𝑎, 𝑄22 = 138.499 𝐺𝑃𝑎, 

𝑄33 = 114.745 𝐺𝑃𝑎 

𝑄12 = 77.371 𝐺𝑃𝑎,           𝑄13 = 73.643 𝐺𝑃𝑎, 

𝑄23 = 73.643 𝐺𝑃𝑎 

𝑄44 = 25.6 𝐺𝑃𝑎,                𝑄55 = 25.6 𝐺𝑃𝑎,  

𝑄66 = 30.6 𝐺𝑃𝑎 

𝑒13 = 𝑒31 = −5.2𝐶 𝑚2 , 𝑒23 = 𝑒32 = −5.2𝐶 𝑚2 , 

𝑒33 = 15.8𝐶 𝑚2 ,      𝑒15 = 12.72𝐶 𝑚2 ,  

𝑒24 = 12.72𝐶 𝑚2  

𝑘11 = 1.306 × 10−8 𝐹
𝑚 ,     𝑘22 = 1.306 × 10−8 𝐹

𝑚 , 

𝑘33 = 1.151 × 10−8 𝐹
𝑚  

 

 

Table 1 The variation of fundamental natural frequencies of 

doubly curved shell in terms of nonlocal parameter 

𝜇 (nm) for various angles 𝜃1 

𝜇(𝑛𝑚) 𝜃1= 0.5 Rad 𝜃1= 1 Rad 𝜃1= 1.5 Rad 

0 107/532 107/462 107/449 

0/1 107/267 107/238 107/231 

0/2 106/486 106/572 106/587 

0/3 105/220 105/490 105/539 

0/4 103/522 104/028 104/122 
 

 

 

The natural frequencies of doubly curved piezoelectric 

nano shell are presented in GHz. To present a parametric 

study on the vibration analysis of doubly curved 

piezoelectric nano shell, two dimensionless parameters are 

employed as follows 
 

𝜃1 =
𝐿1

𝑅1
            𝜃2 =

𝐿2
𝑅2
   

 

In addition the dimensionless 𝑅 ℎ  is employed for 

presentation of numerical results. 

Table 1 lists the fundamental natural frequencies of 

doubly curved nano shell in terms of nonlocal parameter 

𝜇(𝑛𝑚)  for various angles 𝜃1 . The numerical results 

indicates that the natural frequencies are decreased with 

increase of nonlocal parameter and opening angles 𝜃1 . 

Listed in Table 2 is variation of fundamental natural 

frequencies of doubly curved shell in terms of nonlocal 

parameter 𝜇(𝑛𝑚)  for various radius to thickness ratio 
𝑅
ℎ . One can conclude that with increase of radius to 

thickness ratio 𝑅 ℎ , the stiffness of doubly curved nano 

shell is decreased and consequently the natural frequencies 

are decreased significantly. 

Fig. 2 shows natural frequencies of doubly curved 

piezoelectric nano shell in terms of nonlocal parameter in 

nanometer 𝜇(nm) for various values of 𝜃1  for 𝜃2 =
0.25 𝑅𝑎𝑑. It is observed that with increase of nonlocal 

parameter 𝜇(nm) , the fundamental frequencies of doubly 

curved nano shell are decreased significantly. One can 

conclude that this decreasing is due to decrease of stiffness 

of nano shell. These results are in accordance with this fact 

that based on Eringen’s nonlocal elasticity theory, with 

increase of small scale parameter, the stiffness of nano 

structure is decreased. In addition, with increase of 𝜃1 the 

natural frequencies are increased smoothly. Natural 

frequencies of doubly curved piezoelectric nano shell in 

terms of nonlocal parameter in nanometer 𝜇(nm) for 

various values of 𝜃1 for 𝜃2 = 0.5 𝑅𝑎𝑑 are presented in 

Table 2 The variation of fundamental natural frequencies of doubly curved shell in terms of nonlocal parameter 

𝜇(𝑛𝑚) for various radius to thickness ratio 𝑅 ℎ  

𝜇(𝑛𝑚) 𝑅
ℎ = 10 𝑅

ℎ = 20 𝑅
ℎ = 50 𝑅

ℎ = 100 

0 529/2047 294/8370 123/8012 62/7763 

0/1 529/0742 294/7643 123/7707 62/7608 

0/2 528/6832 294/5465 123/6792 62/7144 
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Fig. 2 Natural frequencies of doubly curved piezoelectric 

nano shell in terms of nonlocal parameter in 

nanometer 𝜇(nm) for various values of 𝜃1 

for 𝜃2 = 0.25 𝑅𝑎𝑑 
 

 

 

Fig. 3 Natural frequencies of doubly curved piezoelectric 

nano shell in terms of nonlocal parameter in 

nanometer 𝜇(nm) for various values of 𝜃1  for 

𝜃2 = 0.5 𝑅𝑎𝑑 
 

 

 

Fig. 4 Natural frequencies of doubly curved piezoelectric 

nano shell in terms of nonlocal parameter in 

nanometer 𝜇(nm) for various values of 𝜃1 for 

𝜃2 = 1 𝑅𝑎𝑑 

Fig. 3. These results show that the natural frequencies are 

decreased with increase of 𝜃1 for nonlocal parameter less 

than 0.25 nm and for one greater than 0.25 nm, the natural 

frequencies are increased with increase of 𝜃1. 

Figs. 4, 5, 6 and 7 show variation of natural frequencies 

in terms of nonlocal parameter 𝜇(nm) for various values 

of 𝜃1 for 𝜃2 = 1.   1.5.    2 and 5 𝑅𝑎𝑑. These results show 

that with increase of 𝜃1  the natural frequencies are 

decreased significantly. One can conclude that with increase 

of 𝜃1 =
𝐿1

𝑅1
 the length of doubly curved along the 𝛼 

direction is increased and consequently the stiffness and 

natural frequencies of nano shell are decreased. 

Influence of ratio of radius to thickness on the natural 

frequencies of doubly curved nano shell is presented in Fig. 

8. This figure shows variation of natural frequencies in 

terms of  nonlocal  parameter  𝜇(nm)  for  various 

dimensionless values R
h = 10, 20, 50  and 100. The 

numerical results indicate that with increase of radius to 
 

 

 

Fig. 5 Natural frequencies of doubly curved piezoelectric 

nano shell in terms of nonlocal parameter in 

nanometer 𝜇(nm) for various values of 𝜃1 for 

𝜃2 = 1.5 𝑅𝑎𝑑 
 

 

 

Fig. 6 Natural frequencies of doubly curved piezoelectric 

nano shell in terms of nonlocal parameter in 

nanometer 𝜇(nm) for various values of 𝜃1 for 

𝜃2 = 2 𝑅𝑎𝑑 
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Fig. 7 Natural frequencies of doubly curved piezoelectric 

nano shell in terms of nonlocal parameter in 

nanometer 𝜇(nm) for various values of 𝜃1 for 

𝜃2 = 5 𝑅𝑎𝑑 
 

 

 

Fig. 8 Variation of natural frequencies in terms of 

nonlocal parameter μ(nm) for various 

dimensionless values R
h = 10.  20.  50. 100 

 

 

thickness ratio R
h , the fundamental natural frequencies 

are decreased significantly. One can conclude that with 

increase of radius to thickness ratio R
h , the stiffness of 

structure is decreased that leads to decrease of fundamental 

frequencies of doubly curved nano shell. 
 

 

5. Conclusions 
 

The governing equations of motion for a doubly curved 

piezoelectric nano shell were derived in this paper based on 

Hamilton’s principle. First order shear deformation theory 

and nonlocal piezo-elasticity relations were employed to 

derive the governing equations of motion. The size 

dependency was accounted in the governing equations of 

motion based on Eringen’s nonlocal elasticity theory 

through employing the nonlocal parameter. The numerical 

results were obtained using Navier’s method for a simply-

supported nano shell. The numerical results show that some 

significant parameters such nonlocal parameter, radii of 

curvature and thickness of nano shell has important effects 

on the free vibrations responses. 

The nonlocal parameter based on Eringen’s nonlocal 

elasticity theory has significant influence on the free 

vibration responses of doubly curved piezoelectric nano 

shell. One can see that with increase of nonlocal parameter, 

the stiffness of material is decreased and consequently the 

natural frequencies are decreased. 

The defined angles of doubly curved nano shell (𝜃1,𝜃2) 

have important effects on the free vibration response. The 

numerical results indicate that variation of natural 

frequencies in terms of 𝜃1  are strongly depend on the 

value of 𝜃1 and 𝜇. One can concluded that for 𝜃2 more 

than 1 radian, the natural frequencies are decreased with 

increase of 𝜃1 , however for 𝜃2  less than 1 radian, the 

natural frequencies are depending on both nonlocal 

parameter 𝜇 and 𝜃1  concurrently. 

The influence of radius to thickness ratio R
h  was 

studied on the variation of fundamental natural frequencies 

of doubly curved piezoelectric nano shell. The numerical 

results indicates that with increase of radius to thickness 

ratio R
h , the stiffness of structure is decreased that leads 

to decrease of fundamental frequencies of doubly curved 

piezoelectric nano shell. 
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 𝐴78 =   1 +
𝑧

𝑅1
 𝑘22

1

𝑅2  1 +
𝑧

𝑅2
 

𝜕Ψ

𝜕𝛼
cos2

𝜋𝑧

ℎ

+ℎ 2 

−ℎ 2 

𝑑𝑧 

 

 𝐴79.𝐴80 .𝐴81 .𝐴82 .𝐴83 .𝐴84  

=  
𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ
 1 +

𝑧

𝑅1
  1 +

𝑧

𝑅2
 𝑒31{

1

𝑅1  1 +
𝑧

𝑅1
 

.
1

𝑅1
. 𝑧

1

𝑅1  1 +
𝑧

𝑅1
 

.
1

𝑅2  1 +
𝑧

𝑅2
 

.
1

𝑅2
. 𝑧

1

𝑅2  1 +
𝑧

𝑅2
 

}
+ℎ 2 

−ℎ 2 

𝑑𝑧 

 

𝐴85 =  (
𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ
)2[1 +

𝑧

𝑅1
][1 +

𝑧

𝑅2
]𝑘33

+ℎ 2 

−ℎ 2 

𝑑𝑧.𝐷𝑧
Ψ =  

𝜋

ℎ
𝑠𝑖𝑛

𝜋𝑧

ℎ
[1 +

𝑧

𝑅1
][1 +

𝑧

𝑅2
]

2

ℎ
Ψ0𝑘33

+ℎ 2 

−ℎ 2 

𝑑𝑧 
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