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Abstract. This paper deals with the low velocity impact response and dynamic stresses of composite sandwich truncated
conical shells (STCS) with compressible or incompressible core. Impacts are assumed to occur normally over the top face-sheet
and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF)
spring-mass-damper (SMD) model. The displacement fields of core and face sheets are considered by higher order and first
order shear deformation theory (FSDT), respectively. Considering continuity boundary conditions between the layers, the
motion equations are derived based on Hamilton’s principal incorporating the curvature, in-plane stress of the core and the
structural damping effects based on Kelvin-Voigt model. In order to obtain the contact force, the displacement histories and the
dynamic stresses, the differential quadrature method (DQM) is used. The effects of different parameters such as number of the
layers of the face sheets, boundary conditions, semi vertex angle of the cone, impact velocity of impactor, trapezoidal shape and
in-plane stresses of the core are examined on the low velocity impact response of STCS. Comparison of the present results with
those reported by other researchers, confirms the accuracy of the present method. Numerical results show that increasing the
impact velocity of the impactor yields to increases in the maximum contact force and deflection, while the contact duration is
decreased. In addition, the normal stresses induced in top layer are higher than bottom layer since the top layer is subjected to
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laminated composite truncated sandwich conical shell based on a new TDOF

impact load. Furthermore, with considering structural damping, the contact force and dynamic deflection decrees.
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1. Introduction

Since thin and thick circular conical shell structures rise
to optimum conditions for static and dynamic behavior, they
are widely used in mechanical, civil, aerospace, architec-
tural and marine engineering and also various engineering
applications such as hoppers, pressure vessels and tanks,
space vehicle and spacecrafts, submarines, reactors, jet
nozzles. In other words, these structures support applied
external forces efficiently by virtue of their geometrical
shape (Sofiyev 2011). Although these structures are
commonly fabricated from metals, modern sandwich
structures are consisted of two thin, stiff metallic or
laminated composite face sheets which separated by a
relatively thick, light weight inner flexible core (honeycomb
or foam) that has energy dissipating property. However, the
sandwich structures have widespread usage because of their
higher strength/ weight and bending stiffness/ weight ratios
of the whole structure without adding much weight (Frostig
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and Thomsen 2004). The analytical models and
experimental techniques in sandwich plate and shell
analysis are found in the works of Allen (2013), Plantema
(1966), Zenkert (1995), Vinson (1999) and a comprehensive
review with over 800 references on sandwich structures
were considered in Noor et al. (1996).

The advantages of these structures will be increased
where the face sheet is made from the advanced composite
laminates (Sun and Wu 1991). Sandwich structures may
encounter out-of-plane loads, indentation loads and low—
velocity impacts during processing, manufacturing, mainte-
nance or transportation of the composite laminates as in tool
drop, bird — strike, runway debris, hail stone, floating
debris. When the duration of these impacts is much longer
than the period of the lowest natural frequency of the
structure, the impact is often termed a low — velocity impact
or a large mass impact or a boundary condition controlled
impact, as described by Olsson’s mass criterion (Anderson
2005).

The main drawback of structural sandwich component is
their relatively poor resistance to localized impact loading
(Horrigan et al. 2000, Abrate 1997, Hiel and Ishai 1992,
Nettles and Hodge 1990). Impact resistance of composite
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materials is weak because the strain to failure of fiber and
the strength of laminate in the thickness — direction are both
weak.

Damping can have a very significant effect on dynamic
response of structures subjected to impact loads and seismic
design requirements for components near or at resonance
conditions. There are two main sources of structural
damping, i.e.,, the material damping of the structural
members and the damping originated from friction at the
joints. If the joints are designed rigid, then the material
damping may provide the sole source of structural damping
in the system (Sun and Juang 1986). Generally, the damping
of metal structures is low, that can induces structure
vibrations with high amplitudes. Damping is higher for
fiber- reinforced composites and it depends on fiber, resin
type, layer orientation, stacking sequence, etc. In sandwich
materials, a high part of the energy is dissipated by the
transverse shear effects induced in the sandwich core
(Assarar et al. 2009).

Although extensive research has been devoted to the
impact behavior of composite laminates (Abrate 1991,
2005, Sun and Chattopadhyay 1975, Khalili 1992, Mittal
1987, Mittal and Khalili 1994, Wu and Fu-Kuo 1989,
Shivakumar et al. 1985, Gong et al. 1994, Cheng et al.
2014), the research on the impact behavior of sandwich
structures is somewhat limited (Abrate 2005). Furthermore,
most of the researches reported on the impact of composite
sandwich structures with experimental or numerical nature
(Wang et al. 2012, 2013, Leijten et al. 2009, Manes et al.
2013, Bhuiyan et al. 2009, Hassan and Cantwell 2012,
Zhang et al. 2016). Chai and Zhu (2011) reviewed the
numerical mathematical and experimental methods used for
the analysis of sandwich panels subjected to impact loading.
They analyzed the impact responses according to key
parameters and consequently identified various classes of
impact. The impact responses on sandwich structures were
classified into two main groups, high velocity and low
velocity impacts with the focus on the low-velocity impact.
According to the mass ratio, the response under low-
velocity impact was further subdivided into three possible
categories, namely, large, small and medium mass impacts.

The effects of impact parameters such as impact
velocity, impact energy, impactor shape and sandwich
construction parameters such as core material and thickness
and face sheet type on the impact behavior are also
considered in many researches. A comprehensive review of
analytical models was given by Leijten et al. (2009) which
classifies the previous researches into three categories:
spring — mass models (a combination of global and local
springs) used to present the transverse load — formation
behavior, energy — balance models that assume a quasi-
static behavior of structure and complete models in which
the dynamic behavior of the structure is fully modeled. In
this context, the work of Ambur and Cruz (1995) may be
mentioned in which a local- global analysis was done to
determine the contact force and panel displacement.

In driving closed- form solution for the impact response
of the composite sandwich panels , the sandwich panels is
modeled as a discrete dynamic system with equivalent
masses, springs and damper. Shivakumar et al. (1985) used

a two- degree-of-freedom model that consisted of four
springs for bending, shear, membrane and contact rigidities
to predict the impact response of a circular plate. In their
model, the contact force and the contact duration for low-
velocity impact on circular laminates was calculated.
Anderson (2005) performed an investigation of single-
degree-of-freedom models for large mass impact on
composite sandwich laminates. The stiffness parameters of
the models were derived from the results of three-
dimensional quasi- static contact analyses of a rigid sphere
indenting a multi-layered sandwich laminate. Gong and
Lam (2000) used a spring- mass model having two-degrees-
of-freedom to determine the history of contact force
produced during impact. They also included structural
damping in their model. Fatt and Park (2001) presented a
simple single-degree-of-freedom spring mass model and
obtained the analytic solutions for the transient deformation
response of sandwich panels. Zhou and Stronge (2006)
presented a contact force correlation for simply support
light weight sandwich panel with isotropic face sheets that
were obtained by using the principle of minimum potential
energy and consideration of local membrane stretching in
the impact region. Also, in order to analyze the low-velocity
impact on light weight sandwich panel, they used the single
and two degree- of- freedom spring- mass models based on
quasi- static behavior of the structure. Feli et al. (2016)
presented an analytical contact force-indentation
relationship for clamped circular composite sandwich
panels subjected to spherical impactor on a rigid
foundation. They considered three parameters for
modelling: (1) the core crushing, the rigid perfectly plastic
foundation; (2) face sheets based on elastic plate; and (3)
local membrane stretching and bending of the face sheets.
Malekzadeh et al. (2007) studied a new computational
method based on the improved higher order sandwich plate
theory (IHSAPT) for face sheets to analyze the transverse
low velocity impact on sandwich panels caused by a
spherical impactor. In their study, a new three- degree of —
freedom (TDOF) springs — masses — damper (SMD) model
is proposed to predict the contact force history for
composite sandwich panels with transversely flexible core.
Khalili et al. (2007) presented a new equivalent three-
degree-of-freedom (TDOF) spring-masses (SM) model,
which accommodated normal impact at any location and
used it to predict the low velocity impact response of
composite sandwich panels with stiff/flexible core. Their
method allowed more than one impactor to act
simultaneously on the panel, at different locations, either on
the same face sheet or on the opposite sides of the panel.
Khalili et al. (2014) presented high—order modelling of
circular cylindrical composite sandwich shells with a
transversely compliant core subjected to low velocity
impact. They used energy-balanced model to determine the
maximum contact force and then by using a SM model, the
contact stiffness corresponding to a linearized contact law
was calculated in their study through an iteration process.
The critical time parameters of truncated conical shells
with functionally graded coatings and subjected to a time
dependent axial load in the large deformation was
determined by Sofiyev (2014). The theoretical formulation
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was based on the Vonkarman — Donnell — type nonlinear
kinematics. The basic equations were reduced to the
preposition and Galerkin methods. Nejad et al. (2015)
utilized a semi- analytical solution for elastic analysis of
FGM rotating thick truncated conical shells with axially-
varing properties under non-uniform pressure loading based
on first-order shear deformation theory and multilayer
method. Based on Love’s first approximation shell theory,
free vibration analysis of conical and cylindrical shells with
various boundary conditions was performed by Wilkins et
al. (1970). In their theory, transverse shear strain was not
ignored. Using the finite deformation theory, Tornabene et
al. (2015) studied the buckling analysis of shallow open
conical sandwich shells under uniform external pressure.

Bardell et al. (1999) used the h-p finite — element
method together with Love’s thin shell equations to
investigate the natural frequencies of conical sandwich
panels having the full range of classical boundary
conditions which includes free, clamped, simply supported
and shear diaphragm edges.

Tang and Xu (2013) employed Galerkin method for
obtaining corresponding nonlinear dynamic response
equations for truncated sandwich shallow conical shell
based on Reissner’s assumption and solved it by Runge-
Kutta method. Stability of functionally graded sandwich
truncated conical shells reinforced by functionally graded
stiffeners and surrounded by an elastic medium and
buckling of conical shells under compression was
investigated by Dung et al. (2016). Morovat (2016)
obtained analytical solution for buckling of composite
sandwich truncated conical shells subjected to combined
external pressure and axial compression load based on the
first order deformation theory (FSDT) for face sheets and a
3D elasticity solution of weak core for the flexible core.
Malekzadeh Fard and Livani (2015) performed the free
vibration analysis of thick truncated conical composite
sandwich shells with flexible cores and simply supported
boundary conditions based on a new improved and
enhanced higher order sandwich shell theory and the first
order shear deformation theory for the inner and outer
composite face sheets. Bending analysis of sandwich
conical shells with flexible cores subjected to concentrated
load, uniform distributed load on a patch, harmonic and
uniform distributed loads on the top and / or face sheet of
the sandwich structure by considering the in-plane hoop
stresses of the core was investigated by Malekzadeh Fard
(2015). Dey and Karmakar (2014) investigated the effects
of delamination on low velocity normal impact response of
composite pre-twisted shallow conical shells. The finite
element formulation was carried out based on Mindlin’s
theory for moderate rotational speeds neglecting the
Coriolis effect and also the modified Hertzian contact law
was utilized to compute the contact force and the time
dependent equations were solved by Newmark’s time
integration algorithm in their study. Bandyopadhyay et al.
(2016) presented a finite element based method to
investigate the hygrothermal effects on the transient
dynamic response of delaminated composite pre-twisted
conical shells with initial twist impacted at arbitrary
locations by multiple spherical impactors.

Due to complexity of the governing equations because
of the type of the structure and type of loadings and the
related boundary conditions, a highly accurate and fast
convergent approximate method such as DQM is essential
to use (Tornabene et al. 2015, Tornabene and Viola 2009,
Setoodeh et al. 2012, Malekzadeh and Heydarpour 2013).
DQ method is a powerful numerical technique which was
originated by Bellman (1970) to solve linear and nonlinear
partial differential equations since this method can
transform the partial linear and nonlinear equations into a
set of algebraic governing equations.

The review of the literature shows that up to now the
analytical studies about truncated sandwich conical shells
with flexible cores are still very limited. For the first time in
the present study, dynamic response analysis of thick
laminated STCS with flexible core subjected to low velocity
impact under various boundary conditions is performed by
using higher order shear deformation theory and DQ
method with considering structural damping of the core.

In the Spring mass damper (SMD) model presented in
this paper, equivalent stiffness of the impacted top face
sheet and the thick laminated truncated conical sandwich
shell have been obtained from the static analysis of
sandwich panel based on an improved higher order
sandwich plate theory. Another important step in the
solution of the impact problem is the contact law, which
provides the relationship between the impact force and the
indentation of the target surface. For isotropic homogeneous
linear elastic bodies, the use of the Hertzian contact law is
the conventional approach when the indentation is much
smaller than the plate thickness. However, for sandwich
panels the face sheets are stiff and often anisotropic, while
the core is very soft/compliant compared to the face sheets.
Accordingly, for sandwich structures the deformation of the
core induced by a contact force from a foreign object
impact is not small, and the impact energy absorption
through indentation is not negligible. However, it is very
difficult (if not impossible) to propose a generalized
indentation law that would apply to all possible sandwich
structures. In the range of low speed impact, the sandwich
plate deflection can be approximated as a quasi static
process which employs an energy-balance model together
with a lumped parameter spring mass model (Foo et al.
2008). Therefore a complete model is used to determine the
maximum contact force and also the effective contact
stiffness corresponding to a nonlinear Hertzian contact law
is calculated by using a spring mass damping model.

Spring-mass models are used extensively for analyzing
the dynamics of impact. An analytical procedure that
includes the transverse flexibility and structural damping of
the core of thick laminated truncated conical shells has not
yet been dealt with.

In the present paper, the partial differential equations of
motion, obtained from Hamilton’s concept, are converted
into algebraic equations using DQ method. The effects of
different parameters such as the core to the face sheet
stiffness ratio, the core to the face sheet thickness ratio,
semi-vertex angle, large radii of cone-to-length, boundary
conditions, in plane stresses of the core, trapezoidal shape
of the cross-section, impactor mass, impactor velocity,
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Top face sheet, (tt)
Core, (t¢)
Bottom face sheet, (tb)

Fig. 1 A schematic figure of laminated STCS

orientation angle of laminas are investigated on the contact
force and maximum deflection of thick laminated truncated
conical sandwich shells. In addition, the dynamic stresses
for the layers are reported.

2. Basic equations

A three-layer laminated STCS is considered as shown in
Fig. 1 composed of two orthotropic laminated composite
face sheets separated by an orthotropic thick compressible
or incompressible core. ry, and r, indicate the radii of the
cone at its small and large ends, respectively, a denotes
semi-vertex angle of the cone and L is the cone length along
its generator. The thickness of the top face, core and bottom
face layers are tf,t¢,t" respectively and H is the total
thickness of STCS. The origin of the coordinate system (X,
¢, z) is located on one corner of the mid plane of the STCS;
xis measured along the cone’s generator starting at the mid
length, ¢ is the circumferential coordinate and z is a straight
line normal to shell mid surface.

Based on Hook’s law, the stress-strain relationships for
the laminated face sheets may be expressed as (Garg et al.
2006)

(4]
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where C., (m, n = 1, 2, 6) are the reduced stiffness
coefficients and C}, (k, I = 4, 5) are the transverse shear
stiffness coefficients. The strain-displacement relations for
the face sheets can be written based on FSDT as follows
(Kheirikhah et al. 2012)
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where u$, v) and w'are the displacements at the mid
surface in the a, B and z directions, respectively; 6%
and 9;’, are rotations of a transverse normal around « and g
curvilinear coordinates, respectively. In the above equations
i stands for the face sheets, i =t means the top face
sheets and i = b means the bottom face sheet.

The stress-strain relationships for the orthotropic core
can be read as follows
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where Cf, (m,n= , 6) are the stiffness coefficients of
the core. In addltlon the strain-displacement relations for
the core based on higher order theory can be expressed as
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where uf,v{ and wf functions are rotational, the
parameters u$,u$,vs,vs,ws and w$ are the higher-
order terms in the Taylor's series expansion.

Reminding that there is no slipping between the face
sheets and the core, the following relations are written
(Kheirikhah et al. 2012)
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3. Governing equations

In order to derive the motion equations of laminated
STCS, the energy method is used. The first variation of the
strain energy for STCS during the elastic deformation is
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The kinetic energy for STCS is given by
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where p' (i =t,b,c) is the mass per unit volume of the
top and the bottom face sheets and the core respectively;
v, Wt (i =t,b,c) are the velocities in the X, ¢ and z
directions, respectively; “.”” denotes the first time derivative;
Vi(i =t,b,c) is the volume of the top and the bottom face
sheets and the core, respectively. The first variation of the
kinetic energy can be written as
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However, substituting Egs. (10) and (12) into following
equation

5 f(L)dt =5 j [E- (U + W)]dt = 0 (14)

integrating by parts and collecting the coefficients of
independent variations in suf, 8v§, Swt, 56, 86, dus,
8vs, 6ws, 8us, 6v5, ws, dug, Svf, Sw’,862,566), six
sixteen equations of motion for STCS may be expressed as
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In above relations, the components of the resultant
forces and moments per unit of the length which act along

the lines of the constant x or ¢ in the face sheets and the
core of STCS can be defined as

[N N M M
| N Np© MG M
NENECME O ‘
k

NC N*CMC My,
N NG M. M
[kCO 0

(16)

[Q(sztpz sz*C]
|Qz<p *CSZ(p 0 |
Qi Ol S5 S*CJ

*C CC
QZX zX SZX

0 Y an
_ Okfkf 0 Tz 2. .3
_fz 0 0 kS O . (1,2%,2,z%)dz

00

x% Z)} ki0 007 (%Y
kioo]) o o
N;p M;p - f g Olkg 0 sz (1,z9)dz"  (18)
xp X 4l i
NéXMéix 00 Oki T<Px
[Qé’zsiz] K0 0 0 (T
Qn 0 |_ 0kiki0 0 |)7z -
Qi S| Ji|o 0 ki 0 |)T (1,zY)dz' (19)
XZ ) )
Qi 0 0 0 0kiky]\7s
where
ZC
kS =1, k= (1 + e R_) 0)
@

k=1, k§=(1+61;—>, i=tbh  (21)

¢

Substituting Egs. (19)-(21) into Egs. (1) and (4) and
combining with Egs. (16)-(19) yields

{F} = [DI{E} (22)

in which

[D] — [[D;]axa 0 ]
[0]4 k,i[zi;‘]bxb '
il — A lc><c B Lc><d
127] [ e [D]gxd]

Dimensions of the matrix D for the core are: a = 19,
b =14, ¢ =10, d =9, and for the face sheets are: a =
8, b =8, c =4, d = 4. Also, the elements of [D] for the
core and the face sheets are given in Appendix A. In
addition, k, parameter is called as shear correction factor
of FSDT which is equal to 5/6 (Reissner 1953).
Components of F and E for the face sheets and the core
are defined as

(23)

T
c c c c c *C *C *C
(€6 €05 E0par E0ap » E0ar E0pr €0par E0ap

€)= €620 efié. Ka KEC. xéa,c xéﬁ,ckéc. iéﬁx}}é,x;%, (24)
Kz, €0zar €0azr €0zp1 €0z €0zar €025
E06zr E0fzr Xsar Xazr Xapr» Xfpz» Xacor Xz
NE NE, NS, NEg, Not, NS, NGS, NG, )T
NE,N;¢, ME, Mg, Mg, MSp, Mi<, M,
Mﬁa'Maﬁ'MzC'an'ngz'Qz/i"Qﬁz' zoquB'
ocZﬁQﬁz:Szca'ngz' Zcﬁ,SBZ,S‘;g,S*C

{0} =1 (25)

i i i
€0ar €0pr €0par €0ap

( Ki;KilXi tXi ’
(gy=1{ PSP A that i=¢b  (26)
€0zar €0az» 502[3 ’

i i i
€o0pzr Xazr Xzp >

(N;;NEUN[){Q’ glgﬁl

ML, ML, M: ML,

Gy={ " BTRCTA | that i=tb  (27)
Qza ’ Qaz' Qzﬁ ’ Qﬁz'
\ SL.S

Superscript T denotes the transpose. The considered
boundary conditions (BCs) in this study are

»  Simply-simply BC

vi=wl =v§ = v§ =wi = wj
=N] =M, =N;*=M;° =0, (28)

onbothends j=t,bc and i=tb

» Clamped-Clamped BC
u=vi=w =u§ =u§ =v§ =v§ =ws =w§

ow'  ows  0ws (29)

~ox  ox  ox =0
onbothends j=t,b,c and

i=tb
» Clamped-Simply BC
u=vi=w =u§ =u§ =v§ =v§ =ws§ =w§
ow'  ows  ows (30)

~9x  ox  ox =0 at x=0
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vi=w! =v§ =v§ =w§ = w§
=N, =M, =N =M =0, at
j=tb,c and i=tb

x=1L (30)

wherej =t,b,c and i =t,b.

4. Low-velocity impact response

As shown in Fig. 2, the three-degrees-of-freedom
(TDOF) spring—mass—damper (SMD) model is applied to
predict the low-velocity impact response of STCS.

The motion equations of the three-TDOF system can be
written as follows

M |Ao + Kg (Ao _Al) =0, (31)
M oA+ KA+ K (A=A
f* 1 f 1 f (1 2) (32)
+K¢ (A —A,) =0,
M_ A +K_ A +C A
sand —2 sand —2 ef =2 (33)

+K e (A, —A) =0,
where Ay, A; and A, are transverse displacements of the
impactor, impacted top and bottom face sheets,
respectively; M;, Mg, and M,,, are the mass of the
impactor, the effective mass of impacted face sheet and the
effective mass of STCS, respectively; K¢, Kracer Ksana
and K., are respectively, the effective stiffness of the
contact, the face sheet, STCS and the core, C. is the
effective viscous damping coefficient which can be defined
as Malekzadeh et al. (2006)

Cef = 7751 (Ksland /a)l )' (34)

where 74 and w; are damping coefficient and fundamental
natural frequency of structure, respectively.

The effective stiffness of the impactor can be expressed
as

A

ﬂl}
K;

‘ﬁ,r’nm

Kj’ace 61
Kcore

Msana 4—l

C?f Ksand €

T 777777

Fig. 2 The equivalent TDOF model of the structure
and the impactor system (SMD model)

ZF(E+1 +\/7?1" P +1)
2 2 aP—lK
4F2(%+1J+J;F2(P +1)

2

K: =J;F(P +lj

5 cr (39)

where T is gamma function; P is Hertzian indentation
(usually P = 1.5), amax is a parameter which can be written
as

_1 1 _1
o = (_Msand My )“’“) <P + 1)(P+‘1) (V_&)(FH) (36)
Msand + Ml 2 c

where V, is the impact velocity of impactor and the contact
stiffness (K,) may be estimated as

== == 37
Ke (3) ER™ F E B 37)

where R, E, and v, are the radius, the elastic modulus and
poison’s ratio of the impactor, respectively; Ep and vp are
elastic modulus and poison’s ratio of structure, respectively.

The effective compressive stiffness of the elastic
flexible core can be given as follows (Malekzadeh et al.

2007)
Kcure =8 ’kFD; (38)

where kg is the foundation stiffness (elastic region of the
core is modeled as a Winkler foundation) and Dy is the
effective stiffness of the impacted face sheet which can be
written as

D = VDi1Dy (y +1)/2 (39)
¥ = (D12 + 2Dg6) /+/ D11 D2, (40)
kp = Ee 41

FE L (41)

where h, can be expressed as

_ h

hc_: 1.;8 for h. < R max (42)
and h, = 2h. . for h, > h.
_ 27\
h. = (a) 2hemax  for  he > hepay (43)

32\ (4Q;\"° 12D}
h ~h (—)( ) where QF = (44)
emax = % \27/\ 3E, FT R

where h; is the thickness of the impacted face sheet. The
system of ordinary differential Eq. (6) can be solved
analytically using the following initial conditions

A(t=0)=0, A(t=0)=0, A(t=0)=0, (45)

Ag(t=0)=V,, A(t=0)=0, Ay(t=0)=0, (46)
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Table 1 Material property of face sheets and core

Material properties

Face sheets

core

E,=131GPa,E, =E, =10.34GPa
G,,=G,, =6.895GPa, G,,=6.205GPa
Vi, =V =022, v,,=0.49, p=1627 kg / m*

(0/90/core/0/90)

E,—E, —E, —0.00689GPa
G,,=G,,=G,,—3.45GPa
v=0,p=94.195kg / m®

By applying the equivalent damping concept due to
Gong and Lam (2000), the eigenvalue equation can be
obtained. Therefore

(MIMf(Ee Msand )A*3 _ _
[ gbc Mface MI + Kgcc Msand Ml + KEMface Msand ]A*Z
M, (Kgcc Kgbc - Kczore ) 1 (47)

+ . _ _ e
+KC (Kgbc Mface + Kgcc Msand ) - KC Msand

+[K;2Kg KC( qcc bc — Kczore )] =0
where
Kgcc = Kface + Keore + K¢ (48)
Kgbc = Ksand (1 + nstj)+Kcore (49)
j=v—1 (50)

The above eigenvalue equation has complex coefficients

of 2* =1 +iA", where the circular frequency is w = V2.
Finally, the equivalent contact force can be obtained as

c1(¢pg — 1) sin(w;t)
Fr(t) = K¢ |+c,(9§ — 1) sin(w,t) (51)
+c3(¢p3 — 1) sin(wst)
where

*

; K,
b6 =real< —L *),
Ke—MjA
i Kcore
¢, =real| —————

(52)
) i=123

Kgbc sand r

51

_ ~Vo(¢3 — ¢3) (53)
w1 [(@§ — o) (@7 — $3) — (&7 — 1) (b5 — $5)]

C2

_ Vo(¢s — ¢3) (54)
w2 [(@§ — d5)(p7 — 3) — (b5 — d3)(dg — )]

C3

_ ~Vo (93 — ¢3) (55)
w2 [(@§ — d5)(P7 — #3) — (b7 — d3)(dg — )]

5. DQM

The DQM approximates the partial derivative of a
function F, with respect to two spatial variables (x and ¢) at
a given discrete point (x;, ¢;), as a weighted linear sum of

the function values at all discrete points chosen in the
solution domain (0 < x <L, 0 < ¢ < 27z) with Ny x N grid
points along x and ¢ axes, respectively. Then, the n order
partial derivative of F(x, ¢) with respect to x, the m"-order
partial derivative of F(x, ¢) with respect to ¢ and the (n +
m)"-order partial derivative of F(x, ¢) with respect to both x
and ¢ is expressed discretely at the point (x, ¢) as
(Kolahchi et al. 2016, Kolahchi and Bidgoli 2016,
Ghorbanpour Arani et al. 2015)

d"F(%,9) &
AF2) S AR () n=1..N, =1 (56)
dx k=1
d F X’
( : (pJ ZB(m)F(X.:¢’| m=1..,N, -1 (57)
dn+mF(X v(p] N, -
I A L T "B{F (X, 0), (58)
dx"de" ;;Ai o

where AE,’(’) and B}E’") are the weighting coefficients

(Kolahchi et al. 2016).

Considering structural damping (Cjj — C;; (1 + 9o/ ot)
where g is structural damping), using Egs. (53)-(63), the
motion equations for low velocity impact of STCS can be
expressed in matrix form as

[(M]GE} + [C 13 + K10} = {Q} (58)

where [M], [K] and [C,] are the mass, stiffness and damp
matrixes, respectively; Q is the dynamic load vector, and
X = {uh, vb, w', 65, 6, u5, v, wi, u§, vS, ws, u,
vg, wP, 62, 65} is the displacement vector. Defining the
second and first time derivatives using Teoplitz matrices,
Eq. (64) can be written as

[D? ®@MI+[Dr@C1+[I, ®K])z=[Q]  (60)

where ® notes the Kronecker product and I, is unit matrix.
Finally, solving above equation yields the deflection and the
contact force of the structure which are discussed in the
next section.

6. Numerical results and discussion

Based on the numerical solution outlined in section 5,
the contact force and the deflection of the STCS are
obtained. For this purpose, a sandwich laminated cone with
[0, 90] face sheet, length to outer radius L/r, = 0.5,
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Fig. 3 Comparison of contact force history between present work and Anderson (2005) and Malekzadeh et al. (2006)
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Fig. 4 Comparison of deflection history between present work and Anderson (2005) and Malekzadeh et al. (2006)

thickness to outer radius h/r, = 0.1 and cone semi vertex
angle of 45° under the low velocity impact with velocity of
V =1 m/s, mass of impactor M, = 6.15 Kg and damping
coefficient ngy = 0.47 is considered. The orthotropic material
properties of the face sheets and the core are chosen as
shown in Table 1 (Tong 1994).

6.1 Validation

Before analysis the effects of different parameters on the
dynamic response of the structure, the accuracy of present
model should be investigated. To verify the present
analysis, the results obtained for the case of a panel
subjected to low velocity impact are compared with those
reported experimentally by Anderson (2005) and
numerically by Malekzadeh et al. (2006). Consider a [0,/
90,/0,/core/0,/90,/0,] panel with the core thickness of 12.7
mm, the overall dimensions of 76.2 x 76.2 mm, the thickness
of the face sheets is 0.264 mm, the impactor mass is 1.8 kg,
the impactor diameter is 25.4 mm and different the initial
potential energy levels of the impactors are 3.58, 8.07, and

12.55 J. Figs. 3 and 4 illustrate respectively, the comparison
of the contact force and the deflection histories of the
structure for different initial potential energy levels of the
impactor obtained in the present work with those reported

Hoo Fatt and Park (2001)
—— Present work

Contact force (N)

lt5
Time (s)

1

Fig. 5 Comparison of deflection history between present
work and Fatt and Park (2001)
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Fig. 8 The effect of layer number of face sheets on the
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by Anderson (2005) and Malekzadeh et al. (2006),
experimentally and numerically, respectively. There are
only small discrepancies between the predicted present
analysis and those obtained by Anderson (2005) and
Malekzadeh et al. (2006), indicating validation of this work.

In the next example, the proposed high-order model of
this work is compared with the experimental results of Fatt
and Park (2001). Considering thickness of core 12.7 mm
and overall dimensions of 76.2 x 76.2 mm and the material
properties the same as Ref. (2001), the contact force
obtained by the DQM in this study is compared with the
experimental contact force of Fatt and Park (2001) in Fig. 5.
There are only small differences in the phase and the
magnitude of the contact force obtained from the present
analysis and the experimental results of Fatt and Park
(2001), indicating validation of this work.

6.2 Curvature and core in-pane stresses effects

Figs. 6 and 7 shows, respectively the contact force and
the central deflection histories of the structure for four cases
including without considering the curvature and the in-
plane stresses of the core effects, with considering the in-
plane stresses of the core and neglecting the curvature
effects, with considering the curvature effects and
neglecting the in-plane stresses of the core and with
considering the curvature and the in-plane stresses of the
core effects. As can be seen from these figures, considering
the curvature and the in-plane stresses of the core effects
increases the contact force and the deflection of the
sandwich structure while the contact duration decreases.
The reason is that considering the curvature and the in-
plane stresses of the core makes the structure stiffer which
requires a larger deflection and accompanying the contact
force to dissipate it. It is also concluded that the contact
force and deflection of the case by considering the
curvature effects and neglecting the in-plane stresses of the
core are higher than the case of considering in-plane
stresses of the core and neglecting the curvature effects due
to low shell curvature.

6.3 Layer number of the face sheets effects

Figs. 8 and 9 present the histories of contact force and
deflection of STCS for different layer number of the face
sheets, respectively. The odd and even numbers indicate the
symmetric and anti-symmetric laminate, respectively.

Because the stability of symmetric laminatet is more
than that of the anti-symmetric one, the maximum contact
force and deflection of symmetric lamina are slightly
greater than that of the anti-symmetric one, while the
contact duration for symmetric laminatet is slightly less
than that for the anti-symmetric one. Interestingly, the
maximum contact force and deflection of 3-layers laminate
are higher than that of the 4-layers one which shows the
importance of the structural balance.

6.4 Orientation angle of the face sheets effects

The effect of orientation angle of the face sheets on the
contact force and deflection histories of the structure is
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Fig. 11 The effect of face sheets orientation angle on the
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shown Figs. 10 and 11, respectively. Four cases of two-
layers laminated conical shell are assumed as (0°, 0°), cross
ply type of (0° 90°), angle-ply types of (30°, —30°) and
(45°, —45°). It is evident that the maximum contact force
and deflection of angle-ply are higher than cross-ply type.
As results, the angle-ply type laminated structure leads to
higher stiffness and consequently higher maximum contact
force and deflection. In addition, the angle-ply laminate
shortens slightly the contact duration.

6.5 Cone semi vertex angle effects

The effect of the cone semi vertex angle on the contact
force and deflection histories is demonstrated in Figs. 12
and 13, respectively. The figure shows that the contact force
and the central deflection of the structure increases and the
contact time decreases with increasing cone semi vertex
angle. This behavior is due to the increase of the stiffness of
the STCS with increasing cone semi vertex angle.

4000 T T T

3500

3000 -

2500~

2000

1500 -

Contact Force (N)

1000 -

0 : : : Yo
1.5 2 25

1
Time (s) x10°

Fig. 12 The effect of core semi-vertex angle on the
history of contact force
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of deflection

6.6 Boundary conditions effects

Figs. 14 and 15 show the effects of different boundary
conditions on the contact force and deflection histories of
structure, respectively. Four boundary conditions of simply-
simply (SS), clamped-clamped (CC) and simply-clamed
(SC) are considered. These figures show that considering
CC boundary condition, the impact time decreases, while
the maximum contact force increases slightly. Also, the
central deflection of the top faces sheet increases
considering CC boundary condition. It is due to the fact that
the STCS with CC boundary condition has more rigidity
with respect to other assumed boundary conditions.

6.7 Impact velocity effects
The impact velocity effect on the histories of contact

force and deflection is demonstrated in Figs. 16 and 17,
respectively. As can be seen the contact force and the
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history of contact force
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central deflection of the STCS increase with increasing
impact velocity of impactor while the contact duration
decreases as the impact velocity of impactor increases. The
reason is that the higher impact velocity of impactor which
accompanies higher impact energy, requires a larger
deflection and accompanying contact force to dissipate it.

6.8 Structural damping effect

Figs. 18 and 19 illustrate the effect of structural
damping on the histories of the contact force and dynamic
deflection, respectively. It can be observed that with
considering structural damping, the contact force and
dynamic deflection decrees.

6.9 Dynamic stresses
Figs. 20-22 show the axial normal, circumferential

normal and transverse stresses of the structure subjected to
low-velocity impact for the top, bottom and core layers. The
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stress of the core is calculated for the neutral axis and the
stresses of the top and bottom layers are shown for the face
sheets. As can be seen, the normal stresses for the core layer
and the transverse stress for the face sheets are zero. In
addition, the normal stresses induced in top layer are higher
than bottom layer since the top layer is subjected to impact
load. Furthermore, the transverse stress in the core layer is
maximum.

7. Conclusions

Low velocity impact response and dynamic stresses of
orthotropic STCS with a soft/stiff flexible core was
investigated applying a new equivalent TDOF spring—
mass—damper model considering continuity boundary
conditions. The face sheets are considered as laminated
composite which follow the FSDT and the core is
considered compressible (with transverse stress only) and
incompressible (with in-plane and transverse stresses) based
on high-order shear deformation theory of sandwich
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structure. Using Hamilton’s principal, the motion equations
were derived and DQM was used for obtaining the contact
force and deflection histories of structure. The effects of
different parameters such as curvature of shell, in-plane
stresses of core, layer number of face sheets, orientation
angle of face sheets, cone semi vertex angle, boundary
conditions and impact velocity of impactor were shown on
low velocity impact response of STCS. Results indicated
that:

(1) Considering curvature and in-plane stresses of core
effects increases the contact force and deflection of
the sandwich structure while the contact duration
decreases.

(2) The maximum contact force and deflection of
symmetric lamina were slightly greater than that of
anti-symmetric one, while the contact duration for
symmetric lamina was slightly less than that for the
anti-symmetric one.

(3) The maximum contact force and deflection of
angle-ply are higher than cross-ply type.

(4) The angle-ply lamina shortens slightly the contact .

(5) It can be observed that with considering structural
damping, the contact force and dynamic deflection
decrees.

(6) The contact force and the central deflection of the
structure increases and the contact time decreases
with increasing cone semi vertex angle.

(7) Considering CC boundary condition, the impact
time decreases, while the maximum contact force
increases slightly.

(8) The contact force and the central deflection of the
STCS increase with increasing impact velocity of
impactor while the contact duration decreases as
the impact velocity of impactor increases.

(9) In addition, the normal stresses induced in top
layer are higher than bottom layer since the top
layer is subjected to impact load.

(10) The results of this study were validated as far as
possible by other works.

Finally, it was hoped that the results of this paper would
be beneficial for the design of low velocity impact response
of sandwich structures used in aerospace and other
industries.
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Appendix A

Membrane, Flexure, Coupling, and Shear Rigidity Matrices of core

[Q11H;  QuizHY  QuaHY QuaHg  QuiH; QizHY  QuaHy QuH; Qi3HE  Qu3H3]
QuHi  QuaHi QuuH) Q2H) Qp2H3F QaH3 QaH3 Qu3Hi  Qo3H;

QuHi  QuH) QuH) QuHP QuuHi QuaHi QuzHi QusHj

QuH; QuHS QuHY QuH) QuH3 QuzHE Qu3H?

[A] = QuH; QuH QuH] QuH; Qi3H] Qu3H;
QuHi QuuHi Q24H] Q3H; Qu3Hi (A1)
Sym. QuHi QuH) QuH; Qu3Hj

QuaH; QuzH} Qu3H?
Qs HE Q33Hj
Q33H; ]

[Ds]
[QssHy  QssHE  QsgHi  QseHy  QssHi  QssH  QsgHi  QsgHy  QssHP  QssHE  QseHP  QsgHi  QssHE  QseH3 )
QssHy  QseHE  QsHY  QssHF  QssH  QseH?  QsgH  QssHY  QssHY  QseHP  QsgHY  QssH3  QseHY
Qs6Hi  QosHi  QesH3 QesHi  QesHi QeoHa QesHiP  QesHi QesHP QesHi QesH3  QooH3
QesHy  QesHi  QesHY QesHi  QegHi  QesHi QesHY QesHi QeoHi QesHS  QeHi
QssHi QssH? QsgHi QseHi QssH3 QssHY QseH3 QseH3  QssHZ  QsgHi
QssHi QsgHi QsgHY QssHF  QssH3  QsgHi  QsgHY  QssHE  QsgHe
QesHi QosHi QosH3 QesHF QesH3 QesH3 QesHZ  QesHi| (A2)
QesHi QosHY QesHY QoeH3 QoeHF QesHS  QgeHe
QssHi  QssHF  QsgHF  QsgHy  QssHE  QseHi
QssH  QseHy  QsgH)  QssHi  QseHY
Sym. QesH:  QecHy QesHi QeeHi
QssHy  QesHY  QeeHi
QssHe  QsgH¢
Q6 He |

It is worth noting that [B¢] matrices is similar to [E¢] matrices andthe difference between [A¢], [B¢], [E€] and [D¢]
matrices are subscript “j” in “I-Iji” parameter in [A°] matrices is “j”, in [B¢] and [E€] matrices is equal to “j + 1” and in
[D€] matrices is equal to “j + 2”.

where
hk+1 . 1 hk+1 . 2 hk+1 . 3 hk+1 . 4 hk+1 k1
HY = [, z'dz , Hl = [, Ikz'dz , H} = [, kyz'dz, H} = [}, kikyz'dz , H} = [, Ezldz,
k+1
5 _ rh ky i
HY = Ju 7'dz (A3)

that i=1,2,3,456 ,k; =(1+=), k =<1+i>
1 ( Ra) 2 Ry

and [Q] matrix refers to elastic stiffness in principle material axes.

and membrane, Flexure, Coupling, and Shear Rigidity Matrices of face sheet
VL QuHS QiHS  QuaH§  QuaH§ |
. H4 H4— HO
[4i] = Z Q22Hy Qa4 o Q24 0 (Ad)
Sym QuHy  QqHp

L 5
Q442H;
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1=

[Qs5Hg

that i = t (top sheet), b (buttom sheet).
It is worth noting that [B‘] matrices is similar to [E'] matrices and difference of [4!], [B], [E'] and [D!] matrices

are subscript “j” in “H;” parameter in [A‘] matrices is “j”, in [B'] and [E‘] matrices is equal to “j + 1” and in [D']

matrices is equal to “j + 2”.
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