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1. Introduction 

 

Laminated composite structures have been used many 

engineering applications, such as aircrafts, space vehicles, 

automotive industries, defence industries and civil 

engineering applications because these structures have 

higher strength-weight ratios, more lightweight and ductile 

properties than classical materials. With the great advances 

in technology, the using of the laminated composite 

structures is growing in applications. 

Buckling or post-buckling is occurred by a sudden 

failure of a structural member subjected to high 

compressive loads. Understanding the buckling and post-

buckling mechanism of laminated composites is very 

important. It is known that post-buckling problems are 

geometric nonlinear problems. In the literature, much more 

attention has been given to the linear analysis of laminated 

composite beam structures. However, nonlinear and post-

buckling studies of Laminated composite beams are has not 

been investigated broadly. 

In the open literature, studies of the post-buckling and 

nonlinear behavior of laminated composite beams are as 

follows; Sheinman and Adan (1987) investigated effect of 

shear deformation on the post-buckling of laminated beams. 

Ghazavi and Gordaninejad (1989) studied geometrically 

nonliner static of laminated bimodular composite beams by 

using mixed finite element model. Singh et al. (1992) 

investigated nonlinear static responses of laminated 

composite beam based on higher shear deformation theory 

and von Karman’s nonlinear type. Pai and Nayfeh (1992) 
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presented three-dimensional nonlinear dynamics of 

anisotropic composite beams with von Karman nonlinear 

type. Di Sciuva and Icardi (1995) investigated larfe 

deflection of anisotropic laminated composite beams with 

Timoshenko beam theory and von Karman nonlinear strain-

displacement relations by using Euler method. Donthireddy 

and Chandrashekhara (1997) investigated thermoelastic 

nonlinear static and dynamic analysis of laminated beams 

by using finite element method. Fraternali and Bilotti 

(1997) analyzed nonlinear stress of laminated composite 

curved beams. Ganapathi et al. (1998) studied nonlinear 

vibration analysis of laminated composite curved beams. 

Patel et al. (1999) examined nonlinear post-buckling and 

vibration of laminated composite orthotropic beams/ 

columns resting on elastic foundation with Von-Karman’s 

strain-displacement relations. Oliveira and Creus (2003) 

investigated flexure and buckling behaviors of thin-walled 

composite beams with nonlinear viscoelastic model. Valido 

and Cardoso (2003) developed a finite element model for 

optimal desing of laminated composite thin-eslled beams 

with geometrically nonlinear effects. Machado (2007) 

studied nonlinear buckling and vibration of thin-walled 

composite beams. Cardoso et al. (2009) investigated 

geometrically nonlinear behavior of the laminated 

composite thin-walled beam structures with finite element 

solution. Kumar and Singh (2009) studied buckling and 

poat-buckling of laminated composite plates SMA fibers 

under thermal loading. Emam and Nayfeh (2009) 

investigated post-buckling of the laminated composite 

beams with different boundary conditions. Malekzadeh and 

Vosoughi (2009) studied large amplitude free vibration of 

laminated composite beams resting on elastic foundation by 

using differential quadrature method. Gupta et al. (2010) 

studied post-buckling analysis of composite beams with 
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different boundary conditions by using Ritz method. Chang 

et al. (2011) investigated thermal buckling and post-

buckling of laminated composite beams with higher order 

beam theories. Kocatürk and Akbaş (2011, 2012, 2013) 

investigated thermal post-buckling behavior of beams. 

Akgöz and Civalek (2011) and Civalek (2013) examined 

nonlinear vibration laminated plates resting on nonlinear-

elastic foundation. Baghani et al. (2011) and Jafari-

Talookolaei et al. (2011) examined large amplitude free 

vibration and post-buckling of laminated beams resting on 

elastic foundation by using the variational iteration method. 

Youzera et al. (2012) presented nonlinear dynamics of 

laminated composite beams with damping effect. Gunda 

and Rao (2013) investigated post-buckling analysis of 

composite beams based on von-Karman nonlinear type. 

Patel (2014) examined nonlinear static of laminated 

composite plates with the Green-Lagrange nonlinearity. 

Akbaş (2013, 2014, 2015a, b, 2017a), Akbaş and Kocatürk 

(2011, 2012, 2013) studied post-buckling and nonlinear 

analysis of homogeneous and non-homogeneous beams. 

Stoykov and Margenov (2014) studied Nonlinear vibrations 

of 3D laminated composite Timoshenko beams. Cunedioğlu 

and Beylergil (2014) examined vibration of laminated 

composite beams under thermal loading. Li and Qiao 

(2015a, b), Shen et al. (2016, 2017), Li and Yang (2016) 

investigated nonlinear postbuckling analysis of composite 

laminated beams. Mahi and Tounsi (2015) investigated 

static and bending of isotropic, functionally graded, 

sandwich and laminated composite plates. Draiche et al. 

(2016) examined flexure analysis of laminated composite 

plates with stretching effect. Chikh et al. (2017) studied 

thermal buckling ross-ply laminated plates by using a 

simplified HSDT. Fouda et al. (2017) investigated buckling, 

bendind and vibration of functionally graded beams with 

porosity effcet by using finite element methods. Almitani 

(2017) studied buckling of symmetric and antisymmetric 

functionally graded beams. Bessaim et al. (2013, 2017), 

Belabed et al. (2014), Bousahla et al. (2014), Hebali et al. 

(2014), Bourada et al. (2015), Hamidi et al. (2015), 

Bennoun et al. (2016), Bouafia et al. (2017), Abualnour et 

al. (2018) investigated the effects of the shear deformations 

on the mechanical behavior of composite structures. Houari 

et al. (2016) investigated three-unknown sinusoidal shear 

deformation theory for functionally graded plates. Asadi 

and Aghdam (2014), Mareishi et al. (2014), Kurtaran 

(2015), Mororó et al. (2015), Pagani and Carrera (2017) 

analyzed large deflections of laminated composite beams. 

Benselama et al. (2015), Liu and Shu (2015), Topal (2017) 

investigated buckling behavior of composite laminate 

beams. Latifi et al. (2016), Ebrahimi and Hosseini (2017) 

presented nonlinear dynamics of laminated composite 

structures. Meziane et al. (2014), Bouderba et al. (2016), 

Bousahla et al. (2016), Abdelaziz et al. (2017), Bellifa et al. 

(2017a, b), Akbaş (2017a, b, c), El-Haina et al. (2017), 

Menasria et al. (2017) investigated stability of the non-

homogeneous plates. Chaht et al. (2015), Zemri et al. 

(2015), Ahouel et al. (2016), Khetir et al. (2017) examined 

buckling of nanoscale beams. 

In the most of the post-buckling studies of laminated 

composite beams, the von-Karman strain displacement 

approximation is used. In the von-Karman strain, full 

geometric non-linearity cannot be considered because of 

neglect of some components of strain, satisfactory results 

can be obtained only for large displacements but moderate 

rotations. In the open literature, post-buckling studies of 

laminated composite beams with considering full geometric 

nonlinearity has not been investigated broadly. 

In the present study, the post-buckling analysis of a 

laminated Timoshenko beams is considered by using total 

Lagrangian finite element method in which full geometric 

nonlinearity which can be considered as distinct from the 

studies by using von-Karman nonlinearity. The main 

purpose of this paper is to fill this gap for laminated 

composite beams for post-buckling behavior. The effects of 

the fibber orientation angles and the stacking sequence of 

laminates on the post-buckling deflections, configurations 

and stresses of the composite laminated beam are examined 

and discussed. 

 

 

2. Theory and formulation 
 

A simply supported laminated composite beam with 

three layers of length L, width b and height h with material 

or Lagrangian coordinate system (X, Y) and with spatial or 

Euler coordinate system (X, Y) as shown in Fig. 1. The 

beam is subjected to a non-follower compressive point load 

(F) at the end of the beam as seen from Fig. 1. It is assumed 

that the layers are located as symmetry according to mid-

plane axis. The height of each layer is equal to each other. 

It is known that the post -buckling case is a 

geometrically nonlinear problem. In the nonlinear kinematic 

model of the beam, the total Lagrangian approach is used 

within Timoshenko beam theory. The Lagrangian 

formulations of the problem are developed for laminated 
 

 

 

Fig. 1 A simply supported laminated beam subjected to a 

non-follower compressive point load (F) at the end 

of the beam and cross-section. 
 

 

 

Fig. 2 Two-node C0 beam element 
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composite beam by using the formulations given by Felippa 

(2017) for isotropic and homogeneous beam material. The 

finite beam element of the problem is derived by using a 

two-node beam element shown in Fig. 2, of which each 

node has three degrees of freedom, i.e., two displacements 

uxi and uyi and one rotation θi about the Z axis. 

In the deformation process, a generic point of the beam 

located at P0 (X, Y) in the previous configuration C0 moves 

to P(x, y) in the current configuration C, as shown in Fig. 3. 

The projections of P0 and P along the cross sections at C0 

and C upon the neutral axis are called C0 (X, 0) and C (xc, 

yc), respectively. It is assumed that the cross section of the 

beam remains unchanged, such that the shear distortion g 

<< 1 and cos g can be replaced by 1 Felippa (2017). The 

coordinates of the beam at the current C configuration are 
 

𝑥 = 𝑥𝑐 − 𝑌 sin𝜓 + sin𝛾 cos𝜓  

= 𝑥𝑐 − 𝑌 sin 𝜓 + 𝛾 +  1 − cos𝜓 sin𝜓  

=  𝑥𝑐 − 𝑌sin𝜃 

(1) 

 

𝑦 = 𝑦𝑐 + 𝑌 cos𝜓 − sin𝛾 sin𝜓  

= 𝑦𝑐 + 𝑌 cos 𝜓 + 𝛾 +  1 − cos𝛾 cos𝜓  

=  𝑦𝑐 + 𝑌cos𝜃 

(2) 

 

where, ψ is total rotation of the cross section, q is the 

rotation of the cross section, γ is the shear distortion, xc, yc 

coordinates of C point, xc = X + uXC and yc = uXC. 

Consequently, x = X + uXC – Y sin q and y = uYC + Y cos q. 

From now on, we shall call uXC and uYC simply uX and uY, 

respectively. Thus the Lagrangian representation of the 

coordinates of the generic point at C is 
 

 
𝑥
𝑦 =  

𝑋 + 𝑢𝑋 − 𝑌sin𝜃
𝑢𝑌 + 𝑌cos𝜃

  (3) 

 

in which uX, uY and θ are functions of X only. This 

concludes the reduction to a one-dimensional model, as 

sketched in Fig. 3(b). For a two-node C0 element, it is 

natural to express the displacements and rotation as linear 

 

 

functions of the node degrees 
 

𝑤 =  

𝑢𝑋(𝑋)

𝑢𝑌 𝑋 

𝜃(𝑋)
 

=
1

2
 

1 − ξ 0 0
0 1 − ξ 0
0 0 1 − ξ

  

1 + ξ 0 0
0 1 + ξ 0
0 0 1 + ξ

 

 
 
 
 
 
 
𝑢𝑋1

𝑢𝑌1

𝜃1
𝑢𝑋2

𝑢𝑌2

𝜃2  
 
 
 
 
 

= 𝐍𝐮 

(4) 

 

in which x = (2X/L0) – 1  is the isoparametric coordinate 

that varies from x = –1 at node 1 to x = 1 at node 2. The 

Green-Lagrange strains are given as follows Felippa (2017) 
 

 𝒆 =  
𝑒1

𝑒2
 =  

𝑒𝑋𝑋

2𝑒𝑋𝑌
  

=  
 1 + 𝑢𝑋

′  cos𝜃 + 𝑢𝑌
′  sin𝜃 − 𝑌𝜃′ − 1

2𝑒𝑋𝑌
 =  

𝑒 − 𝑌𝜅
𝛾

  
(5) 

 

𝑒 =  1 + 𝑢𝑥
′  cos𝜃 + 𝑢𝑦

′ sin𝜃 − 1 (6a) 
 

𝛾 = −1 + 𝑢𝑥
′ sin𝜃 + 𝑢𝑌

′ sin𝜃 − 1,       𝜅 = 𝜃′  (6b) 

 

where e is the axial strain, g is the shear strain, and k is 

curvature of the beam, d / dX Xu u X¢ = , d / dY Yu u X¢= , 

d / dXq q¢= . The equivalent Young’s modulus of kth layer 

in the x direction (𝐸𝑥
𝑘) is used the following formulation 

(Vinson and Sierakowski 2002) 
 

1

𝐸𝑥
𝑘

=
cos4(𝜃𝑘)

𝐸11
+  

1

𝐺12
−

2𝜈12

𝐸11
 cos2 𝜃𝑘  sin2 𝜃𝑘 

+
sin4(𝜃𝑘)

𝐸22
 

(7) 

 

where, E11 and E22 indicate the Young’s modulus in the 

longitudinal and transverse directions, respectively, G12 and 

ν12 are shear modulus and Poisson ratio, respectively. m = 

cos𝜃 and n = sin𝜃, 𝜃 indicates the fiber orientation angle. 

 

 

(a) Motion of plane beam (b) Reduction to one-dimensional element 

Fig. 3 Lagrangian kinematics of the C0 beam element with X-aligned reference configuration Felippa (2017) 
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By assuming that the material of the laminated composite 

beam obeys Hooke’s law, the axial force N, shear force V 

and bending moment M are given as follows 
 

11 11
N A Be= + k  (8a) 

 

55
V A= g (8b) 

 

11 11
M B De= + k  (8c) 

 

where A11, B11, D11 and A55 are the extensional, coupling, 

bending, and transverse shear rigidities respectively, and 

their expressions are defined as 
 

𝐴11 =  𝑏𝐸𝑥
𝑘(𝑧𝑘+1 − 𝑧𝑘 )

𝑛

𝑘=1

 (9a) 

 

𝐵11 =
1

2
 𝑏𝐸𝑥

𝑘(𝑧𝑘+1
2 − 𝑧𝑘

2)

𝑛

𝑘=1

 (9b) 

 

𝐷11 =
1

3
 𝑏𝐸𝑥

𝑘(𝑧𝑘+1
3 − 𝑧𝑘

3)

𝑛

𝑘=1

 (9c) 

 

Expression of the transverse shear rigidity A55 given as 

follows (Vinson and Sierakowski 2002) 
 

𝐴55 =
5

4
 𝑏𝑄55

𝑘 (𝑧𝑘+1 − 𝑧𝑘 −
4

3ℎ2
 𝑧𝑘+1

3 − 𝑧𝑘
3 )

𝑛

𝑘=1

 (10) 

 

where 𝑄55
𝑘  is given below 

 

𝑄55
𝑘 = 𝐺13𝑐𝑜𝑠

2 𝜃𝑘 + 𝐺23𝑠𝑖𝑛
2 𝜃𝑘  (11) 

 

For the solution of the geometrically nonlinear problem 

in the total Lagrangian coordinates, a small-step 

incremental approach based on Newton-Raphson iteration 

method is used. In the Newton-Raphson solution for the 

problem, the applied load is divided by a suitable number of 

increments according to its value. After completing an 

iteration process, the previous accumulated load is 

increased by a load increment. The solution for the n+1 st 

load increment and ith iteration is performed using the 

following relation 
 

1
( )

i i i

n T n
d

+
=

-1
u K R  (12) 

 

where 𝐊𝑇
𝑖  is the tangent stiffness matrix of the system at 

the i th iteration, 𝑑𝐮𝑛
𝑖  is the displacement increment vector 

at the i th iteration and n+1 st load increment, (𝑅𝑛+1
𝑖 )𝑆 is 

the residual vector of the system at the i th iteration and n+1 

st load increment. This iteration procedure is continued 

until the difference between two successive solution vectors 

is less than a preset tolerance in the Euclidean norm, given 

by 
 

 
  𝑑𝒖𝑛

𝑖+1 − 𝑑𝒖𝑛
𝑖  𝑇 𝑑𝒖𝑛

𝑖+1 − 𝑑𝒖𝑛
𝑖   2

  𝑑𝒖𝑛
𝑖+1 𝑇 𝑑𝒖𝑛

𝑖+1  2
≤ 𝜉𝑡𝑜𝑙  (13) 

A series of successive iterations at the n+1 st 

incremental step gives 
 

𝒖𝑛+1
𝑖+1  𝒖𝑛+1

𝑖 + 𝑑𝒖𝑛+1
𝑖 = 𝒖𝑛 + ∆𝒖𝑛

𝑖  (14) 
 

where 
 

∆𝒖𝑛
𝑖 =  𝑑𝒖𝑛

𝑘

𝑖

𝑘=1

 (15) 

 

The residual vector 𝐑𝑛+1
𝑖  for the structural system is 

given as follows 
 

1R f pi
n+ = -  (16) 

 

Where f is the vector of total external forces and p is the 

vector of total internal forces, as given in the appendix. The 

element tangent stiffness matrix for the total Lagrangian 

Timoshenko beam element as given (Felippa 2017) is 

 

K K K
T M G
= +

 (17) 

 

where KG is the geometric stiffness matrix, and KM is the 

material stiffness matrix given as follows 
 

0

dK B S B
T

M m m

L

X= ò
 

(18) 

 

The explicit expressions of the terms in Eq. (17) are 

given in the appendix. After integration of Eq. (18), the 

matrix KM can be expressed as follows 

 
a c b s

M M M M MK K K +K K= + +
 (19) 

 

where 𝐊𝑀
𝑎  is the axial stiffness matrix, 𝐊𝑀

𝑐  the coupling 

stiffness matrix, 𝐊𝑀
𝑏  the bending stiffness matrix, and 𝐊𝑀

𝑠   

the shearing stiffness matrix, of which the explicit 

expressions are given in the Appendix. 
 

 

3. Numerical results 
 

In the numerical study, post-buckling deflections, 

configurations and stresses of the simply supported 

laminated beam are calculated and presented for different 

fibber orientation angles and the stacking sequence of 

laminates under non-follower compressive point load (F) at 

the end of the beam (Fig. 1). Using the conventional 

assembly procedure for the finite elements, the tangent 

stiffness matrix and the residual vector are obtained from 

the element stiffness matrices and residual vectors in the 

total Lagrangian sense for finite element model of the 

laminated Timoshenko beams. After that, the solution 

process outlined in the preceding section is used to obtain 

the solution for the problem of concern. In ob00taining the 

numerical results, graphs and solution of the nonlinear finite 

element model, MATLAB program is used. 

Numerical calculations of the integrals seen in the 

rigidity matrices will be performed by using five-point 

Gauss rule. In the numerical examples, the material 
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properties of the layers are used in Loja et al. (2001): E1 = 

129.207 GPa. 

E2 = E3 = 9.42512 GPa, G12 = 5.15658 GPa, G13 = 

4.3053 GPa, G23 = 2.5414 GPa, ν12 = ν13 = 0.3, ν23 = 

0.218837. The geometry properties of the beam are 

considered as follows: b = 0.3 m, h = 0.3 m and L = 3 m. It 

is mentioned before that the thickness of layers is equal to 

each other. The number of finite elements is taken as 100 in 

the numerical calculations. 

In Fig. 4, the maximum vertical displacements (at the 

midpoint of the beam) versus compressive load (F) rising 

are presented for different values of the fiber orientation 

angles () for the stacking sequences [0//0] and [/0/]. In 

Fig. 4, furcation points can be seen (see circle). It is known 

that buckling case occurs at the furcation points. So, these 

points give the value of critical buckling loads. It is seen 

figure 4 that with increase in load, the displacements of the 

laminated beam converge. It is seen from Fig. 4 that 

increase in the fiber orientation angle () causes a decrease 

in the critical buckling loading (see furcation points) in both 

[0//0] and [/0/] because the equivalent Young’s modulus 

and bending rigidity decrease according to the Eq. (7). As a 

result, the strength of the material decreases and the critical 

buckling load decreases naturally. It is observed from figure 

4 that the critical buckling loads in [/0/] are smaller than 

 

 

 

 

[0//0]’s. The post-buckling responses in the [/0/] are 

very sensitive and the post-buckling displacements. Critical 

buckling loads change quickly with increasing the fiber 

orientation angles in contrast with [/0/]. It is shows that 

the stacking sequence plays very important role on the post-

buckling responses of the laminated beams. 

In order to investigate the effect of the fiber orientation 

angles on the stresses on the post-bucking case, the Cauchy 

normal stresses (σxx) at the midpoint of the beam (X = L/2 

and Y = -0.5h) are obtained and illustrated versus 

compressive load rising (F) in Fig. 5 for the stacking 

sequences [0//0] and [/0/]. As seen from Fig. 5 that, the 

Cauchy normal stresses increase with increasing the fiber 

orientation angles. Increase in load causes decrease in 

difference among the fiber orientation angles in stress 

results for the stacking sequence [0//0]. However, 

difference among the fiber orientation angles in stress 

increase considerably with increase the loads for the 

stacking sequence [/0/]. It shows that, the stacking 

sequence is very effective for changes the stresses in the 

post-buckling stage. Also, it is seen from Fig. 5 that, the 

normal stresses increase suddenly in the furcation points 

(see circle), namely critical buckling loads, as like as the 

load- displacement curve (Fig. 4). Before critical buckling 

loads, the normal stresses are increase linearly and have 

  

(a) For the stacking sequence [0//0] (b) For the stacking sequence [/0/] 

Fig. 4 Compressive Load (F)- maximum displacements (vmax) curves for different values of the fiber orientation angles () 

 
 

(a) For the stacking sequence [0//0] (b) For the stacking sequence [/0/] 

Fig. 5 Compressive Load (F)- Cauchy normal stresses (σxx) at (X=L/2 and Y = -0.5h) curves for different values of 
the fiber orientation angles () 
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negative values. However, the normal stresses are increase 

nonlinearly after critical buckling loads and have great 

values in the post-buckling stage. After the critical buckling 

loads, the mechanical responses of the laminated beam 

seriously change in contrast with pre-buckling stage. 

Fig. 6 displays the effect of the fiber orientation angles 

on the post-buckling configuration of the beam for the 

constant compressive load (F) for the stacking sequences 

[0//0] and [/0/]. It is observed from Fig. 6 that the 

displacement shapes of the laminated beams change 

significantly with change the fiber orientation angles. With 

the increase in the fiber orientation angles, the displacement 

increase significantly as compressive load is constant. 

In Fig. 7, the maximum vertical displacements and 

Cauchy normal stresses versus the fiber orientation angles 

rising are presented for different compressive loads values 

for the stacking sequence [0//0]. 

As seen from Fig. 7 that the fiber orientation angles 

have a great influence on the buckling and post-buckling 

behaviour of the laminated beam. Decreasing the fiber 

orientation angles to 90° from 0° or to 90° from 180°, the 

critical buckling loads (see circle) increase seriously. 

Increasing the fiber orientation angles, the displacements 

and stresses increase significantly. It can be concluded from 

here: to choice suitable the fiber orientation angles is very 

important for safe design of laminated composite structures. 

 

 

 

 

 

4. Conclusions 
 

Post-buckling responses of a simply supported 

laminated composite beam is investigated by using total 

Lagrangian finite element model with the Timoshenko 

beam theory in conjunction full geometric non-linearity. 

The considered non-linear problem is solved by using 

incremental displacement-based finite element method in 

conjunction with Newton-Raphson iteration method. The 

effects of the fibber orientation angles and the stacking 

sequence of laminates on post-buckling responses of the 

laminated beam are examined and discussed. The 

shortcomings of this study, the material nonlinearity and 

elasto-plastic behavior are not considered. It would be 

interesting to demonstrate the ability of the procedure 

through a wider campaign of investigations concerning 

elasto-plastic or material nonlinear analysis of laminated 

composite beams with geometrically nonlinearity. It is 

observed from the results that the fibber orientation angles 

and the stacking sequence have great influences on the post-

buckling behaviour of the laminated composite beams. The 

fibber orientation angles is very effective to change the 

critical buckling loads and the post-buckling responses. The 

stacking sequence is very effective to change the stress in 

the post-buckling stage. 

As seen from results that for learn about more realistic 

post-buckling behaviour of the laminated composite beams 

  

(a) For the stacking sequence [0//0] (b) For the stacking sequence [/0/] 

Fig. 6 Post-buckling configuration of the laminated beam for different values of the fiber orientation angles () 

  

(a) For maximum displacements (b) For Cauchy normal stresses 

Fig. 7 The relationship between fiber orientation angles and post-buckling responses of the laminated beam 
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in higher loads, full the geometrically non-linear model 

must be considered. The advantage of the finite element 

method to the other methods is that in the finite element 

method, nonlinear post-buckling problems of composite 

structures can be taken into consideration without any 

difficulty. 
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Appendix 
 

 

 

In this appendix, the entries of the following matrices are given: axial stiffness matrix 𝐊𝑀
𝑎 , coupling stiffness matrix 𝐊𝑀

𝑐 , 

bending stiffness matrix 𝐊𝑀
𝑏 , and shearing stiffness matrix 𝐊𝑀

𝑠  for the laminated composite material Felippa (2017). 
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𝑠𝑚
2 −𝑐𝑚𝑠𝑚 𝑠𝑚𝛼1𝐿0/2

−𝑐𝑚𝑠𝑚 𝑐𝑚
2 −𝑐𝑚𝛼1𝐿0/2

𝑠𝑚𝛼1𝐿0/2 −𝑐𝑚𝛼1𝐿0/2 𝛼1
2𝐿0

2 /4  
 
 
 
 
 
 

 (A4) 

 

where m denotes the midpoint of the beam, x = 0, and qm = (q1 + q2)/2, wm = qm + j, cm = cos wm, sm = sin wm, em = L cos (qm ‒ 

y)/L0 ‒ 1, a1 = 1 + em and gm = L sin (y ‒ qm)L0 (See Fig. A1 for symbols). The initial axis of the beam considered is taken as 

horizontal, therefore j = 0. The matrix 

 

S is defined as follows 

 

𝑺 =  

A11 0 −B11

0 A15 0
−B11 0 D11

  (A5) 

 

The matrix Bm is given as follows 

 

 

𝑩𝒎  =  𝑩𝒎 𝜉=0  =
1

𝐿0

 
 
 
 
 −𝑐𝑚 −𝑠𝑚 −

1

2
𝐿0𝛾𝑚

𝑠𝑚 −𝑐𝑚
1

2
𝐿0(1 + 𝑒𝑚)

0 0 −1

𝑐𝑚 𝑠𝑚 −
1

2
𝐿0𝛾𝑚

𝑠𝑚 −𝑐𝑚
1

2
𝐿0(1 + 𝑒𝑚)

0 0 1  
 
 
 
 

 (A6) 

 

The geometric stiffness matrix KG is given as follows 
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𝑲𝐺  =
Nm

2

 
 
 
 
 
 
 
 

0 0 𝑠𝑚
0 0 −𝑐𝑚

𝑠𝑚 −𝑐𝑚 −
1

2
𝐿0 1 + 𝑒𝑚 

0 0 𝑠𝑚
0 0 −𝑐𝑚

−𝑠𝑚 𝑐𝑚 −
1

2
𝐿0 1 + 𝑒𝑚 

0 0 −𝑠𝑚
0 0 𝑐𝑚

𝑠𝑚 −𝑐𝑚 −
1

2
𝐿0 1 + 𝑒𝑚 

0 0 −𝑠𝑚
0 0 𝑐𝑚

−𝑠𝑚 𝑐𝑚 −
1

2
𝐿0 1 + 𝑒𝑚  

 
 
 
 
 
 
 

 

+
Nm

2

 
 
 
 
 
 
 
 

0 0 𝑐𝑚
0 0 𝑠𝑚

𝑐𝑚 𝑠𝑚 −
1

2
𝐿0𝛾𝑚

0 0 𝑐𝑚
0 0 𝑠𝑚

−𝑐𝑚 −𝑠𝑚 −
1

2
𝐿0𝛾𝑚

0 0 −𝑐𝑚
0 0 −𝑠𝑚

𝑐𝑚 𝑠𝑚 −
1

2
𝐿0𝛾𝑚

0 0 −𝑐𝑚
0 0 −𝑠𝑚

−𝑐𝑚 −𝑠𝑚 −
1

2
𝐿0𝛾𝑚  

 
 
 
 
 
 
 

 

(A7) 

 

in which Nm and Vm are the axial and shear forces evaluated at the midpoint. The internal nodal force vector is Felippa (2017) 

 

𝒑 = 𝐿0𝑩𝒎
𝑻 𝒛 =

 
 
 
 
 −𝑐𝑚 −𝑠𝑚 −

1

2
𝐿0𝛾𝑚

𝑠𝑚 −𝑐𝑚 −
1

2
𝐿0 1 + 𝑒𝑚 

0 0 −1

𝑐𝑚 𝑠𝑚
1

2
𝐿0𝛾𝑚

𝑠𝑚 −𝑐𝑚 −
1

2
𝐿0 1 + 𝑒𝑚 

0 0 1  
 
 
 
 
𝑇

 
𝑁
𝑉
𝑀

  (A8) 

 

where 𝒛𝑻 =  𝑁 𝑉 𝑀 . The external nodal force vector is 

 

 

𝒛𝑻 = b   

 
 
 
 
 
 
1 − 𝜉1 0 0

0 1 − 𝜉1 0
0 0 1 − 𝜉1

1 − 𝜉2 0 0
0 1 − 𝜉2 0
0 0 1 − 𝜉2 

 
 
 
 
 

𝐿0h

 
𝑓𝑋
𝑓𝑌
0

 𝑑𝑋𝑑𝑌 + 𝑏   

 
 
 
 
 
 
1 − 𝜉1 0 0

0 1 − 𝜉1 0
0 0 1 − 𝜉1

1 − 𝜉2 0 0
0 1 − 𝜉2 0
0 0 1 − 𝜉2 

 
 
 
 
 

𝐿0h

 

𝑡𝑋
𝑡𝑌

𝑚𝑡𝑌

 𝑑𝑋
𝐿0

 (A9) 

 

where fX, fY are the body forces, tX, tY, mz are the surface loads in the X, Y directions and about the Z axis. 

 

 

 

Fig. A1 Plane beam element with arbitrarily oriented reference configuration Felippa (2017) 
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