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1. Introduction 

 
Papers, studies and experiments show that size-

dependent behavior is an inseparable characteristic of every 
kind of structures in micron and submicron scale. Thus for 
studying micro- and sub micro-structures practical theories 
should be used to capture such size effect. 

Several higher order and non-local elasticity theories 
have been used to develop nano structure-dependent beam 
models (Jandaghian and Rahmani 2015, Hosseini and 
Rahmani 2016b) but in this study couple stress theory is 
introduced emphatically and other theories are introduced 
just for discovering the history. 

Chong and Lam (1999) showed that size-dependent 
effect phenomenon is not only appertaining to special 
materials such as metals, but also it is detected in some 
kinds of polymers. By micro-bending tests of beams made 
of epoxy polymers, McFarland and Colton (2005) detected 
a considerable difference between the stiffness values 
predicted by the classical beam theory and the stiffness 
values obtained during a bending test of polypropylene 
micro-cantilever. 

After that a model has been developed for the bending 
of Euler-Bernoulli beam subjected to a point load by Park 
and Gao (2006) using a modified couple stress theory 
proposed by Yang et al. (2002) which contains only one 
material length scale parameter. They employed a 
variational formulation based on the principle of minimum 
total potential energy (Park and Gao 2008b). 

Nowadays scientists and engineers usually use couple 
stress theory (Park and Gao 2008a, Shafiei et al. 2015). 

                                          

Corresponding author, Associate Professor, 
E-mail: omid.rahmani@znu.ac.ir 

 

 
Ma et al. (2008) developed a Timoshenko beam model 

to study static deformation and free-vibration frequencies 
such beam based on a modified couple stress theory, 
Poisson’s effect and Hamilton's principle which does not 
only incorporate bending and axial deformations like the 
classical Timoshenko beam theory but also a material length 
scale parameter that it could capture the size effect. This 
model can recover the classical Timoshenko beam model 
when the material length scale parameter and Poisson’s 
ratio are both set to be zero. 

Linear solutions about analysis of beams based on 
couple stress theory, which mentioned formerly, are not able 
to study nonlinear conditions such above beam researches. 
Xia et al. (2010) presented a size dependent nonlinear 
Euler-Bernoulli beam model based on modified couple 
stress theory in which the nonlinear size dependent static 
bending, buckling and the free vibration of beams were 
studied. Asghari et al. (2010) developed a nonlinear size 
dependent Timoshenko beam model based on the modified 
couple stress theory which is a non-classical continuum 
theory capable of capturing the size effect. 

After straight beam models at last it was curved beams 
turn to be investigated (Ebrahimi and Daman 2016, 2017, 
Hosseini and Rahmani 2016a Rahmani et al. 2016). In 
2011, Liu and Reddy (2011) developed a non-local 
Timoshenko curved beam model based on a modified 
couple stress theory and Hamilton’s principle which 
contains only one material length scale parameter capable 
of capturing the size effect. Poisson’s effect is incorporated 
in the model as well. This model will recover the classical 
model if the material length scale parameter and Poisson's 
ratio are both taken to be zero and it will recover straight 
beam model if the radius of curvature of the beam is set to 
infinity. In addition, the non-local Euler-Bernoulli curved 
beam model can be realized if the normal cross section 
assumption is restated. 
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Tsiatas (2009) introduced a new Kirchhoff plate model 
based on a modified couple stress theory. Jomehzadeh et al. 
(2011) investigated size dependent vibration analysis of 
micro plates based on a modified couple stress theory. Ma 
(2011) developed a nonclassical Mindlin plate model using 
a modified couple stress theory involving a material length 
scale parameter, which can capture size effect. It can be 
reduced to Mindlin plate model based on classical elasticity 
theory when the material length scale parameter is set to be 
zero. 

By developing different size dependent nano structural 
models based on various theories even FGMs put under 
investigation by researchers. 

Shariat and Eslami (2007) investigated buckling of thick 
FG plates under mechanical and thermal loads. Roque et al. 
(2007) developed a radial basis function for the free 
vibration analysis of functionally graded plates using a 
refined theory. Darabi et al. (2008) developed a nonlinear 
analysis of dynamic stability for functionally graded 
cylindrical shells under periodic axial loading. Lanhe et al. 
(2007) studied dynamic stability analysis of FG plates by 
the moving least squares differential quadrature method 

Simsek et al. (2013) investigated the bending behavior 
of FG Timoshenko micro beams based on modified couple 
stress theory. Simsek and Reddy (2013) examined static 
bending and free vibration of functionally graded micro 
scale Timoshenko beams based on a modified couple stress 
theory. Their results proved that neglecting Poisson’s ratio 
changes the results significantly. Arbind and Reddy (2013) 
investigated a micro structure nonlinear third-order FG 
beam based on modified couple stress and a power-law 
variation of the material and the Von Karman nonlinear 
strains using Hamilton’s principle. Akgoz and Civalek 
(2013) investigated free vibration analysis of axially 
functionally graded tapered Euler-Bernoulli micro beams 
based on the modified couple stress theory. Thai and Choi 
(2013) investigated size dependent FG Kirchhoff and 
Mindlin micro plate models and analyzed their static 
bending, buckling and free vibration by using a modified 
couple stress-based theory. To avoid the use of the shear 
correction factor Salamat-talab et al. (2012) and Nateghi et 
al. (2012) utilized modified couple stress theory to study 
static and dynamic analysis of FG micro beam and size 
dependent buckling analysis of functionally graded micro 
beams based on third-order shear deformation theory, 
respectively. Mohammad-Abadi and Daneshmehr (2014) 
studied buckling analysis of Euler-Bernoulli, Timoshenko 
and Reddy beams based on modified couple stress theory. 
To examine the effect of boundary conditions, three kinds 
of boundary conditions containing hinged-hinged, clamped-
hinged and clamped-clamped are considered. Governing 
equations and boundary conditions are derived, using 
principle of minimum potential energy and generalized 
differential quadrature method is employed to solve the 
governing differential equations. 

All of the beams are partially curved in practice, even 
with small angles (Nie and Zhong 2012, Zand 2012, 
Fereidoon et al. 2015). However, in order to facilitate 
calculations and mathematical treatments, in previous 
researches straight beam theories have been utilized, while 

curved beam theories are more generalized than those of 
straight beams because by setting radius of curvature to 
infinity, utilized model degenerates to straight beam model. 
According to the previously conducted studies and available 
results, a gap is found in the open literature that is lack of a 
sufficient study on vibration characteristics of a deep curved 
FG nano beam based on MCST. The aim of this work is to 
fill the gap. 

The rest of the paper is organized as follows. In Section 
2 formulation of a deep curved FG nano beam is derived 
based on modified couple stress and Timoshenko beam 
theories, using Hamilton’s principle. Then in Section 3 
Navier’s solution method is employed in order to solve the 
obtained differential equation. In Section 4 obtained 
numerical results are discussed and influences of 
dimensionless length scale parameter, aspect ratio, gradient 
index, arc angle, mode number and their interactive 
influences on natural frequency are investigated and finally 
in order to validation, the presented results are compared 
with those of a previous work. The paper concludes in 
Section 5 with some conclusions. 

 
 

2. Formulation 
 

In this study, natural frequency of a curved FG nano 
beam as a vibrational characteristic has been investigated 
based on MCST theory, meanwhile geometrical term (1 + z 
/ R) has been considered. In this way, stress resultants have 
been obtained and governing equations of motion and 
related boundary condition have been developed based on 
Hamilton’s principle as in continuance. 

 

2.1 Curved functionally graded nano beams 
 

According to different properties of functionally graded 
materials (FGMs)in nano-scale such as high stiffness and 
high thermal resistance in comparison with other materials, 
these materials are proposed widely in different industries 
including micro sensors, micro actuators, MEMS and 
NEMS, aerospace, nuclear power plants and other nuclear 
projects as a practical material. FGMs mainly are produced 
by mixing two or more constituents using metallurgy 
powder method. A certain kind of FGM is a mixture of 
ceramic and metal in which ceramic constituent is highly 
thermal resistant due to its low coefficient of thermal 
conductivity and metal constituent prevents the structure 
from fracture due to thermal stresses. In laminar composites 
by applying stresses, some gaps between mismatched layers 
are created due to different local physical properties, which 
are called delamination. However structures of FGMs are in 
such a way that prevents from occurring such phenomenon. 
Selecting the kind of utilized metal depends on 
requirements and applications. In the presented report, it has 
been supposed that volume fraction V in curved FG 
nanobeam which is made of ceramic and metal varies due to 
gradient index p in such a way that one thinks the material 
is graded. This type of grading causes that in radial 
direction of the beam, distribution of material varies  

continuously and gradually in so far as the inner and 
outer surface of the beam become pure metal and pure 
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ceramic, respectively. Therefore, it can be said that physical 
and mechanical properties such as Young’s modulus E, 
Poisson’s ratio v and mass density ρ vary through thickness 
of the curved FG nano beam as following 

 

     m m c cE z E E E V z  
 

     m m c cv z v v v V z  
 

     m m c cz V z     
 

(1)

 
Where m and c subscripts denote properties of metallic 

phase and ceramic phase, respectively. V is volume fraction 
of material phase. Volume fraction of mixture of metal and 
ceramic is equal to 

 

1c mV V  (2)
 
Volume fractions of metal and ceramic constituents have 

been assumed to be obtained as following 
 

   0.5 , 1 0.5
p p

c m

z z
V z V z

h h
          
   

(3)

 
Where p is a nonnegative quantity (gradient index) that 

adjusts specifications of materials variation in thickness 
direction. 

 
2.2 Geometrical properties 
 
In Fig. 1, a curved FG nano beam which is made of 

ceramic and metal constituents, containing thickness h, 
radius of curvature R, length L and opening angle α is 
illustrated. 

According to this figure, it is clear that the origin of 
utilized coordinate system containing x, y and z axis, is 
located on center of lateral surface (as shown); x axis 
coincides with curved path of the FG nano beam. In order to 
derive equations and describing amount of swept opening 
angle in the beam, this parameter is replaced by relation x = 
Rθ. 

According to the figure, y axis is perpendicular to the 
plane of the paper and directed outward and z axis is along 
the radius of curvature and directed to its center. Based on 
first order shear deformation theory, displacement vector, 
which contains local and time variations of the beam, can 
be defined as 

 

 
( , ) ( , ) ,  0 ,  ( , )y zu u t z t u u w t       

(4)

 
 

 

Fig. 1 Schematic of curved nano beam 

Where uθ, uy and uz are components of displacement 
vector u which indicate local variations of mid plane, the 
plane which is located in R distance from center of 
curvature and x-y plane, along x, y and z axis, respectively. t 
is parameter of time and φ describes rotation of mentioned 
mid plane about y axis. 

 
2.3 Modified couple stress theory 
 
For the first time MCST theory has been concluded by 

Yang et al. (2002) from CCST theory which was proved 
previously. Considering symmetric rotation gradient tensor 
and a solo length scale parameter to capture the size effect 
in nano structures, causes this theory to be preferred in 
comparison with CCST theory. Consequently, MCST theory 
has been recently utilized to investigate different nano 
structures such as Euler- Bernoulli and Timoshenko nano 
beam, Mindlin’s and kirchhoff’s nano plates, functionally 
graded nano beams, etc. Therefore, saved strain energy in 
region O, due to very small deformations of a continues 
spectrum in a linear elastic material which consists of strain 
tensor and curve tensor, can be expressed based on MCST 
theory as following 

 

   1
,        , , ,

2m ij ij ij ijU m dV i j y z   


   (5)

 
Where εij and χij are defined as 
 

     , ,

1 1

2 2

T

ij i j j i jiij ij
u u u u          (6a)

 

     , ,

1 1
,

2 2

T

ij i j j i ijij ij
               

 1

2i i
u  

 

(6b)

 
In above relations ui and θi are displacement vector u 

and very small rotation vector θ, respectively. Furthermore, 
strain tensor ε components and symmetric rotation gradient 
tensor χ have been introduced by εij and χij, symbols, 
respectively. Derived parameters from strain energy density, 
according to defined kinematical parameters  and m, have 
been shown as ij and mij, respectively  is called classical 
stress tensor and m is called higher order stress tensor which 
can be expressed for a homogeneous linear elastic material, 
using effective kinematical parameters on problem, as 
following 

 
( ) 2ij ij ij ijtr     

 
22ij ijm l 

 
(7)

 
Where, additional length scale parameter has been 

shown by l, which is related to symmetric rotation gradient 
tensor. Also δ is Kroneker’s delta. λ and μ are bulk modulus 
and shear modulus, respectively which can be observed in 
top relations considering to classical and higher order stress 
tensors and they are described as following 
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  
( ) ( )

1 ( ) 1 2 ( )

E z v z

v z v z
 

 
,

      
( )

2 1 ( )

E z

v z
 

 (8)

 
As previously mentioned, E is Young’ modulus and v is 

Poisson’s ratio. 
 
2.4 Governing equations of motion and 

associated boundary conditions 
 
By substituting Eq. (4) into Eqs. (6a)-(6b), nonzero 

physical components of strain displacement tensor ε and 
rotational vector θ in curved FG nano beam can be 
expressed as 

 

   
0 1 2,     ,

1 / 1 /z z

z

z R z R  
  

  


  
 

0yy zz yz y      
 

0 1

1 1
,     ,

u w

R R R

 
 
 

  
   

2

1 1

2

u w

R R
 


        

(9a)

 

 
0 11

,        0
2 1 /y z

z

z R 
 

   
 

        

0 1

1
,       

u w

R R R

 



  
  

(9b)

 
Consider Eqs. (9a)-(9b). It is observed that geometrical 

term (1 + z / R) has appeared in strain-displacement relation 
and the rotational vector. If radius of curvature of the beam 
R is significantly larger than its thickness h, that is h / R << 
1and therefore |z / R| << 1, accordingly (1 + z / R) will be 
equal to one. However Qatu (2004) represented that if h / R 
ratio is more than 0.5, influences of geometrical term will 
be important and should not be neglected and as same as 
here, this term should be inserted to equations and its 
influences should be involved in free vibration 
characteristics of the curved FG nano beam. 

Now, by substituting Eq. (9a)-(9b) into Eq. (6b) nonzero 
components of symmetric rotation gradient tensor χij are 
obtained as following 

 
2

2 2 2 2

1 1
1 1

4 1 /y

u w z

R R R
R z R


  


   
      

  
    

 
2 2

2

1
1

4 1 /
yz

u w

RR R
z R




      
 

   

(10)

 
In continuance, classical and higher order stress tensors 

are obtained by substituting Eqs. (9a) and (10) into Eq. (7). 
By using following equations, relation considering to stress 
resultants may be obtained. 

/2

/2

1

,
h

h
z

N

M z dz

Q












    
        

   
   


 

/ 2

/ 2

1
,

h
ij s

ijm
hij

Y
m dz

zM 

        
   


 

(11)

 

If obtained classical and higher order stress tensors are 
substituted into Eq. (11), equations of stress resultants are 
obtained as below 

 

11 11

1 1u w
N A B

R R R


 
               

55,1

1
s

u w
Q k A

R R



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11 11

1 1u w
M B D

R R R


 
               

(12a)
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(12b)

 

Stiffness coefficients, which have appeared in above 
equations, become as follows 
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(13)

 

Hamilton’s principle, which is a generalized case of 
virtual work theorem, is defined as 

 

 
2

1

0
t

T P m

t

K W U dt    
 

(14)

 

Where KT, WP and Um are kinetic energy, potential 
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energy and strain energy, respectively. By utilizing 
displacement vector (Eq. (4)), kinetic energy T is described 
as following in which ρ is mass density and it is obtained 
from Eq. (1) and A is cross- sectional area of the curved FG 
nano beam. 

 

 
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2 2 2
, y, ,
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L1, L2 and L3 parameters have been defined, respectively 

as following 
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
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Also, potential energy Wp which is created due to radial 

load q, can be expressed as 
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As previously mentioned, inserting Eqs. (9a) and (10) 

into Eq. (7) yields classical and higher order stress tensors. 
By substituting these tensors and Eq. (6) into Eq. (5), total 
strain energy is concluded as following 
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Where Um is energy due to strain of all stress tensors. 
After employing Hamilton’s principle, governing equations 
of motion is obtained as 
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Moreover, related boundary conditions are derived as 
following 
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In order to reach final form of governing equations of 
motion, Eq. (12) is inserted into Eq. (19) and finally 
following equations are obtained 
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Also, in order to obtain final form of related boundary 
conditions, Eq. (12) is substituted into Eq. (20) as 
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Where, utilized coefficients are expressed as following 
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3. Closed-form solution 
 

As a case study, by employing Navier’s solution 
method, free vibration problem of a curved FG nano beam, 
by assuming q = 0, has been investigated. Simply supported 
boundary condition on θ = 0, α edges can be expressed as 
follows 

1
0

2 2
y yY Yu

N w
R R
 

 


    
  

1
0

2
yY

M
R








  


(24)

 

Based on Navier’s solution method, components 
containing acceptable displacement, which satisfy aforesaid 
governing equations and simply supported boundary 
condition, identically, are considered as 
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Where ωn is natural frequency of the curved FG nano 
beam and integer number n denotes nth mode number. By 
substituting Eq. (25) into Eq. (21) and using trigonometric 
relations, three algebraic equations will be obtained 
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Where amounts of Kij are calculated as following 
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Where, utilized coefficients are expressed as following 
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By solving obtained eigenvalue problem in Eq. (26), 
numerically, natural frequency of the curved FG nano beam 
can be determined. 

 
 

4. Results and discussion 
 
Accomplished study has been performed based on 

MCST theory, in order to show influences of involved 
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parameters on one of the most important vibration 
characteristics of a curved FG nano beam, that is natural 
frequency. Properties of the curved FG nano beam vary in 
radial direction due to value of gradient index p, in such a 
way that inner and outer surface of the beam is rich from 
ceramic and rich from metal, respectively. In this work, 
structural materials of the curved FG nano beam have been 
assumed to be Aluminum with Em = 70 GPa, vm = 0.3 and 
ρm = 2702 kg/m3 and SiC with Ec = 427 GPa, vc = 0.17, ρc = 
3100 kg/m3. 

It should be pointed out that magnitude of length scale 
parameter for a homogenous isotropic nano beam was 
obtained experimentally in laboratory as L = 17.6 µm by 
Lam et al. (2003). 

However there is no reliable numerical result for length 
scale parameter of a curved FG nano beam. According to 
this fact, in order to analyze the problem, numerically, 
approximate magnitude of related length scale parameter 
has been assumed to be L = 15 µm in this case. Similar 
assumption can be found in Ref. (Şimşek and Reddy 2013). 
If the thickness of a curved FG nano beam h is far smaller 
than its radius of curvature R, that is h / R << 1, geometrical 
term (1 + z / R) can be assumed to be equal to one with an 
excellent approximation. However, by noting to the work 
done by Qatu et al. (Qatu 2004, Hajianmaleki and Qatu 
2012) in this field, it can be said that, if h / R ratio is larger 
than 0.5, influences of deepness term should not be 
neglected and the term should be involved in calculations. 

To the authors’ knowledge, there is no profound study 
and report about free vibration of a curved FG nano beam 
based on MCST theory, together with inclusion of 
geometrical term (1 + z / R), in previously published papers. 
Accordingly, such results have been presented with which 
other researchers can compare their results on future.  

Validation of obtained results has been investigated 
bycomparing the results with those of previous 
works.Errors percentage and difference percentage between 
presented results and those of previous works due to 
neglecting geometrical term (1 + z / R) have been reported 
in tabulated and graphical data. These differences 
percentage are described as diff = [(ωpresented ‒ ωref) / 
ωpresented]×100%. In this work a profound and adequate 

 
 
study has been performed on influences of involved 
parameters in the problem such as dimensionless length 
scale parameter h / l, aspect ratio L / h, opening angle α, 
mode number n, gradient index p and variations of these 
parameters and also interactive influences of them on 
natural frequency of the curved FG nano beam ωn. In 
continuance, conclusions from analysis of tabulated data 
will be discussed. 

In Table 1 presented results have been compared with 
those by Ansari et al. (2013). This table represents 
influences of increasing the dimensionless ratio h/l on 
natural frequency for various mode numbers. According to 
Ref. (Ansari et al. 2013), values of effective parameter have 
been assumed to be ks = 5 / 6, R = L / α, α = π / 4, p = 1.2, L 
= 20 h, l = 15 μm. It is observed that an increase in h/l leads 
to a reduction of natural frequency ωn. This effect continues 
approximately in an exponential pattern, with a negative 
rate. Increasing of mode number causes the dependency of 
ωn on h / l to increase and its rate increases exponentially. 

Differences of presented results and those of Ref. 
 
 

Fig. 2 Differences between results by Ref. (Ansari et al. 
2013) and presented results for various values of 
mode number and h/l for the case in which ks = 5/6, 
R = L / α, α = π / 4, p = 1.2, L = 20 h, l = 15 μm 

Table 1 Validation of the presented results about natural frequency of the curved FG nano-beam with reference and differences 
between them for various values of mode number and h / l (ks = 5 / 6, R = L / α, α = π / 4, p = 1.2, L = 20 h, l = 15 μm) 

n 
 

h / l 

1 2 3 4 6 8 10 

1 

Present 1.47078 0.452186 0.250943 0.172971 0.107467 0.0784347 0.0619295

Ref (Ansari et al. 2013) 1.4716 0.4524 0.251 0.1729 0.1074 0.0784 0.0619 

Difference -0.0558 -0.0473 -0.0227 0.041 0.0623 0.0446 0.0484 

2 

Present 6.19012 1.91633 1.06452 0.733925 0.45603 0.332839 0.2628 

Ref (Ansari et al. 2013) 6.1914 1.9167 1.0644 0.7337 0.4558 0.3326 0.2626 

Difference -0.0207 -0.0193 0.0113 0.0307 0.0504 0.0718 0.0761 

3 

Present 13.6851 4.27859 2.37995 1.64132 1.01995 0.744422 0.587769

Ref (Ansari et al. 2013) 13.6835 4.2784 2.3793 1.6406 1.0193 0.7439 0.5874 

Difference 0.0117 0.0044 0.0273 0.0439 0.0637 0.0701 0.0628 
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(Ansari et al. 2013) can be observed in Fig. 2 and Table 1. 
Generally, for first and second modes, presented natural 
frequencies are initially smaller than those of Ref. (Ansari 
et al. 2013) and in continuance by increasing h / l, results 
coincide on a point with together and then finally, presented 
results become larger than those of Ansari et al. (2013). 
However for third mode it is observed that, reported natural 
frequencies for none of values of h / l coincide with those of 
(Ansari et al. 2013) and always are larger. It can be said that 
the most differences percentage for first, second and third 
modes are 0.0623% for h / l = 6, 0.0761% for h / l = 10 and 
0.0701% for h / l = 8, respectively. However the least 
difference percentage is 0.0044% for h / l = 2 which relates 
to third mode number. 

Coincidence of two groups of data occurs in a point 
between h / l = 3 and h / l = 4 for the first mode and 
between h / l = 2 and h / l = 3 for the second mode. 
According to Table 1, the most and the least differences 
percentage are 0.0761% for n = 2 and h / l = 10 and 
0.0044% for n = 3 and h / l = 2, respectively. 

Coincidence and differences of presented results and 
those of Ref. (Ansari et al. 2013) have been illustrated in 
 
 

Fig. 3 Coincidence of results by Ref. (Ansari et al. 2013) 
with presented results 

 
 

Fig. 4 Differences between Ref. (Ansari et al. 2013) and 
presented results for various values of h/l and p for 
the case in which ks = 5 / 6, R = L / α, α = π / 4, n = 1, L 
= 15 h, b = 2 h, l = 15 μm 

 
 
 

Fig. 5 Coincidence of results by Ref. (Ansari et al. 2013) 
with presented results 

 
 

Table 2 Validation of the presented results about natural frequency of the curve FG nano-beam with reference and differences 
between them for various values of p and h / l (ks = 5 / 6, R = L / α, α = π / 4, n = 1, L = 15 h, b = 2 h, l = 15 μm) 

h / l 
 

P 

1 2 3 4 6 8 10 

1 

Present 3.52229 3.26299 2.90954 2.59077 2.34828 1.80662 3.52229 

Ref (Ansari et al. 2013) 3.5151 3.2569 2.9087 2.5925 2.3509 1.8074 3.5151 

Difference 0.2041 0.1866 0.0289 -0.0668 -0.1116 -0.0432 0.2041 

2 

Present 1.09192 1.01066 0.897878 0.798617 0.728714 0.594251 1.09192 

Ref (Ansari et al. 2013) 1.0905 1.0089 0.8977 0.7989 0.7291 0.5942 1.0905 

Difference 0.13 0.1741 0.0198 -0.0354 -0.053 0.0086 0.13 

3 

Present 0.608621 0.563011 0.498921 0.443438 0.406546 0.344 0.608621

Ref (Ansari et al. 2013) 0.608 0.562 0.4987 0.4434 0.4065 0.3438 0.608 

Difference 0.102 0.1796 0.0443 0.0086 0.0113 0.0581 0.102 
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Fig. 3. It is observed that for larger values of h/l, natural 
frequency approaches to a constant and negligible amount. 

In Table 2 presented results which are related to 
influences of p variations on natural frequency of the 
curved FG nano beam for various values of h/l ratio, have 
been compared with those of Ref. (Ansari et al. 2013). 
Effective parameters on problem as Ref. (Ansari et al. 
2013) are assumed to be ks = 5 / 6, R = L / α, α = π / 4, n = 
1, L = 15 h, b = 2 h, l = 15 μm. In an overview it can be said 
that increasing of p leads to an increase in ωn. However, by 
increasing of h / l, rate of this procedure descends. 

 
 

 
 
Consider Fig. 4. It is clear that due to ignoring 

geometrical term (1 + z / R) by Ansari et al. (2013), 
presented data are initially larger than those of Ref. (Ansari 
et al. 2013) for h / l = 1 and h / l = 2, then they coincide at a 
point between p = 0.6 and p = 1.2 for h / l = 1 and h / l = 2 
and in continuance they become smaller than those of Ref. 
(Ansari et al. 2013). At last by crossing from p = 2 to p = 10 
differences between results diminishes again. However it is 
observed that although the results which are related to h / l 
= 3 have an identical pattern but they are always more than 
those of Ref. (Ansari et al. 2013) and for none of p values, 

Table 3 Natural frequencies ωn of the curved FG nano-beam for b = 2 h and various values of n, h / l, L / h, α for the case in which p = 0 

h/l ωn 
L/h = 10 L/h = 20 

α = π/6 α = π/4 α = π/3 α = π/2 α = π/6 α = π/4 α = π/3 α = π/2 

1 

n = 1 8.23157 7.79359 7.21246 5.71935 2.10267 1.99331 1.84726 1.46827 

n = 2 31.6901 31.2142 30.5642 28.7994 8.50457 8.38984 8.23157 7.79359 

n = 3 65.5968 65.0717 64.3524 62.3892 18.6589 18.5412 18.3778 17.9195 

2 

n = 1 2.56502 2.43259 2.25559 1.7955 0.649925 0.616385 0.571509 0.454712 

n = 2 10.0908 9.9583 9.77543 9.26869 2.6471 2.61265 2.56502 2.43259 

n = 3 21.3813 21.2534 21.0758 20.577 5.86616 5.83204 5.78457 5.65069 

4 

n = 1 0.988804 0.938141 0.870309 0.693466 0.250172 0.237286 0.220038 0.175113 

n = 2 3.90324 3.8538 3.7854 3.59497 1.02016 1.007 0.988804 0.938141 

n = 3 8.2911 8.24539 8.18174 8.00208 2.2645 2.2516 2.23365 2.18295 

8 

n = 1 0.449917 0.426908 0.396088 0.315681 0.11381 0.107951 0.100107 0.079673 

n = 2 1.77621 1.75391 1.72304 1.63701 0.464153 0.45818 0.449917 0.426908 

n = 3 3.77054 3.75017 3.7218 3.64162 1.03041 1.02457 1.01644 0.993481 

16 

n = 1 0.219034 0.207838 0.192839 0.153701 0.055406 0.052553 0.048735 0.038788 

n = 2 0.864649 0.853818 0.838823 0.797022 0.22596 0.223055 0.219034 0.207838 

n = 3 1.83487 1.82501 1.81127 1.77243 0.501619 0.498781 0.494828 0.483664 
 

Table 4 Natural frequencies ωn of the curved FG nano-beam for b = 2 h and various values of n, h / l, L / h, α for the case in which p = 0.1

h/l ωn 
L/h = 10 L/h = 20 

α = π/6 α = π/4 α = π/3 α = π/2 α = π/6 α = π/4 α = π/3 α = π/2 

1 

n = 1 7.90585 7.47887 6.91595 5.47728 2.02128 1.91529 1.77421 1.40922 

n = 2 30.4421 29.9607 29.3147 27.5852 8.17562 8.06152 7.90585 7.47887 

n = 3 63.0304 62.4821 61.7516 59.8 17.9383 17.8169 17.652 17.1973 

2 

n = 1 2.463 2.33389 2.16243 1.71915 0.624618 0.592131 0.548806 0.436363 

n = 2 9.6908 9.55551 9.3724 8.87299 2.54408 2.50984 2.463 2.33389 

n = 3 20.5378 20.3987 20.2126 19.7051 5.63815 5.60286 5.5548 5.42161 

4 

n = 1 0.949306 0.899984 0.834335 0.664046 0.240369 0.227901 0.211261 0.168031 

n = 2 3.74782 3.69746 3.62908 3.44157 0.980206 0.967167 0.949306 0.899984 

n = 3 7.9625 7.91275 7.84595 7.66279 2.17592 2.16265 2.14453 2.09421 

8 

n = 1 0.431907 0.409526 0.379715 0.302311 0.109337 0.10367 0.096106 0.076448 

n = 2 1.70533 1.68267 1.65187 1.56726 0.445916 0.440007 0.431907 0.409526 

n = 3 3.62078 3.59869 3.56899 3.48739 0.989974 0.983984 0.975803 0.953049 

16 

n = 1 0.210261 0.199373 0.184867 0.147195 0.053225 0.050468 0.046786 0.037217 

n = 2 0.830122 0.819127 0.804173 0.763075 0.217074 0.2142 0.210261 0.199373 

n = 3 1.76194 1.75126 1.7369 1.6974 0.481915 0.479006 0.475031 0.463973 
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coincidence of these groups of data are seen. It should be 
noted that differences percentage in an approximate interval 
between p = 0.2 and p = 0.6 are closer to each other than 
those of other p values for h / l = 1, 2 and 3. 

This phenomenon represents that in previously 
mentioned interval, influences of various values of h / l on 
natural frequency diminishes. It can be discussed that 
according to Fig. 4 and results of Table 2, due to equivalent 
differences percentage, for special values of p, natural 
frequency considering to various values of h/l coincide (as 
shown in Fig. 4). 

 
 

 
 
The most and the least differences percentage are 

0.2041% in p = 0 and 0.0289% in p = 0.6 for h / l = 1, 
0.1741% in p = 0.2 and 0.0086% in p = 10 for h / l = 2 and 
0.01796% in p = 0.2 and 0.0086% in p = 1.2 for h / l = 3, 
respectively. 

By over viewing Table 2 it is concluded that, the most 
difference percentage is 0.2041% for h / l = 1 and p = 0 and 
the least is 0.0086% for h / l = 2 and p = 10 and for h / l = 3 
and p = 1.2. Also, Fig. 5 depicts coincidence amount of 
presented results and those of Ref. (Ansari et al. 2013). It is 
clear that a small increase in p causes natural frequency to 

Table 5 Natural frequencies ωn of the curved FG nano-beam for b = 2 h and various values of n, h / l, L / h, α for the case in which p = 0.2

h/l ωn 
L/h = 10 L/h = 20 

α = π/6 α = π/4 α = π/3 α = π/2 α = π/6 α = π/4 α = π/3 α = π/2 

1 

n = 1 7.62578 7.2085 6.66146 5.26983 1.9512 1.84814 1.71138 1.35847 

n = 2 29.3701 28.8849 28.2432 26.5453 7.89247 7.77906 7.62578 7.2085 

n = 3 60.8295 60.2629 59.524 57.584 17.3182 17.1941 17.0282 16.5771 

2 

n = 1 2.37412 2.24801 2.08147 1.65293 0.602536 0.57098 0.52902 0.420387 

n = 2 9.34275 9.20544 9.02253 8.53027 2.45422 2.42021 2.37412 2.24801 

n = 3 19.8051 19.6572 19.4645 18.951 5.43936 5.40317 5.35474 5.22238 

4 

n = 1 0.914396 0.866302 0.80262 0.638163 0.23169 0.219596 0.203499 0.161775 

n = 2 3.61063 3.55964 3.49146 3.30686 0.944845 0.931933 0.914396 0.866302 

n = 3 7.67297 7.62002 7.55082 7.36533 2.09757 2.08401 2.06581 2.01592 

8 

n = 1 0.415874 0.394071 0.365175 0.290464 0.105347 0.099855 0.092541 0.073578 

n = 2 1.64231 1.61942 1.58875 1.50555 0.429658 0.423816 0.415874 0.394071 

n = 3 3.48786 3.46442 3.43371 3.35119 0.953946 0.947845 0.939643 0.917122 

16 

n = 1 0.202432 0.191829 0.177772 0.141417 0.051277 0.048604 0.045045 0.035816 

n = 2 0.799351 0.788252 0.773374 0.732979 0.209133 0.206293 0.202432 0.191829 

n = 3 1.69706 1.68574 1.6709 1.63099 0.464317 0.461357 0.457375 0.446436 
 

Table 6 Natural frequencies ωn of the curved FG nano-beam for b = 2 h and various values of n, h / l, L / h, α for the case in which p = 0.5

h/l ωn 
L/h = 10 L/h = 20 

α = π/6 α = π/4 α = π/3 α = π/2 α = π/6 α = π/4 α = π/3 α = π/2 

1 

n = 1 6.97247 6.57908 6.07004 4.78927 1.7874 1.69135 1.56482 1.24031 

n = 2 26.8698 26.3802 25.7526 24.1352 7.23059 7.11952 6.97247 6.57908 

n = 3 55.7001 55.0987 54.3472 52.4451 15.8689 15.7398 15.5732 15.1333 

2 

n = 1 2.16449 2.0459 1.89131 1.49796 0.550335 0.521036 0.482346 0.382771 

n = 2 8.52189 8.38162 8.20095 7.72874 2.24179 2.20859 2.16449 2.0459 

n = 3 18.0778 17.9127 17.7082 17.1875 4.96946 4.93167 4.88287 4.75353 

4 

n = 1 0.83106 0.786074 0.72723 0.576854 0.210924 0.199748 0.184967 0.146865 

n = 2 3.28314 3.23139 3.1644 2.98808 0.860241 0.847731 0.83106 0.786074 

n = 3 6.98205 6.92296 6.84952 6.66145 1.91011 1.89609 1.8779 1.82947 

8 

n = 1 0.377368 0.357035 0.3304 0.262226 0.095743 0.09068 0.08398 0.066696 

n = 2 1.49096 1.46785 1.43785 1.35865 0.390527 0.384891 0.377368 0.357035 

n = 3 3.16871 3.14271 3.11028 3.02693 0.867231 0.860961 0.852805 0.831035 

16 

n = 1 0.183595 0.173716 0.16077 0.127618 0.046577 0.044115 0.040857 0.032451 

n = 2 0.725316 0.714129 0.699594 0.661187 0.189983 0.187248 0.183595 0.173716 

n = 3 1.54098 1.52845 1.51281 1.47256 0.421882 0.418846 0.414894 0.404335 
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approach gradually to a constant amount. In continuance, 
results of accomplished study on the curved FG nano beam 
have been presented in seven table based on MCST theory 
together with inclusion of geometrical term (1 + z / R). 

Tables 3-9 contain obtained results of investigating 
influences of forenamed parameters variations on natural 
frequency. It should be noted that each of the tables has 
been prepared for a certain value of p. By investigating the 
results in great details, following points are concluded. 

By increasing the opening angle α, corresponding 
natural frequency decreases, gradually. This converse 

 
 

 
 
influence of α on ωn become more sensible by crossing 
from π/3 to π/2. Increasing of n, h / l and L / h, generally 
results in reduction of the procedure rate. However, by 
increasing the parameters this influence will diminish. It is 
observed that the larger α, the less influence of the 
parameters, on the rate of procedure. The most import point 
is that the less values of the parameters, the more 
dependency of ωn on variations of α. 

Increasing of mode number leads to an increase in ωn 
and this effect become more considerable by crossing from 
n = 2 and n = 3. It should be said that increasing of h / l and  

Table 7 Natural frequencies ωn of the curved FG nano-beam for b = 2 h and various values of n, h / l, L / h, α for the case in which p = 1 

h/l ωn 
L/h = 10 L/h = 20 

α = π/6 α = π/4 α = π/3 α = π/2 α = π/6 α = π/4 α = π/3 α = π/2 

1 

n = 1 6.25952 5.89506 5.42976 4.27234 1.60807 1.52008 1.40506 1.11196 

n = 2 24.1296 23.6464 23.0444 21.5319 6.50499 6.39815 6.25952 5.89506 

n = 3 50.0565 49.437 48.69 46.8605 14.277 14.146 13.9821 13.5611 

2 

n = 1 1.93859 1.82897 1.68797 1.33332 0.493921 0.467173 0.432105 0.342416 

n = 2 7.63292 7.49313 7.31843 6.87424 2.01189 1.98005 1.93859 1.82897 

n = 3 16.1962 16.02 15.8101 15.2959 4.45976 4.42135 4.37324 4.24926 

4 

n = 1 0.742427 0.701057 0.647611 0.512491 0.188786 0.178627 0.165281 0.131073 

n = 2 2.93305 2.88181 2.81738 2.65225 0.769914 0.758005 0.742427 0.701057 

n = 3 6.23863 6.17572 6.10048 5.91501 1.70951 1.69539 1.67759 1.63147 

8 

n = 1 0.336678 0.318033 0.293899 0.232753 0.085573 0.080981 0.074943 0.059452 

n = 2 1.33021 1.30744 1.27871 1.20478 0.349025 0.343683 0.336678 0.318033 

n = 3 2.8275 2.79996 2.7669 2.68504 0.775053 0.768772 0.760834 0.740186 

16 

n = 1 0.163729 0.154679 0.142958 0.113241 0.04161 0.03938 0.036445 0.028915 

n = 2 0.646838 0.635837 0.621937 0.586129 0.169716 0.167127 0.163729 0.154679 

n = 3 1.37445 1.36121 1.34529 1.30582 0.376868 0.373833 0.369993 0.359992 
 

Table 8 Natural frequencies ωn of the curved FG nano-beam for b = 2 h and various values of n, h / l, L / h, α for the case in which p = 5 

h/l ωn 
L/h = 10 L/h = 20 

α = π/6 α = π/4 α = π/3 α = π/2 α = π/6 α = π/4 α = π/3 α = π/2 

1 

n = 1 4.64571 4.36808 4.01793 3.15551 1.19869 1.13202 1.0455 0.826381 

n = 2 17.7868 17.4047 16.9396 15.7951 4.83714 4.75299 4.64571 4.36808 

n = 3 36.6609 36.1646 35.582 34.1906 10.5809 10.474 10.3434 10.0159 

2 

n = 1 1.49898 1.41215 1.30172 1.02656 0.383651 0.362584 0.335139 0.26532 

n = 2 5.84823 5.7327 5.59148 5.23997 1.55828 1.53229 1.49898 1.41215 

n = 3 12.2767 12.1272 11.9535 11.5392 3.43976 3.40726 3.36745 3.26704 

4 

n = 1 0.599482 0.565379 0.521759 0.412399 0.153122 0.144785 0.133894 0.106107 

n = 2 2.34448 2.30058 2.24648 2.1105 0.622569 0.612486 0.599482 0.565379 

n = 3 4.92499 4.86967 4.80504 4.64955 1.37604 1.36369 1.34843 1.30965 

8 

n = 1 0.277683 0.262003 0.241899 0.191368 0.070892 0.067046 0.062016 0.049166 

n = 2 1.08585 1.06598 1.04139 0.979293 0.288254 0.283646 0.277683 0.262003 

n = 3 2.27868 2.25403 2.22508 2.15509 0.637137 0.631545 0.624614 0.606918 

16 

n = 1 0.135939 0.12828 0.118453 0.093734 0.034701 0.03282 0.03036 0.024072 

n = 2 0.531518 0.521859 0.509889 0.479618 0.141097 0.138849 0.135939 0.12828 

n = 3 1.11495 1.10302 1.089 1.05503 0.311861 0.309143 0.30577 0.297146 
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L / h cause this procedure to diminish. For instance in larger 
values of h / l, dependency of ωn on mode number 
descends. However, an increase in opening angle leads to an 
increase in this procedure. This influence shows off more 
significantly by crossing from π/3 to π/2. Generally, it can 
be said that for larger mode numbers influences of other 
parameters variations on dependency of ωn on n diminishes 
and if α has its possible maximum value and h / l and L / h 
have their minimum value, variations of n will affect ωn 
more significantly. 

Converse influence of h / l on ωn is in such a way that 
increasing of first parameter result in an exponential 
reduction of second one, that is variations of h / l for its 
smaller values are more effective than larger values. 

For larger values of α and L / h, rate of this procedure 
descends, exponentially whit a negative gradient. This 
effect is more sensible by crossing from π / 3 to π / 2. In 
addition, an increase in mode number causes sensitivity of 
natural frequency about variations of h / l to increase. 
Generally, it can be concluded that for smaller values of α 
and L / h and larger values of n, dependency of ωn on 
variations of h / l is observed more considerably. 

In continuance, it is observed that, reduplicating L / h 
leads to a decrease in ωn. Increasing of mode number leads 
to an increase in increment rate of this effect. Also it is 
observed that this effect, by crossing from n = 1 to n = 2, is 
more influent than crossing from n = 2 to n = 3. It should be 
expressed that, increasing of h / l and α causes the rate of 
this procedure to decrease. Increasing of α from π / 3 to π / 
2 affects the rate more considerably. Therefore, it can be 
concluded that, the higher mode number and larger values 
of h / l and α, the more dependency of ωn on variations of L 
/ h. 

Generally, aforementioned relations and influences may 
be concluded from each of Tables 3-9. However in order to 
investigate other influences of parameters on natural 

 
 

frequency, all of the seven tables should be evaluated. 
As it is observed in Tables 3-9, an increase in gradient 

index p leads to reduction of ωn, gradually. These influences 
become more sensible in continuance (by increasing of p). 
However by crossing from p = 5 to p = 10, dependency of 
ωn on p decreases. It should be pointed out that for larger 
values of h / l, α and L / h, dependency of natural frequency 
on p diminishes, gradually. Conversely, for larger mode 
numbers, the dependency rate increases. By overviewing 
the results, it can be understood that, by increasing of p, 
influences of h / l, α, L / h and n variations on ωn, decrease. 
For all cases by crossing from p = 5 to p = 10, this converse 
influence of p diminishes. 

 
 

5. Conclusions 
 

In free vibration problem of a curved FG nano beam 
based on modified couple stress theory, natural frequency as 
a vibration characteristic of the beam has been investigated. 
Employed beam theory in this study is Timoshenko beam 
model. In accordance with base relations of MCST theory 
and utilized beam model, governing equations of motion 
and related boundary conditions have been derived based on 
Hamilton’s principle. Then in order to solve differential 
equations Navier’s solution method has been adopted and 
numerical results have been achieved by solving obtained 
eigenvalue problem, numerically. In continuance, influences 
of dimensionless length scale parameter h / l, aspect ratio L 
/ h, gradient index p, opening angle α, mode number n and 
their interactive influences on natural frequency have been 
investigated and in order to validate the results, some of 
them have been compared with those of a previous work 
and differences percentage have been presented. Some 
important conclusions are as following: 

 

 The main reason of discrepancies between presented 

Table 9 Natural frequencies ωn of the curved FG nano-beam for b = 2 h and various values of n, h / l, L / h, α for the case in which p = 10 

h/l ωn 
L/h = 10 L/h = 20 

α = π/6 α = π/4 α = π/3 α = π/2 α = π/6 α = π/4 α = π/3 α = π/2 

1 

n = 1 4.21065 3.96527 3.65262 2.8755 1.08603 1.02647 0.94872 0.75082 

n = 2 16.0526 15.7327 15.3356 14.3402 4.37675 4.30429 4.21065 3.96527 

n = 3 32.9307 32.533 32.0554 30.8875 9.55524 9.46668 9.35645 9.07478 

2 

n = 1 1.39136 1.31254 1.21135 0.957172 0.356124 0.336804 0.311507 0.246862 

n = 2 5.40034 5.30109 5.17744 4.86396 1.44427 1.42125 1.39136 1.31254 

n = 3 11.2654 11.1432 10.998 10.6431 3.18068 3.15298 3.11843 3.02971 

4 

n = 1 0.5688 0.537029 0.496065 0.392652 0.145344 0.137509 0.127228 0.100901 

n = 2 2.21212 2.1732 2.12441 1.99976 0.589987 0.580794 0.5688 0.537029 

n = 3 4.61469 4.56793 4.51212 4.37483 1.30078 1.2899 1.27625 1.24097 

8 

n = 1 0.266056 0.251273 0.23218 0.183893 0.067961 0.064306 0.059507 0.047207 

n = 2 1.03453 1.01664 0.994137 0.936453 0.275885 0.271625 0.266056 0.251273 

n = 3 2.15565 2.13442 2.10899 2.0462 0.60826 0.603257 0.596958 0.580636 

16 

n = 1 0.13063 0.123383 0.114018 0.090322 0.033365 0.031572 0.029217 0.02318 

n = 2 0.507879 0.499139 0.488136 0.459903 0.135445 0.133359 0.13063 0.123383 

n = 3 1.05782 1.04749 1.0351 1.00448 0.298613 0.296169 0.293089 0.285101 
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results and those of reference is inclusion of 
geometrical term (1 + z / R) in this study. 

 Increasing of opening angle, increasing of L/h due to 
slenderizing and lengthening the beam, increasing of 
ceramic volume fraction due to increasing of 
gradient index p and ascending of dimensionless 
length scale parameter h/l, each of them with its 
particular rate causes natural frequency to decrease. 
However, conversely, by increasing of mode number 
natural frequency increases. 

 By capturing influence of geometrical term and 
approaching to a more real condition in theoretical 
analysis, natural frequency of the curved FG nano 
beam becomes more sensitive than the case in which 
geometrical term(1 + z / R) is neglected. 

 If geometrical term (1 + z / R) is ignored, results of 
this paper will be in accord with those of previous 
works about curved FG nano beams. Furthermore, if 
radius of curvature is set to infinity, an excellent 
agreement will be achieved between results of this 
study and those of previous works about straight FG 
nano beams. 
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