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1. Introduction 

 
The isogeometric analysis (IGA) proposed by Hughes et 

al. (2005) is known as one of the most versatile and 
powerful approaches for solution of complex problems (Seo 
et al. 2010, Shojaee et al. 2013, Ivannikov et al. 2014, 
Taheri et al. 2014, Kang and Youn 2016, Liu et al. 2016, 
Willberg 2016, Casquero et al. 2017). This method offers 
the possibility of bridging the finite element analysis (FEA) 
to conventional NURBS-based Computer Aided Design 
(CAD) tools. In fact, the basic idea behind isogeometric 
analysis is to utilize the basic functions such as B-splines 
and NURBS to model exact geometries accurately which 
invoke the isoparametric concepts to define the unknown 
field variables for numerical simulations of physical 
phenomena. NURBS are the most ubiquitous tool in CAD 
programs and capable of approximating the computational 
domain, thus they are used as basis functions for analysis. 
Furthermore, NURBS basis functions possess an intriguing 
trait; they are typically smooth beyond the classical C0-
continuity of standard FEM. This advantage makes them 
more suitable for solving higher order partial differential 
equations (Tagliabue et al. 2014, Dedè and Quarteroni 
2015, Bartezzaghi et al. 2015) and has been shown to lead 
in many cases to better accuracy per degree of freedom in 
contrast to FEM. So far, the finite element method has been 
increasingly used in many engineering problems, however it 
has several disadvantages; time consuming procedure for 
mesh generation and connectivity of elements, low order 
shape functions which lead to locking phenomena in shell 
and plate elements; re-meshing in moving boundary 
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problems and so on. Recently, as an alternative to the FEM, 
the so-called meshless or meshfree methods have been 
focused to overcome the drawbacks associated with FEM. 
However, most of the meshless methods (Liu et al. 1995, 
Liu and Gu 2001, Chen et al. 2006, Bui et al. 2011, 
Belytschko et al. 1994, Atluri and Zhu 1998) are based on 
approximation of field variables and do not satisfy 
Kronecker delta property (Somireddy and Rajagopal 2014). 
Some researchers have paid great attention to blend 
advantageous techniques of meshfree approximants and 
isogeometric analysis, e.g., in Rosolen and Arroyo (2013) 
local maximum entropy (LME) approximation is coupled 
with isogeometric analysis. This coupling strategy exploits 
the best features and overcomes the main drawbacks 
associated with each of these approximants (Rosolen and 
Arroyo (2013). In fact, IGA method preserves veracity 
representation of problem domain boundary and meshfree 
methods deal with unstructured grids and possibly local 
refinement. In another research, Valizadeh et al. (2015) 
proposed a methodology based on coupling of isogeometric 
analysis and Reproducing Kernel Particle Method (RKPM) 
which is a representative of a class of meshfree methods. 
The interior domain is discretized by RKPM while IGA 
provides geometrically exact model discretization. Another 
meshless method namely Natural Element Method (NEM) 
developed by Sambridge et al. (1995) endows advantageous 
properties of both meshless and finite element method 
(Somireddy and Rajagopal 2014). In a research by 
Gonzalez et al. (2008), it is shown that NEM is equivalent 
to isogeometric analysis. However, this method does not 
rely on an underlying tensor-product quadrilateral mesh 
(González et al. 2008). 

As mentioned above, a considerable attention has been 
given to circumvent the tensor-product constructions which 
are expressed in terms of B-spline representation. These 
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constructions hinder the possibility of accommodating 
trimmed surfaces, adaptive local refinement, or incongruent 
surface descriptions at opposing faces. Several different 
schemes have been developed to provide more flexible 
solutions that may break the rigidity of classical tensor-
product construction imposed by the NURBS framework on 
the volume meshing. Some of these relevant issues are 
addressed in T-splines (Sederberg et al. 2003, 2004), 
hierarchical B-splines (Forsey and Bartels 1988), PHT-
splines (Li et al. 2007), locally refined splines (Dokken et 
al. 2013) and truncated hierarchical B-splines (Giannelli et 
al. 2016). 

T-splines are defined by control meshes that allow the 
introduction of so-called T-junctions. Some researchers 
have used T-splines in isogeometric analysis (Dörfel et al. 
2010, Bazilevs et al. 2010). Application of T-splines in 
analysis of thin shells can be found in Uhm and Youn 
(2009). Since the initial definition of T-splines did not 
guarantee linear independence (Li et al. 2012, Buffa et al. 
2010), analysis-suitable T-splines (Scott et al. 2012) were 
subsequently introduced to provide this property. However, 
local refinement in analysis-suitable T-splines may go 
beyond the domain of interest (Wei et al. 2015). In da Veiga 
et al. (2012) and Beirão da Veiga et al. (2013), dual-
compatible T-splines are proposed and T-splines with linear 
complexity has been presented in Morgenstern and 
Peterseim (2015). 

Hierarchical B-splines were first introduced by Forsey 
and Bartels (1988) and had been further elaborated in 
unther Greiner and Hormann (1996) and Kraft (1997). The 
classical hierarchical B-splines had suffered from linear 
independence property which was solved by Kraft (1997). 
The applications of hierarchical constructions were 
addressed in Vuong et al. (2011), Schillinger et al. (2012) 
and Evans et al. (2015). A major drawback of standard 
hierarchical B-splines is its weakness in providing the 
partition of unity property. In order to alleviate this 
disadvantage, a truncated mechanism was developed by 
Giannelli et al. (2012) and in another study by Hughes et al. 
(2015) Truncated Hierarchical Catmull-Clark Subdivision 
(THCCS) was presented to satisfy partition of unity 
property. 

As reported in Giannelli et al. (2012), the truncated 
basis for hierarchical splines ensures partition of unity, 
linear independence, and locally refinable. Since THB-
splines possess the convex hull property, they are 
appropriate for geometric modeling and surface 
reconstructions so they can be used in computer aided 
design (Kiss et al. (2014), additionally, THB-splines are 
suitable for adaptive numerical solutions, so they can be 
used as an effective approach in isogeometric analysis. 
Other applications of THB-splines in modeling of arbitrary 
topologies and in context of generating systems were 
reported in Wei et al. (2015), Zore and and Jüttler (2014). 

PHT-splines – a polynomial spline over hierarchical T-
meshes, was introduced for stitching several surface patches 
(Li et al. 2007). The basis functions of PHT-splines have the 
main properties of B-splines, such as non-negativity, local 
support and partition of unity. They also has the same 
important property of T-splines like adaptivity (Deng et al. 

2008). In contrast to T-splines, PHT-splines are polynomial 
instead of rational and they are only C1-continuous which 
can be mentioned as their main drawback. Compared with 
hierarchical B-splines, PHT-splines have set of basis 
functions while hierarchical B-splines have redundant set of 
basis functions (Deng et al. 2008). The applications of 
PHT-splines in isogeometric analysis can be found in Wang 
et al. (2011) and Nguyen-Thanh et al. (2011b). Shell 
analysis based on PHT-splines was proposed by Nguyen-
Thanh et al. (2011a). 

Locally Refined Splines (LR-splines) are based on 
splitting the tensor-product of basis functions which lead to 
challenges with linear independence (Dokken et al. 2013) 
that have been solved in Bressan and Jüttler (2015) and 
Bressan (2013). Similarities and differences between 
classical hierarchical, truncated hierarchical and LR B-
splines are discussed in Johannessen et al. (2015). Local 
refinement strategies for adaptive isogeometric analysis 
using LR B-splines are proposed in Johannessen et al. 
(2014). Other geometry representations with application in 
isogeometric analysis include subdivision surfaces (Cirak et 
al. 2000, 2002) and subdivision solids (Burkhart et al. 
2010). Subdivision schemes are defined recursively to 
construct smooth surfaces through the limit of a sequence of 
refined meshes and they have many practical advantages for 
shapes of arbitrary topology, e.g., in a study by Cirak et al. 
(2002), subdivision surfaces are proposed as a common 
foundation for describing the mechanical behavior of thin-
shell structures. Wawrzinek et al. (2011) employed Catmull-
Clark’s subdivision (Catmull and Clark 1978) for 
discretization of Koiter’s model of elastic thin shells. A new 
subdivision algorithm based on IGA that generalizes 
NURBS to arbitrary topology was presented in Riffnaller-
Schiefer et al. (2016) for analysis of Kirchhoff-Love thin 
shells. However, adaptive simulation was not developed for 
subdivision surfaces in these studies. 

The present paper is based on the new concept of THB-
splines which was established in Giannelli et al. (2012) to 
investigate the capability of truncated basis functions in 
analysis of Kirchhoff-Love thin shells by means of showing 
numerical results on well-known benchmark examples. The 
main feature of the proposed method is its simplicity and 
local refinement can be readily accomplished through the 
refinement of geometric models. The formulation is 
discretized only by displacement degrees of freedom and 
there is no need to introduce rotation DOFs due to high 
continuity of THB-splines. 

The structure of this paper is organized as follows: 
In Section 2, we state the preliminaries definitions and 

basic properties of B-splines and review some fundamentals 
of THB-splines. The isogeometric formulation of thin-shells 
is briefly derived in Section 3. Numerical examples are 
presented in Section 4, the goal of this section is to illustrate 
the performance of the local refinement strategies. In fact, 
adaptive refinement using truncated hierarchical splines is 
investigated and compared to the uniform refinement case 
whether it attains optimal convergence rate due to better 
accuracy per degrees of freedom. Concluding remarks are 
drawn in Section 5. 
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Fig. 1 Quadratic basis functions for open knot vector 

[0,0,0,1,2,3,4,5,6,6,6] 
 
 

2. Preliminaries and theory of splines 
 
NURBS are appropriate tools in modeling complex 

surfaces. In this section, we recall a short description of 
isogeometric concepts and discuss their implementations. 

 
2.1 B-spline curves and surfaces 
 
A B-spline is a non-interpolating, piecewise polynomial 

curve. It is defined by a set of control points, Pi (i = 1,... n) 
and a knot vector Ξ = {ξ1, ξ2,..., ξn+p+1} where p is the 
polynomial degree of the curve and n is the number of basis 
functions corresponding to control points. The knot vector 
is a non-decreasing sequence of parametric coordinates ξi 
represent points in the parametric space of the curve. 
Univariate B-spline basis functions are defined recursively 
using Cox-de Boor formula 
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Fig. 1 shows an example of quadratic basis functions 

with an open knot vector. B-spline curve of degree p is 
computed by linear combination of control points and the 
respective basis functions 
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A B-spline surface is computed by the tensor product of 

B-spline basis functions in two parametric dimensions ξ and 
η, it is defined by a net of n×m control points, two knot 
vectors Ξ and H, two polynomial degrees p and q (not 
necessary to be equal), and correspondingly basis functions 
Ni,p(ξ) and Mj,q(η) described as 

 

( ) ( )( , )
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i,p j,q i,j
i=1 j=1

Nξ M ηξ η =∑∑S P  (4) 

 
2.2 NURBS 
 
For a NURBS curve, each control point has an 

individual weight wi, such a point Pi (xi, yi, zi, wi) can be 
represented with homogeneous coordinates Pi (wixi, wiyi, 

wizi, wi) in a projective R4 space. Similarly to B-spline 
curves and surfaces, NURBS-based ones are defined as 
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2.3 Hierarchical B-splines 
 
According to Eq. (2), univariate B-spline basis functions 

Ni,p(ξ) defined on a knot vector Ξ = {ξ1, ξ2,..., ξn+p+1} with a 
local support on [ξi, ξi+p+1] are refinable which allows local 
refinement and construction of hierarchical B-splines. Let 
Ω0 is the parametric domain of all basis functions 0

, piN
defined on initial knot vector Ξ0 at level 0. B-spline basis 
functions l

piN , associated with level l is obtained by 
subdividing the knot vector of previous level. Therefore, the 
basis functions l

piN ,  on level l can be written as a linear 
combination of p + 2 basis functions 1

,
+l
piN  defined on Ξl +1 

Bornemann and Cirak (2013) 
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where p

rα are binomial coefficients. The B-splines 
)(1

,,2 ξ+
+

l
priN defined on the refined knot sequence are called 

the children of .,
l

piN Similar to univariate basis functions, a 
bivariate B-spline basis Ni,p(ξ, η) defined by a tensor 
product of two univariate basis functions with polynomials 
degrees p and q has local support [ξi, ξi+p+1]×[ηj, ηj+q+1] with 
(p+2)×(q+2) children. The hierarchical B-spline refinement 
can be achieved by replacing coarse grid B-spline basis 
with fine ones. The process is briefly illustrated as follows: 
Let lN  be the tensor product of B-spline basis at level l 
defined on parametric domain lΩ in which the union of 

),(supp , ηξl
piN equals .lΩ Suppose N ∈ N0 and supp N ≠∅. 

Then find a set of basis functions N ∈ Nl in such way that 
supp N ⊄ Ωl+1. Next, identify the children of N  at level l + 
1, so that N ∈ N l+1 and supp N ⊆ Ωl+1. Finally gather all the 
active basis functions at levels l and l + 1 as follows 

 

{ }1: supp +∈ ⊄ Ω H = N NN
 

      { }1 1: supp+ +∈ ⊆ Ω  N NN
 

max0, , 1= −  for  
(8) 

 
Eq. (8) is the recursive construction of hierarchical B-

splines which are globally linearly independent (Kraft 
1997). Hierarchical B-splines do not ensure partition of 
unity. Moreover, different hierarchical levels cause 
increasing the number of overlapping basis functions during 
the local refinement which leads bad numerical conditioning 
and may produce ill-shaped control meshes at the refined 
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level (Wei et al. 2015). To overcome the drawbacks of 
hierarchical B-splines, another basis termed truncated 
hierarchical B-splines was presented (Giannelli et al. 2012). 

 
2.4 Truncated hierarchical B-splines 
 
Truncated hierarchical B-splines (THB-splines) based 

on the truncation operation of hierarchical splines was first 
introduced by Giannelli et al. 2012. THB-splines have a 
bifold motivation. On the one hand, they are natural 
extension of classical B-splines with similar properties such 
as partition of unity, non-negativity, convex hull and 
compact support, on the other hand, the locality of the 
refinement they provide has smaller support than 
hierarchical B-splines. The construction process of THB-
splines is analogous to hierarchical B-splines with just one 
difference; the basis functions N ∈ Nl with supp N ⊄ Ωl+1 
should be truncated. The truncated mechanism can be 
expressed as follows. 

Definition. According to Eq. (7), a set of basis functions 
t ⊆ Ωl can be represented with respect to the finer basis of 
N ∈ N l+1 
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The truncated basis functions of t with respect to 

1+lN  
is expressed as 
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In fact for THB-splines, the children of coarse basis 

functions whose support have a non-empty overlap with 

 
 

1+Ω l are discarded. Iterative construction process of uni-
variate hierarchical and truncated hierarchical B-splines for 
two levels is shown in Fig. 2. First, consider the univariate 
B-spline basis functions at level 0 as coarse basis (Fig. 1) 
and fine ones at level 1 with knot vector

.1 1, 1, ,
12
11,

12
10,...,

12
2,

12
10, 0, 0, 



  The parameter domain 

for level 0 is referred to as Ω0 and the black area in the 
picture indicating Ω1 ⊂ Ω0 is the area needs to be refined. 
The coarse basis function with support fully contained in 
the black area and all fine basis functions whose support are 
not in Ω1 are depicted as dashed curves and known as 
passive basis (Fig. 2. (a)-top and middle). By taking the 
union of all the active basis functions (solid curves) from 
levels 0 and 1, the hierarchical B-spline basis of level 1 can 
be obtained. (Fig. 2. (a)-bottom). For THB-splines, the 
remaining active coarse basis functions surrounding the 
passive ones should be truncated. For this purpose, two 
basis functions adjacent to the blue dashed curve (magenta 
and black curves) can be represented by their children. 
Among the children, those with supports fully contained in 
Ω1 should be discarded (the black and magenta dashed 
curves) and the remaining children are designated as active 
(Fig. 2. (b)-middle), by collecting all the active basis 
functions from levels 0 and 1, the truncated hierarchical B-
splines can be constructed (Fig. 2. (b)-bottom). 

In contrast to hierarchical splines, THB-splines are 
strongly stable which is implied by partition of unity and 
sparser connectivity. In addition, the geometry is preserved 
during the local refinement. Assume S(ξ) is a certain spline 
geometry (curve, surface, and volume) represented by 
tensor product splines of level l with control points l

iP  
according to Eq. (3), (4) or (5) 

  

  

  

(a) HB-splines (b) THB-splines 
Fig. 2 The procedure to form univariate quadratic HB- and THB-splines (a)-(b). For case (a), top: the blue dashed curve is 

designated as passive basis function; middle: the green solid curves are designated as active; bottom: the combination 
of active basis functions from two previous levels to construct the hierarchical B-splines. For case (b), top: the 
hierarchical B-splines of level 0 that need to be truncated or modified are depicted in black and magenta curves; 
middle: the four children of each mentioned curves are shown and the children with supports fully contained in black 
area are discarded; bottom: the remaining active basis functions are collected to construct THB-splines 
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The same geometry can be represented on level l + 1 

with different control points 
1+l
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The hierarchical B-spline basis with truncation can be 

obtained consisting of only those coarse function Ni  where 
1supp supp +⊂ Ω ∧ ⊄ Ω   N Ni i and fine functions 

1+N j  where 1 1supp + +⊂ Ω N j . The spline geometry can be 
represented exactly by taking the same control points l

iP and 
1+l

jP that are used on the respective level. 
 

 
(13) 

 
An example of a cubic B-spline surface with truncation is 
represented in Fig. 3. The control points are shown in red 
and the control mesh exhibits T-joints on the surface. 

 
 

3. Review of thin shell equations 
 
Thin shell structures appear ubiquitously in nature and 

technology and they have great applications in many areas 
of applied engineering design. Since one dimension of a 
thin shell is small with respect to the two others, its 
geometry can be described in terms of the middle surface of 
a shell. Thus, two manifold meshes are required to simulate 

 
 
thin shell structures. The mechanical behavior of a thin shell 
can be described by Kirchhoff-Love theory in terms of the 
first and second fundamental forms of surfaces. In the 
Kirchhoff-Love shell theory, shell cross sections are 
assumed to remain normal to its mid-surface during 
deformation which implies linear strain distribution through 
the thickness and neglects transverse shear strains. In the 
following, the fundamental concepts of shells are 
considered. A detailed description of classical shell theories 
can be found in Flügge and Truesdell (1972). Our 
discretized thin shell formulation closely follows Naghdi’s 
approach, but it is extended to truncated hierarchical B-
splines. 

 
3.1 Kirchhoff-Love thin shell formulation 
 
The geometry of a shell can be characterized by its 

undeformed middle surface Ω and boundary Γ = ∂Ω. The 
deformed configuration of the shell under the action of 
applied loads is defined by a surface of a domain Ω and 
boundary .Ω∂=Γ  The shell geometry with thickness h in 
the reference configuration in terms of curvilinear coordi-
nates (θ1, θ2, θ3) is given by 

 

( ) ( )1 2 3 1 2 3 3θ θ θ θ θ θ= +P , , X , a    32 2
θ− ≤ ≤

h h  (14) 

 
where P is the position vector of a material point and X (θ1, 
θ2) specifies position vector to each point on the middle 
surface of the shell. The shell director a3 is the unit normal 
vector to the midsurface. The corresponding basis vectors in 
the reference configuration are expressed as 

 

α α= ,a X    
{ }1 2α ∈ ,  (15) 

 
Fig. 3 THB-spline representation of a roof using hierarchical meshes in the parameter domain: (top-left) the geometry 

with refined control points; (bottom-right) the corresponding hierarchical mesh in the parameter domain, the 
shaded box (green) is the refined area with its corresponding basis functions in two directions 
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where the comma indicates the partial derivative with 
respect to θα. The covariant basis vectors of the tangent 
plane are as follows 

 

3 3α α α
α

θ
θ
∂

= = +
∂ ,

Pg a a
 

with 3 3=g a  and { }1 2α ∈ ,  
(16) 

 
According to the first fundamental form of the surface, 

the covariant components of the surface metric tensor in the 
reference configuration are defined as 

 

α β α β= a . aa
    

{ }1 2α β ∈, ,  (17) 
 

whereas the covariant components of the curvature tensors 
based on the second fundamental form are given as 

 

3α β α β= ,a . ab
    

{ }1 2α β ∈, ,  (18) 
 
We define the following strain tensor by means of the 

well-known formula 
 

α β
α β= ×E . g gE

   
with  3α β α β α βε ξ ϕ= +E  (19) 

 
where gα and gβ are contravariant basis vectors. Two strains; 
ε or membrane strains for describing the straining of the 
surface and φ or bending strains for measuring the change 
in curvature of the shell are expressed as 

 

( )1
2α β α β α βε = −a a  (20) 

 

α β α β α βϕ = −b b  (21) 
 
The deformed geometry of the shell can be described by 
 

( ) ( ) ( )1 2 1 2 1 2, , ,θ θ θ θ θ θ= +X X u  (22) 
 
The linearized membrane and bending strains with the 

aid of Eq. (22) can be rewritten as 
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For simplicity, it is assumed that the shell is linearly 

elastic and its strain energy density per unit area is 
expressed as 
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where ν and E denote Poisson’s ratio and modulus of 
elasticity, respectively. The fourth order constitutive tensor 
C α β γ δ is defined by 

 

( )( )1 1
2

C α β γ δ α β γ δ α γ β δ α δ β γν ν= + − +a a a a a a  (26) 

 
with ααβ as the contravariant components of the surface 
metric tensor. Membrane strains in the framework of finite 
element approximation of the displacement field can be 
rewritten as follows 
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In compact form 
 

m
I Iε = B u  (28) 

 
where 

m
IB is the membrane strain-displacement matrix. In 

the same manner, bending strain-displacement can be 
derived as 
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where subscript I indicates number of control points and R 
is truncated hierarchical B-splines and its derivatives. 

By applying the internal virtual work we have 
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For convenience of computer programing, the element 

stiffness matrix is given as follows 
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Fig. 4 Scordelis-Lo roof 

 
 
 

m m b b
m b[( ) D ( ) D ]T T d

Ω

= + Ω∫K B B B Be e e e e  (32) 

 
In the present study, the standard Gauss quadrature is 

carried out on knot spans and the numerical results are 
obtained using (p+1)(q+1) Gauss points in shell elements, 
where p an q are the orders of truncated basis functions. As 
the basis functions are rational polynomials, Gaussian 
quadrature seems to be credible for integrating them. 

 
 
 

 
 

4. Numerical results 
 

In this section, the performance and the accuracy of our 
implementation of an isogeometric thin shell element based 
on truncated hierarchical basis are investigated. We show 
the efficiency and versatility of the proposed method 
through three benchmark problems taken from the well-
known shell obstacle course (Belytschko 1985): the 
Scordelis-Lo roof, the pinched cylinder and the hemi-
spherical shell. The present results are compared with 
analytical solutions and those of the original NURBS 
approach. At level 0, our results are equivalent to those 
derived with cubic NURBS. 

 
4.1 Scordelis-Lo roof 
 
Consider the Scordelis-Lo roof shown in Fig. 4 as a 

panel of cylindrical shell with self-weight (q = 90/area) that 
is supported at its ends by rigid diaphragms and the other 
two edges are free. The vertical displacement at the 
midpoint of the side edge is given as the reference solution 
(Belytschko 1985). Geometric and material data are 
assumed as follows: the radius of roof R = 25; its length L = 
50; the thickness t = 0.25; the modulus of elasticity E = 
4.32×108; and the Poisson’s ratio ѵ = 0.0. Taking advantage 
of symmetry enables us to model and analyze only one 
quadrant of the roof. Hierarchical meshes are constructed 

 
 

 
 

 
Fig. 5 Scordelis-Lo roof, vertical displacement at the midpoint of free edge 

   
(a) (b) (c) 

Fig. 6 Physical mesh of Scordelis-Lo roof: (a) a uniformly coarse mesh for both NURBS and THB-splines at level 0; 
(b) slightly finer meshes for THB-splines at level 1; (c) fine meshes for THB-splines at level 2 
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Fig. 8 Pinched cylinder with end diaphragms 

 
 
for three different levels (see Fig. 6). 

The numerical convergence of methods are also plotted 
in Fig. 5. The maximum value of the vertical displacement 
calculated at the midpoint of free edge using THB-splines is 
a little lower than the exact value. This slight difference is 
due to neglecting transverse shear deformation, because the 
present formulation is based on Kirchhoff-Love theory 
while in the reference solution, shear deformations are 
included. As can be seen in Fig. 5, the convergence rate of 
truncated hierarchical B-splines appear satisfactory. More-
over, THB-splines exhibit more accurate solution with 

 
 

 
 

 
Fig. 10 Local refinement representation of pinched 

cylinder at loading points 
 
 

respect to lower degrees of freedoms than NURBS model 
when the same order approximation is used. Contour plot of 
vertical deflection at the center of the free edge and the 
deformed configuration are shown in Fig. 7. 
 

4.2 Pinched cylinder with end diaphragms 
 
In this section, a pinched cylinder with rigid end 

diaphragms and two opposite concentrated point loads (P = 
1.0) is considered. The simulated material has a uniform 
thickness of t = 3, Young’s modulus is E = 3.0×106 and 

 
 

  
Fig. 7 Scordelis-Lo roof, vertical displacement at the midpoint of free edge 

 
Fig. 9 Displacement convergence plot of pinched cylinder 
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Fig. 11 Quadrant of a pinched hemispherical shell 

 
 
Poisson’s ratio is ѵ = 0.3. Geometrical parameters are as 
follows: the radius of cylinder R = 25 and its length L = 50. 
The theoretical solution of the expected deflection under the 
loading point is 1.8248×10-5 (Belytschko et al. 1985). Fig. 8 
describes the geometry of the problem. The full model of 
pinched cylinder with local refinement under the point loads 
is depicted in Fig. 10. 

Owing to symmetry, one octant of the pinched cylinder 
is modeled by cubic NURBS basis functions. Fig. 9 depicts 
the convergence of the radial displacement at the loading 
point. 

It is observed that THB-splines yield more rapidly 
converging solution to theoretical value. The plot also 
shows that NURBS basis functions have monotonic 
convergence towards the reference solution but it is 
particularly interesting to point out that THB-splines have 
lower degrees of freedom in contrast to NURBS. 
 

4.3 Hemispherical shell 
 
Fig. 11 shows a quadrant of a pinched hemispherical 

shell subjected to two opposite diametrical loads P = 1.0 in 
the equatorial plane. The bottom circumferential edge of 
hemisphere is free. This problem is known as a test for the 

 
 

performance of the element to handle rigid body rotation 
about the normal to the shell surface. The parameters are 
given as follows: the radius of shell R = 10; the thicknesst = 
0.04; the modulus of elasticity E = 6.825×107; and the 
Poisson’s ratio ѵ = 0.3. The theoretical value for the radial 
displacement at loading points is 0.0924. Fig. 12 depicts 
convergence of radial displacement for both NURBS with 
uniform refinement and THB-splines with local refinement 
at loading points. It is observed that, the performance of 
truncated hierarchical constructions is in excellent 
agreement with the analytical solution. Control mesh of 
hemispherical shell with its corresponding parameter 
domain with respect to different degrees of freedom are 
illustrated in Fig. 13. Contour plot of displacement at 
loading points is depicted in Fig. 14. 
 
 
5. Conclusions 

 
In this paper, the hierarchical B-splines with truncation 

was applied for analysis of thin shell structures in the 
framework of isogeometric approach. The analysis has been 
carried out using different levels of hierarchical meshes. 
Due to high continuity of THB-splines, only displacement 
degrees of freedom were discretized. Therefore, the number 
of DOFs are lower because not only the local refinement is 
implemented but also the middle surface of a rotation-free 
thin shell is modelled. The proposed approach provides 
sufficient flexibility for preserving the exact geometry 
representation throughout the refinement process. Hence, it 
should be mentioned that, the isogeometric analysis using 
THB-splines exploits refinability of basis functions and can 
be suggested as a promising alternative to the current 
geometric modeling and isogeometric analysis. 
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