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1. Introduction 
 

Sandwich plates have received considerable attention in 

many engineering applications such as aerospace, 

automobile, and shipbuilding due to their high strength and 

stiffness, low weight and durability. These plates are 

generally manufactured form three homogeneous layers, 

two face sheets adhesively bonded to the core. However, the 

sudden variation in material characteristics within the 

interface between different materials can lead to face 

sheet/core delamination, which is a dangerous problem in 

sandwich construction. To improve the resistance of 

sandwich structures to such type of failure, the concept of a 

functionally graded material (FGM) is being actively 

applied in sandwich plate design. Nowadays, FGM suits the 

specific demand in different engineering applications 

especially for high temperature environment applications of 

heat exchanger tubes, thermal barrier coating for turbine 

blades, thermoelectric generators, furnace linings, 

electrically insulated metal ceramic joints, space/aerospace 

industries, automotive applications, and biomedical area etc 

(Koizumi 1993, Suresh and Mortensen 1998, Miyamoto et 

al. 1999, Kirigulige et al. 2005, Pollien et al. 2005, 

Shahistha et al. 2014, Yaghoobi et al. 2014, Kar and Panda 
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2015, Bouguenina et al. 2015, Bennai et al. 2015, Hadji and 

AddaBedia 2015, LarbiChaht et al. 2015, AitAtmane et al. 

2015, Celebi et al. 2016, Darabi and Vosoughi 2016, 

Bounouara et al. 2016, Ahouel et al. 2016, Ebrahimi and 

Habibi 2016, Ebrahimi and Jafari 2016, Madani et al. 2016, 

Benferhat et al. 2016, Ebrahimi and Shafiei 2016, 

GhorbanpourArani et al. 2016, Turan et al. 2016, Zidi  et 

al. 2017, Rahmani et al. 2017, Bouafia et al. 2017).  

With the increase use of FG sandwich plates, 

understanding their mechanical behaviors becomes an 

essential task. Three-dimensional finite element simulations 

for investigating low velocity impact response of sandwich 

panels with a FG core were conducted by Etemadi et al. 

(2009). Anderson (2003) proposed an analytical 3D 

elasticity solution method for a sandwich composite with a 

FG core subjected to transverse loading by a rigid spherical 

indentor. An exact thermoelasticity solution for a 2D 

sandwich structures with FG coating was established by 

Shodja et al. (2007). Natarajan and Manickam (2012) 

investigated the bending and free vibration response of 

functionally graded (FG) sandwich plates using higher-

order shear deformation theories (HSDT). Xiang et al 

(2013) studied the dynamic behavior of FG sandwich plates 

by employing an nth-order shear deformation theory and a 

meshless method. Sobhy (2013) examined the buckling and 

free vibration of FG sandwich plates by utilizing various 

HSDTs. In a number of recent articles-see (Bourada et al. 

2012, Tounsi et al. 2013, Bourada et al. 2016, Laoufi et al. 
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2016, Draiche et al. 2016, El-Hassar et al. 2016, Javed et al. 

2016, Chikh et al. 2017, Menasria et al. 2017, Khetir et al. 

2017)-a new simple and robust plate theory for mechanical 

behavior and buckling of simply supported FGM sandwich 

and composite plate with only four or five unknown 

functions has been developed. Neves et al. (2012) studied 

the bending behaviour of FG sandwich plates according to a 

hyperbolic theory considering Zig-Zag and warping effects. 

Bessaim et al. (2013) developed anew higher order shear 

and normal deformation theory for the static and free 

vibration analysis of sandwich plates with functionally 

graded isotropic face sheets. Houari et al (2013) studied the 

thermoelastic bending of FG sandwich plates using a new 

higher order shear and normal deformation theory. Thai et 

al. (2014) analysed a functionally graded sandwich plates 

using a new first-order shear deformation theory. Nguyen et 

al. (2014) presented a new inverse trigonometric shear 

deformation theory for isotropic and functionally graded 

sandwich plates. Ait Amar Meziane et al (2014) developed 

a new refined plate theory to the vibration and buckling of 

exponentially graded sandwich plate resting on elastic 

foundations under various boundary conditions. Belabed et 

al. (2014) presented an efficient and simple higher order 

shear and normal deformation theory for FG plates. 

Swaminathan and Naveenkumar (2014) present an 

analytical formulations and solutions for the stability 

analysis of simply supported FG sandwich plates based on 

two higher-order refined computational models. Taibi et al. 

(2015) proposed a simple shear deformation theory for 

thermo-mechanical behaviour of FG sandwich plates on 

elastic foundations. Mahi et al (2015) proposed a novel 

hyperbolic shear deformation theory for bending and free 

vibration analysis of isotropic, functionally graded, 

sandwich and laminated composite plates. Recently, Hamidi 

et al. (2015) developed a sinusoidal plate theory with 5-

unknowns and stretching effect for thermomechanical 

bending response of FG sandwich plates. Bakora and 

Tounsi (2015) examined the thermo-mechanical post-

buckling behavior of thick FG plates resting on elastic 

foundations.Nguyen (2015) presented a higher-order 

hyperbolic shear deformation plate model for analysis of 

functionally graded materials. Bellifa et al. (2017) proposed 

a nonlocal zeroth-order shear deformation theory for 

nonlinear postbuckling of nanobeams. Meksi et al. (2017) 

presented an analytical solution for bending, buckling and 

vibration responses of FGM sandwich plates. AitAtmane et 

al. (2017) discussed the effect of thickness stretching and 

porosity on mechanical response of a FG beams resting on 

elastic foundations. Baseri et al. (2016) presented an 

analytical solution for buckling of embedded laminated 

plates based on higher order shear deformation plate theory. 

Bennoun et al. (2016) proposed a novel five variable 

refined plate theory for vibration analysis of FG sandwich  
plates. Chikh et al. (2016) investigated the thermo-
mechanical postbuckling of symmetric S-FGM plates 
resting on Pasternak elastic foundations using hyperbolic 
shear deformation theory. Benbakhti et al. (2016) presented 
a new five unknown quasi-3D type HSDT for thermo-
mechanical bending analysis of FGM sandwich plates. 
Benahmed et al. (2017) proposed a novel quasi-3D 
hyperbolic shear deformation theory for FG thick 

 

Fig. 1 Geometry and coordinates of FG sandwich plates 

 

 

rectangular plates on elastic foundation. Benchohra et al. 

(2017) developed also a new quasi-3D sinusoidal shear 

deformation theory for FG plates. Klouche et al. (2017) 

presented an original single variable shear deformation 

theory for buckling analysis of thick isotropic plates. El-

Haina et al. (2017) given a simple analytical approach for 

thermal buckling of thick FG sandwich plates. Fahsi et al. 

(2017) proposed a four variable refined nth-order shear 

deformation theory for mechanical and thermal buckling 

analysis of FG plates. 

The present work deals with the analytical formulations 

and solutions for the bending, buckling and vibration 

analyses of FG sandwich plates composed of a powerly 

functionally graded face sheets and an isotropic 

homogeneous core. To achieve this objective, a simple 

hyperbolic shear deformation theory is presented and 

applied for sandwich plate with various boundary 

conditions. The displacement field is expressed with only 4 

unknowns, which is even less than the first order shear 

deformation theory (FSDT) and do not require shear 

correction factor (Adda Bedia et al. 2015, Meksi et al. 

2015, Bellifa et al. 2016, Bouderba et al. 2016). Equations 

of motion are obtained from Hamilton‟s principle. 

Analytical solutions for sandwich plates under various 

boundary conditions are determined. Numerical examples 

are illustrated to check the accuracy of the present 

formulation in predicting the bending, buckling and 

vibration behaviors of powerly graded sandwich plates. 

 

 

2. Problem formulation 
 

In this work, a rectangular powerly graded sandwich 

plate with a uniform thickness is considered. The sandwich 

plate is composed of three microscopically heterogeneous 

layers, with reference to rectangular coordinates (x, y, z) as 

plotted in Fig. 1. The top and bottom faces of the plate are 

at z=±h/2, and the edges of the plate are parallel to the x and 

y axes. 

The sandwich plate is composed of three elastic layers, 

namely, „„Layer 1‟‟, „„Layer 2‟‟, and „„Layer 3‟‟ from the 

uppermost surface to the lowest surface of the plate. The 

vertical ordinates of the base, the two interfaces, and the top 
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are denoted by −h0=h/2, h1, h2, h3=h/2, respectively. For 

brevity, the ratio of the thickness of each layer from the 

base to the top is denoted by the combination of three 

numbers, i.e., „„1-0-1‟‟, „„2-1-2‟‟ and so on.   

The volume fraction of the sandwich plate faces is 

assumed to vary according to a simple power law function 

of z while that of the core equals unity, and they are given 

as (Bousahla et al. 2014, Bourada et al. 2015, Zidi et al. 

2014, Hebali et al. 2014, Fekrar et al. 2014, Bouderba et al. 

2013, Hadji et al. 2016, Barka et al. 2016, Hebali et al. 

2016, Houari et al. 2016, Besseghier et al. 2017) 

m
n

mc PVPPzP  )()()(  (1) 

where P denotes the effective material characteristic such as 

Young‟s modulus E, Poisson‟s ratio v, and mass density ρ; 

subscripts c and m indicate the ceramic and metal phases, 

respectively; and V is the volume fraction of the ceramic 

phase defined by 
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where k is the inhomogeneity parameter which takes values 

greater than or equal to zero. It is noted that the core is 

independent of the value of k which is fully ceramic.  

 

2.1 Kinematics and constitutive equations 
 

The displacement field of the present formulation is 

modeled based on the following assumptions: (1) The 

transverse displacement is splitted into both bending and 

shear components; (2) the axial displacements are divided 

into three components, namely:  extension, bending and 

shear parts; (3) the bending parts of the axial displacements 

are identical to those expressed by CPT; and (4) the shear 

parts of the axial displacements give rise to the hyperbolic 

variations of shear strains and hence to shear stresses across 

the thickness of the plate in such a way that the shear 

stresses vanish on the top and bottom surfaces of the plate. 

Based on these assumptions, the following displacement 

field relations can be determined (AitYahia et al. 2015, 

Attia et al. 2015, Belkorissat et al. 2015, Beldjelili et al. 

2016, Boukhari et al. 2016, Barati and Shahverdi 2016, 

Bousahla et al. 2016, Becheri et al. 2016) 
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(3) 

where u0 and v0 indicate the displacements along the x and y 

coordinate directions of a point on the mid-plane of the 

plate; wb 
and ws are the bending and shear components of 

the transverse displacement, respectively. The shape 

functions f(z) are chosen to satisfy the stress-free boundary 

conditions on the top and bottom surfaces of the plate, thus 

a shear correction factor is not required. In this study, the 

shape function is considered as follows 
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The displacement model (3) leads to the following 

kinematic relations 
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The linear constitutive relations of a powerly graded 

sandwich plate can be expressed as 
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where (ζx, 
ζy, ζz, ηyz, ηxz, ηxy) and (εx, 

εy, εz, γyz, γxz, γxy) are the 

stress and strain components, respectively. The elastic 

constants Cij are defined as 
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2.2 Equations of motion 
 

In this work, the analysis of bending, buckling and free 

vibration of powerly graded sandwich plate is performed 

using Hamilton's principle. The principle can be expressed 

in an analytical form as follows 

(6) 

(7) 

(8) 

(9) 
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T

dtKVU
0

   0   (10) 

where δU is the variation of strain energy; δV is the 

variation of work done by the external forces; and δK is the 

variation of kinetic energy.  

The strain energy expression is given as follows 
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where A is the top surface and the stress resultants N, M, 

and S are defined by 
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where hn-1 and hn are the top and bottom z-coordinates of 

the nth layer. 

Substituting Eq. (8) into Eq. (12) and integrating 

through the thickness of the plate, the stress resultants are 

expressed as 
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and stiffness components are given as 
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The variation of work done by the applied loads can be 

expressed as 

 dAwwqPV sb
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where q is the transversely load and ( 0
xP , 0

yP , 0
xyP ) are the 

in-plane loads. 

The variation of kinetic energy of the plate can be 

written as 
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(18) 

where dot-superscript convention indicates the 

differentiation with respect to the time variable t; ρ(z) is the 

mass density given by Eq. (1); and (I0, I1, J1, I2, J2, K2) are 

mass inertias defined as  
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By substituting Eqs. (18), (16) and (11) into Eq. (10), 

using Hamilton‟s principle, and collecting the coefficients 

of (δu0, δv0, δwb and δws) after taking the required 

integration by parts, the following equations of motion of 

the plate are obtained 

(16a) 

(16c) 
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The equations of motion of the present theory can be 

expressed in terms of displacements (u0, v0, wb, ws) by 

replacing Eq. (14) into Eq. (21) and the appropriate 

equations take the form 
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where dij, dijl and dijlm are the following differential 

operators 
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3. Exact solutions for EGMs sandwich plates 
 

The exact solution of Eq. (21) for the powerly graded 

sandwich plate under various boundary conditions are 

determined in this section. The boundary conditions for an 

arbitrary edge with simply supported and clamped edge  

Table 1 The admissible functions Xm(x) and Yn(y) 

 Boundary conditions 
The functions 

Xm and Yn 

 At x=0, y=0 At x=a, y=b Xm(x) Yn(y) 
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()‟ Denotes the derivative with respect to the corresponding 

coordinates. 

 

 

conditions are: 

• Clamped (C)
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at ax  ,0  and by  ,0  

(23) 

• and simply supported (S) 

0//0  ywwywwv ssbb at ax  ,0  (24a) 

0//0  xwwxwwu ssbb at by  ,0  (24b) 

The following representation for the displacement 

quantities, that satisfy the above boundary conditions, is 

appropriate in the case of our problem 
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where Umn, Vmn, Wbmn, and Wsmn are arbitrary parameters and 

mn   denotes the eigenfrequency associated with (m, n) 
th

eigenmode. The functions Xm(x) and Yn(y) are suggested 

by Sobhy (2013) to satisfy at least the geometric boundary 

conditions given in Eqs. (23) and (24), and represent 

approximate shapes of the deflected surface of the plate. 

These functions, for the different cases of boundary 

conditions, are listed in Table 1.  

The transversely load q is also chosen as 

 









1 1

) sin() sin(),(
m n

mn yxQyxq   (26) 

where the coefficients Qmn are given below for certain 

typical loads 










loads uniformfor     

16

loads sinusoidalfor             

2

0

0

mn

q

q

Qmn  (27) 

with α=mπ/a and β=nπ/b. 
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Substituting expressions (26) and (25) into the 

governing Eqs. (21) and multiplying each equation by the 

corresponding eigenfunction then integrating over the 

domain of solution, we can obtain, after some mathematical 

manipulations, the following equations 
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Table 2 Dimensionless deflection w  of square plates 

(a/h=10) 

Boundary 

conditions 
k Method 

Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-0-1 

SSSS 

0 
FSDT(a) 0.2961 0.2961 0.2961 0.2961 0.2961 

Present 0.2956 0.2956 0.2956 0.2956 0.2956 

0.5 
FSDT(a) 0.5229 0.4849 0.4564 0.4371 0.4178 

Present 0.5227 0.4846 0.4560 0.4366 0.4172 

1 
FSDT(a) 0.7455 0.6594 0.5956 0.5541 0.5130 

Present 0.7454 0.6593 0.5954 0.5537 0.5124 

2 
FSDT(a) 1.0846 0.9256 0.8011 0.7205 0.6433 

Present 1.0839 0.9254 0.8009 0.7200 0.6427 

5 
FSDT(a) 1.4576 1.2714 1.0782 0.9385 0.8139 

Present 1.4519 1.2678 1.0767 0.9367 0.8131 

10 
FSDT(a) 1.5609 1.4143 1.2109 1.0434 0.9011 

Present 1.5519 1.4053 1.2070 1.0392 0.8998 

CSCS 

0 
FSDT(a) 0.1841 0.1841 0.1841 0.1841 0.1841 

Present 0.1836 0.1836 0.1836 0.1836 0.1836 

0.5 
FSDT(a) 0.3208 0.2975 0.2803 0.2688 0.2571 

Present 0.3205 0.2972 0.2799 0.2682 0.2565 

1 
FSDT(a) 0.4547 0.4021 0.3636 0.3389 0.3141 

Present 0.4546 0.4020 0.3634 0.3384 0.3134 

2 
FSDT(a) 0.6593 0.5617 0.4865 0.4385 0.3920 

Present 0.6586 0.5615 0.4863 0.4379 0.3913 

5 
FSDT(a) 0.8900 0.7712 0.6529 0.5697 0.4940 

Present 0.8835 0.7670 0.6513 0.5676 0.4931 

10 
FSDT(a) 0.9595 0.8606 0.7339 0.6338 0.5464 

Present 0.9492 0.8503 0.7294 0.6290 0.5448 

CCCC 

0 
FSDT(a) 0.1612 0.1612 0.1612 0.1612 0.1612 

Present 0.1606 0.1606 0.1606 0.1606 0.1606 

0.5 
FSDT(a) 0.2780 0.2579 0.2431 0.2333 0.2233 

Present 0.2777 0.2576 0.2427 0.2327 0.2226 

1 
FSDT(a) 0.3923 0.3469 0.3140 0.2930 0.2718 

Present 0.3922 0.3468 0.3137 0.2924 0.2710 

2 
FSDT(a) 0.5674 0.4828 0.4184 0.3777 0.3380 

Present 0.5666 0.4825 0.4182 0.3770 0.3371 

5 
FSDT(a) 0.7685 0.6626 0.5603 0.4897 0.4247 

Present 0.7610 0.6577 0.5584 0.4873 0.4236 

10 
FSDT(a) 0.8327 0.7412 0.6302 0.5452 0.4693 

Present 0.8208 0.7292 0.6249 0.5396 0.4676 

FCFC 

0 
FSDT(a) 0.1043 0.1043 0.1043 0.1043 0.1043 

Present 0.1038 0.1038 0.1038 0.1038 0.1038 

0.5 
FSDT(a) 0.1786 0.1657 0.1563 0.1501 0.1437 

Present 0.1784 0.1655 0.1560 0.1496 0.1432 

1 
FSDT(a) 0.2513 0.2222 0.2012 0.1879 0.1744 

Present 0.2512 0.2221 0.2010 0.1875 0.1739 

2 
FSDT(a) 0.3628 0.3084 0.2674 0.2416 0.2164 

Present 0.3622 0.3082 0.2672 0.2411 0.2158 

5 
FSDT(a) 0.4925 0.4232 0.3575 0.3129 0.2713 

Present 0.4868 0.4195 0.3561 0.3110 0.2705 

10 
FSDT(a) 0.5355 0.4742 0.4023 0.3484 0.2997 

Present 0.5265 0.4651 0.3983 0.3442 0.2984 

(a)
Taken from Thai et al. (2014) 

 

 

The non-trivial solution is obtained when the 

determinant of Eq. (28) equals zero. For the free vibration  
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Table 3 Dimensionless buckling load N  of square plates 

(ξ=1, a/h=10)  

Boundary 

conditions 
k Method 

Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-0-1 

SSSS 

0 
FSDT(a) 6.5022 6.5022 6.5022 6.5022 6.5022 

Present 6.5118 6.5118 6.5118 6.5118 6.5118 

0.5 
FSDT(a) 3.6817 3.9702 4.2181 4.4047 4.6081 

Present 3.6831 3.9721 4.2211 4.4091 4.6138 

1 
FSDT(a) 2.5824 2.9193 3.2320 3.4742 3.7528 

Present 2.5825 2.9196 3.2332 3.4768 3.7568 

2 
FSDT(a) 1.7749 2.0798 2.4032 2.6719 2.9926 

Present 1.7759 2.0801 2.4035 2.6736 2.9953 

5 
FSDT(a) 1.3208 1.5114 1.7855 2.0512 2.3652 

Present 1.3258 1.5184 1.7878 2.0551 2.3675 

10 
FSDT(a) 1.2333 1.3612 1.5897 1.8450 2.1364 

Present 1.2404 1.3698 1.5949 1.8524 2.1394 

CSCS 

0 
FSDT(a) 11.9477 11.9477 11.9477 11.9477 11.9477 

Present 11.9802 11.9802 11.9802 11.9802 11.9802 

0.5 
FSDT(a) 6.8587 7.3942 7.8489 8.1861 8.5573 

Present 6.8638 7.4010 7.8597 8.2012 8.5771 

1 
FSDT(a) 4.8390 5.4712 6.0504 6.4925 7.0048 

Present 4.8397 5.4721 6.0545 6.5015 7.0191 

2 
FSDT(a) 3.3370 3.9170 4.5225 5.0176 5.6129 

Present 3.3405 3.9183 4.5240 5.0239 5.6226 

5 
FSDT(a) 2.4721 2.8529 3.3697 3.8622 4.4536 

Present 2.4901 2.8683 3.3779 3.8763 4.4619 

10 
FSDT(a) 2.2930 2.5565 2.9978 3.4713 4.0269 

Present 2.3177 2.5873 3.0162 3.4975 4.0378 

CCCC 

0 
FSDT(a) 15.9226 15.9226 15.9226 15.9226 15.9226 

Present 15.9805 15.9805 15.9805 15.9805 15.9805 

0.5 
FSDT(a) 9.2338 9.9529 10.5578 11.0011 11.4933 

Present 9.2431 9.9653 10.5774 11.0286 11.5292 

1 
FSDT(a) 6.5434 7.3990 8.1753 8.7612 9.4443 

Present 6.5447 7.4008 8.1830 8.7777 9.4705 

2 
FSDT(a) 4.5236 5.3169 6.1354 6.7961 7.5952 

Present 4.5302 5.3195 6.1381 6.8077 7.6130 

5 
FSDT(a) 3.3400 3.8738 4.5813 5.2417 6.0445 

Present 3.3730 3.9025 4.5965 5.2677 6.0598 

10 
FSDT(a) 3.0825 3.4629 4.0732 4.7084 5.4696 

Present 3.1273 3.5198 4.1073 4.7567 5.4897 

FCFC 

0 
FSDT(a) 18.6047 18.6047 18.6047 18.6047 18.6047 

Present 18.6842 18.6842 18.6842 18.6842 18.6842 

0.5 
FSDT(a) 10.8640 11.7085 12.4145 12.9276 13.5006 

Present 10.8770 11.7258 12.4418 12.9656 13.5503 

1 
FSDT(a) 7.7220 8.7323 9.6429 10.3246 11.1229 

Present 7.7238 8.7349 9.6536 10.3476 11.1593 

2 
FSDT(a) 5.3477 6.2913 7.2569 8.0294 8.9676 

Present 5.3569 6.2949 7.2608 8.0457 8.9924 

5 
FSDT(a) 3.9393 4.5849 5.4268 6.2015 7.1514 

Present 3.9854 4.6251 5.4482 6.2380 7.1729 

10 
FSDT(a) 3.6230 4.0915 4.8230 5.5683 6.4748 

Present 3.6852 4.1712 4.8709 5.6360 6.5030 

(a) 
Taken from Thai et al. (2014) 

 

 

problem, we have 0000  qxyyx fPPP . While for the 

buckling analysis, we put 00  qxy fP ; PPx 0  and 

Table 4 Dimensionless fundamental frequency   of 

square plates (a/h=10) 

Boundary 

conditions 
k Method 

Scheme 

1-0-1 2-1-2 1-1-1 2-2-1 1-0-1 

SSSS 

0 
FSDT(a) 1.8244 1.8244 1.8244 1.8244 1.8244 

Present 1.8257 1.8257 1.8257 1.8257 1.8257 

0.5 
FSDT(a) 1.4442 1.4841 1.5192 1.5471 1.5745 

Present 1.4447 1.4846 1.5199 1.5480 1.5756 

1 
FSDT(a) 1.2429 1.3000 1.3533 1.3956 1.4393 

Present 1.2434 1.3004 1.3538 1.3963 1.4402 

2 
FSDT(a) 1.0605 1.1218 1.1882 1.2436 1.3023 

Present 1.0613 1.1224 1.1886 1.2443 1.3031 

5 
FSDT(a) 0.9431 0.9796 1.0435 1.1077 1.1735 

Present 0.9455 0.9815 1.0445 1.1091 1.1744 

10 
FSDT(a) 0.9246 0.9390 0.9932 1.0587 1.1223 

Present 0.9279 0.9424 0.9952 1.0611 1.1234 

CSCS 

0 
FSDT(a) 2.6701 2.6701 2.6701 2.6701 2.6701 

Present 2.6735 2.6735 2.6735 2.6735 2.6735 

0.5 
FSDT(a) 2.1277 2.1862 2.2371 2.2768 2.3162 

Present 2.1289 2.1876 2.2388 2.2791 2.3190 

1 
FSDT(a) 1.8365 1.9209 1.9986 2.0593 2.1226 

Present 1.8372 1.9216 1.9996 2.0610 2.1250 

2 
FSDT(a) 1.5694 1.6616 1.5792 1.8394 1.9251 

Present 1.5710 1.6625 1.7600 1.8410 1.9271 

5 
FSDT(a) 1.3927 1.4512 1.5471 1.6405 1.7380 

Present 1.3985 1.4558 1.5495 1.6440 1.7400 

10 
FSDT(a) 1.3610 1.3889 1.4720 1.5672 1.6629 

Present 1.3691 1.3978 1.4771 1.5736 1.6656 

CCCC 

0 
FSDT(a) 3.2936 3.2936 3.2936 3.2936 3.2936 

Present 3.2993 3.2993 3.2993 3.2993 3.2993 

0.5 
FSDT(a) 2.6376 2.7099 2.7719 2.8199 2.8679 

Present 2.6394 2.7119 2.7748 2.8236 2.8724 

1 
FSDT(a) 2.2814 2.3864 2.4818 2.5556 2.6330 

Present 2.2823 2.3873 2.4835 2.5584 2.6369 

2 
FSDT(a) 1.9520 2.0680 2.1889 2.2868 2.3923 

Present 1.9543 2.0692 2.1900 2.2893 2.3954 

5 
FSDT(a) 1.7293 1.8064 1.9269 2.0415 2.1629 

Present 1.7387 1.8138 1.9308 2.0471 2.1661 

10 
FSDT(a) 1.6858 1.7268 1.8329 1.9497 2.0703 

Present 1.6990 1.7414 1.8411 1.9602 2.0746 

FCFC 

0 
FSDT(a) 3.4688 3.4688 3.4688 3.4688 3.4688 

Present 3.4759 3.4759 3.4759 3.4759 3.4759 

0.5 
FSDT(a) 2.7872 2.8634 2.9284 2.9781 3.0282 

Present 2.7894 2.8659 2.9318 2.9827 3.0338 

1 
FSDT(a) 2.4144 2.5256 2.6258 2.7027 2.7838 

Present 2.4155 2.5266 2.6278 2.7061 2.7885 

2 
FSDT(a) 2.0675 2.1914 2.3190 2.4215 2.5323 

Present 2.0703 2.1928 2.3203 2.4245 2.5362 

5 
FSDT(a) 1.8296 1.9145 2.0430 2.1632 2.2918 

Present 1.8412 1.9236 2.0477 2.1701 2.2957 

10 
FSDT(a) 1.7806 1.8285 1.9429 2.0656 2.1942 

Present 1.7968 1.8467 1.9531 2.0785 2.1995 

(a) 
Taken from Thai et al. (2014) 

 

 

PPy  0  , i.e.,  / 00
xy PP . and for the bending analysis, we 

put 0000  xyyx PPP . 

699



 

Hadj Henni Abdelaziz et al. 

 

4. Numerical results and discussions 
 

In this section, some numerical examples are exposed 

and discussed to check the accuracy of the present 

formulation and examine the impacts of the inhomogeneity 

parameter, thickness ratio of layers, i.e., scheme, transverse 

shear deformation and boundary conditions on deflection, 

critical buckling load and natural frequency of FG sandwich 

plates.  

The combination of materials consists of aluminum and 

alumina with the following material properties: 

• Ceramic (Alumina, Al2O3): Ec=380 GPa; v=0.3; 

ρc=3800 kg/m. 

• Metal (Aluminium, Al): Em=70
 
GPa; v=0.3; ρm=2707

 
kg/m

3
. 

The employed non-dimensional quantities are 
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Tables 2 to 4 provide the nondimensionalized values of 

the transverse deflections w , buckling load N  and 

natural frequencies   of various types of powerly graded 

sandwich plates under various boundary conditions. The 

results are compared with those obtained using FSDT 

developed by Thai et al. (2014). Good agreement is 

achieved between the present results obtained by using the 

present simple hyperbolic shear deformation theory and 

those of Thai et al. (2014). It is remarked that the stiffer and 

softer plates correspond to the FCFC and SSSS ones, 

respectively. With the increase of the inhomogeneity 

parameter k, the plate becomes softer and hence, leads to a 

reduction of both the frequency and buckling load and an 

increase of deflection. This due to the fact that when the 

parameter increases the plate tends to be metallic. 

In Figs. 2-4, the variations of deflection, critical 

buckling load and fundamental natural frequency of FG 

sandwich square plates versus the inhomogeneity parameter 

k are presented, respectively. Different layer configurations 

are employed for multi-layered FGM plates. The thickness 

ratio of the plate is considered equal to 10. It can be 

observed that increasing the inhomogeneity parameter k 

leads to increase in deflection (Fig. 2) and a reduction of 

critical buckling load (Fig. 3) and natural frequency (Fig. 

4). This behavior can be attributed to the fact that higher 

inhomogeneity parameter k corresponds to lower volume 

fraction of the ceramic phase. Thus, increasing the 

inhomogeneity parameter makes the plate softer because of 

the high portion of metal in comparison with the ceramic 

part, and consequently, results in an increase in deflection 

and a reduction of both buckling load and natural frequency. 

It is observed from results that the hardest and softest plates 

correspond to the (1-2-1) and (1-0-1) schemes, respectively. 

Such behavior is due to the fact that the (1-2-1) and (1-0-1) 

FG sandwich plates correspond to the highest and lowest 

volume fractions of the ceramic phase, and thus makes them 

become the hardest and softest ones. In addition, it can be 

seen form Figs. 2-4, that when clamped boundary  
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Fig. 2 Effect of the inhomogeneity parameter (k) on 

dimensionless deflection ( w ) of square FG sandwich plates  

(a/h=10): (a) simply supported plate; (b) clamped plate 
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Fig. 3 Effect of the inhomogeneity parameter (k) on 

dimensionless critical buckling load ( N ) of square FG 

sandwich plates (a/h=10) under biaxial compression: (a) 

simply supported plate; (b) clamped plate 
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Fig. 4 Effect of the inhomogeneity parameter (k) on 

dimensionless frequency ( ) of square FG sandwich plates 

(a/h=10): (a) simply supported plate; (b) clamped plate 
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Fig. 5 Effect of boundary conditions on dimensionless 

deflection w  of (1-1-1) FG sandwich square plates (k=2) 

 

 

conditions (CCCC) are considered, the plate becomes 

stiffer; this has led to a reduction of the deflection (Fig. 

2(b)) and increased critical buckling load (Fig. 3(b)) and 

natural frequency (Fig. 4(b)). 

Figs. 5-7 demonstrate the effect of boundary conditions 

on deflection, buckling load and natural frequency of FG 

sandwich plates. It is observed from this investigation that 

the hardest and softest plates correspond to the FCFC and 

SSSS ones, respectively. 
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Fig. 6 Effect of boundary conditions on dimensionless 

critical buckling load N  of (1-1-1) FG sandwich square 

plates (k=2) under biaxial compression 
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frequency   of (1-1-1) FG sandwich square plates (k=2) 
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Fig. 8 shows the effect of the parameter ξ on the critical 

buckling loads N . As expected, the uniaxial buckling load 

(ξ=0) is greater than the biaxial one (ξ=1).  

 

 

5. Conclusions 
 

This work presents a bending, buckling and free 

vibration analysis of FG sandwich plates composed of FG 
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face sheets and an isotropic homogeneous core by 

employing a simple hyperbolic shear deformation theory 

with 4 unknowns. Different cases of boundary conditions 

are considered in the present investigation. The results 

obtained by the present formulation are compared with 

other results available in literature. The following 

conclusions may be drawn from the present study: 

• The obtained results are in good agreement with those 

found in literature. 

• The vibration frequencies and buckling loads for FG 

sandwich plates are generally lower than the 

corresponding values for homogeneous ceramic plates, 

while the deflections are higher than those of 

homogeneous ceramic plates.  

• The vibration frequencies and buckling loads increase 

as the side-to-thickness ratio increases, while the 

deflections decrease. 

• The vibration frequencies and buckling loads for 

simply supported powerly graded sandwich plates are 

lower than those for free and clamped powerly graded 

sandwich plates. 

• The deflections for simply supported powerly graded 

sandwich plates are higher than those for free and 

clamped powerly graded sandwich plates.  

• The critical buckling load for the plate under biaxial 

compression is lower than the plate under uniaxial 

compression.  
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