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Abstract. The dynamic instability of truncated conical shells subjected to dynamic axial load within first order shear
deformation theory (FSDT) is examined. The conical shell is made from functionally graded (FG) orthotropic material. In the
formulation of problem a dynamic version of Donnell's shell theory is used. The equations are converted to a Mathieu-Hill type
differential equation employing Galerkin’s method. The boundaries of main instability zones are found applying the method
proposed by Bolotin. To verify these results, the results of other studies in the literature were compared. The influences of
material gradient, orthotropy, as well as changing the geometric dimensions on the borders of the main areas of the instability are

investigated.
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1. Introduction

Most designs, regardless of their use, will be subjected
to dynamic loads in their operational life. One of these
structural elements is the conical shell. Increased use of
conical shells in a variety of engineering applications
requires the improvement of accurate theoretical models to
predict their response under dynamic loads. In this sense,
the solution of the dynamic instability problem of truncated
cones has practical significance. Most of the existing
investigation is devoted to the dynamic instability of
isotropic conical shells within classical theory of shells
(CST) (Kornecki 1966, Tani 1974, Tani 1976, Massalas et
al. 1981, Bert and Birman 1988, Ganapathi et al. 1999, Ng
et al. 1999, Kuntsevich and Mikhasev 2002, Qinkai and
Fulei 2013, Han and Chu 2014). As the ratio of the elastic
modulus to the shear modulus increases, some errors occur
in the behavior of the instability of shells within the CST.
For this reason, a satisfactory shear deformation theory
(SDT) is required to solve of dynamic instability of
composite anisotropic shells. The studies in this area are
relatively few, and most of the work is dedicated the
instability of homogeneous cylinders (Argento 1993, Jansen
2005, Mallon et al. 2010, Wosu et al. 2012, Neves et al.
2013, Akbari et al. 2014, Dey and Ramachandra 2014,
Heydarpour et al. 2014, Sofiyev 2014, Su et al. 2014, Viola
et al. 2014, Panda et al. 2015, Bhagat et al. 2016, Khayat et
al. 2016, Rahmanian et al. 2017).
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The modern technology requires creating new type
materials that accurately describe a physical phenomenon
necessary for product development and safety assessment.
Recently, space, nuclear, transportation and other industries
are enriched by design and development of composite, non-
homogeneous and multi-functional materials. In the
literature, there is sufficient research on the free vibration
behavior of shells from such materials based on CST and
SDT (Jansen 2005, Wosu et al. 2012, Neves et al. 2013,
Akbari et al. 2014, Heydarpour et al. 2014, Najafov et al.
2014, Sofiyev 2014, Su et al. 2014, Viola et al. 2014, Xie et
al. 2014, Sofiyev and Kuruoglu 2015, Ansari and Torabi
2016, Bich et al. 2016, Deniz et al. 2016, Fantuzzi et al.
2016, Javed et al. 2016, Kandasamy et al. 2016, Khayat et
al. 2016, Tornabene et al. 2016, Vescovini and Dozio 2016,
Chen et al. 2017b, Khayat et al. 2017).

The effects of shear strains are very significant on the
behavior of structures consisting of FG materials. Due to
the increasing importance of FG materials in planning of
structures and their instability characteristics, considering
combined effects of heterogeneity and shear deformations
are essential. Various theories of shear deformation with the
accuracy of solving instability problems are proposed, and
they led to more accurate results (Ng et al. 2001, Yang and
Shen 2003, Ansari and Darvizeh 2008, Pradyumna and
Bandyopadhyay 2009, Bespalova and Urusova 2011, Ovesy
and Fazilati 2012, Lei et al. 2014, Torki et al. 2014, Sofiyev
2015, Kumar et al. 2016, Mehri et al. 2016, Park et al. 2016,
Sofiyev 2016, Sofiyev and Kuruoglu 2016, Chen et al.
2017a).

The above mentioned studies relate to shells composed
of FG isotropic materials, and most of them considered the
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instability of cylindrical shells and panels using various
shear deformation shell theories such as first order shear
deformation theory (FSDT) and higher order shear
deformation theory (HSDT). The number of publications on
the instability of the orthotropic and heterogeneous conical
shells based on the shear deformation theories is rather
limited. The purpose of this investigate is to the solution of
the dynamic instability of FG orthotropic truncated conical
shells within the FSDT. The expressions for the excitation
frequencies of FG orthotropic cones within the FSDT are
found. Finally, the influences of shear strains, material
gradient, orthotropy, loading parameters, as well as the
characteristics of conical shell on the main instability zones
are considered in detail.

2. Basic relations

Geometry of the FG orthotropic conical shell are
defined in Fig. 1, where h, L, and y are the thickness,
the slant length and the half-hill angle, respectively. R, and
R, are small and large radii, and S, and S, are

distances from the apex to small and large bases,
respectively. The coordinate system is given as (0Sé8z), in

which S and @ coincides with generator and
circumferential directions, respectively, and z is normal to
the S@ surface.

In addition u,v,w denote displacement components in
directions S,6,z respectively, on the mid-surface,
respectively. The axial load, as illustrated in Fig.1, is
defined as

Tg =-T(t) =-T,~Tgcos(It), T) =0, Ty =0  (9)

where TS, T) and TS, are the membrane forces, T is
an axial load, T, is an amplitude of dynamic axial load,
I" is the excitation frequency (in rad/s)and t isatime
variable.

Fig. 1 FG orthotropic truncated cone subjected to
dynamic axial load

The properties are assumed to have in-plane orthotropy
and transverse non-homogeneity and mathematically
formulated as (Massalas et al. 1981, Najafov et al. 2014,
Sofiyev 2014).

Es(7) = v(2)Eps, Ey(2) = v(2)Eqyp,
Gs4(2) = v(2)Gosp, Gs, () = v(7)Gys,, )
Gy, (2) =0(2)Gyy,, Z=12/h

where Eyq, Egy and Gygy,Gps,,Goy,  are the elasticity
moduli, respectively, o(Z) is continuous function of
elasticity moduli and Z is the normalized thickness
coordinate, -1/2<Z<1/2 . In additionally, the

density, p , and Poisson’s ratios, vg, and v, , are

constant. In addition, the following equality satisfied:
Eos /Egp =Vso Vs (Ambartsumian 1964, Reddy 2004,

Chen et al. 2017a).

In the framework of FSDT, the stress-strain
relationships of shells made of FG orthotropic materials are
expressed as (Sofiyev 2015, Sofiyev 2016, Sofiyev and
Kuruoglu 2016)

os | |Ku(2) K@ 0 0 0 |]&
og | [Ku(?) Kp(@ 0 0 0 &g
op; |=| O 0 Ku@ 0 0 Yoz 3)
Os; 0 0 0 Kss(2) 0 Vs
Osp 0 0 0 0 Kes(2)] |75

where og,0,,059 are the stresses, &g,&4,65, are the
strains and the quantities for the non-homogeneous
orthotropic materials, K; (i, j=12,..6), are given as

_ v(2)E _ v(Z)E
Kyy(2) = BB k) UDE0w
1-vsoves 1-vsoves
K12(Z) = K31(7) = vps K11(7) = v5eK(2), 4)

K44(2) =0(Z)Gyy,, Kss5(Z) = 0(Z)Gps,,
Kes(Z) = 0(Z)Gosg,

The distributions of shear stresses within the FSTD are
given as (Ambartsumian 1964, Reddy 2004, Kumar et al.
2016, Mehri et al. 2016, Sofiyev 2016, Chen et al. 2017a)

o5 =1 45,0 &
and
df,(2)
e ACHAY (6)

where ¢,(S,0,t) and ¢,(S,6,t) are the rotations in the
fz and Sz surfaces, f;(z), (i=12) are shear
deformations functions, and varied as
fi(z)=f,(z)=sinh(z)—zcosh(1/2) (Timarci and
Soldatos 1995, Han and Chu 2014, Sofiyev 2016).

The relationships for strains at z distance from the
mid-surface of the non-homogeneous cones within the
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FSDT (Sofiyev 2016)
o W
£ > 82
e 2w zow
/ ’ s2a02 S oS
N LW 1w
Tos0 =% S as00, 52 06,
- _ - N0
o
Ji(2)—
1(2) e
+ 1,019
S 26,
10¢ 5¢2
z +J
1( )S 20, 2(z ) ]

where 6, =6siny , eg,ey, 7059 are mid-surface strains

and the linear relationship between mid-surface strains
and ( u,v,w) displacements is (YYang and Shen 2003)

ou 1ﬂ u weoty 1dau ov v
s s| ®

y——t
8'sag, S S 'Sag,

[es €s 7039]

and the functions associated with the transverse shear
stresses are expressed as

3, (2) = f[cosh(z) —cosh(0.5)]/ Ks(2)dz,
0

2 9)
J,(2) = [[cosh(z) - cosh(0.5)]/ K 44(2)dz
0

The forces and moments of inhomogeneous conical
shells can be found from the following integrals
(Ambartsumian 1964, Agamirov 1990, Timarci and
Soldatos 1995, Reddy 2004)

[TslTastnys,QeJ: h2 {05.09,0'59,0'52,0'92

d
MSvMﬁiMSG J ’ (10)

are forces and

—hi2\ 205,209,205y

where Tg,Ty,Tgy and Mg, My, Mgy
moments, and Qg and Q, are shear forces.

Airy stress function, ®(S,0,t), may be expressed as
(Ambartsumian 1964, Agamirov 1990)

(T, T,.Tsy)=h 10_®+1525_®_16(D 1o
SRR AREY) S (391 S a5 652 Sasaal SZ 691 (11)

By combining the Egs. (3), (7) and (10), one obtain
relations for forces, moments and strains, then substituting
the resulting relations together with expressions (11) into
dynamic stability and compatibility equations (Agamirov
1990, Sofiyev 2016), one can derive basic differential
equations governing equations depending on the
D, w, ¢, ¢, and they expressed as

Ly Lz Lz Ly||@®

Ly Ly Lys Log|lw -0

Lar Lsp Lsg Lol @ | (12)
31 La2 Lz Lag

Lir Laz Laz Las]|é:

where Ly (i, j =12,..4) are differential operators and more

details are given in the Appendix A.

The system of Egs. (12) is the dynamic stability and
compatibility equations of FG orthotropic cones within the
FSDT.

3. Solution of governing equations

The FG orthotropic truncated cone is assumed to be
freely supported at S=S; and S=S,. The boundary

conditions for the system of Egs. (12) are written in the
form (Ambartsumian 1964, Sofiyev 2015):

W=O, MS =0, ¢2 =0, a_q)z
1 (13)
as S=5; and S=S,
and the solution of system of Egs. (12) is assumed to be
D(S,0,t) = ¢ (t)S,6 VS sin(e,S) cos(,6,)
w(S,0,t) = w; (t)e” sin(e,S) cos(cr,6,)
$(5.0,1) = 4 (t)e” cos(eS) cos(ax,6))

,(S,0,1) =, (1)e” sin(e,S) cos(a,6,)

(14)

where ¢ (t), W, (t), ,(t), 4, (t) are time dependent unknown
functions, A is a parameter that will be found from the

minimizing the critical parameters, and

= S m S

S=In> oy =—2 g, =—" inwhich, S;=In>2
S, InS, siny S,

Here m is the half wave number in the axial direction and
n is the circumferential wave number.

With substituting of Eq. (14) into Eq. (12) and applying
Galerkin's method, after come simplifications, yields

Fp @y (1) — Fowy (1) + F13(/;1(t) + F1441;2 ®=0,

Fp1®@; (1) — FooWy () + Foafh (1) + Foudhr (1) =0,

Fa1®y () — FaoWy () + Fagfh (t) + Faudhp (1) = 0,

(15)
2
Fu® () +F, d (;’tvlz(t) —[Tg +T,4 cos(Tt)|Frwy (1)
+ Fyath (t) + Faqdhy (1) =0,
where  F;(i,j=12,..4) are parameters and more

information about them are listed in Appendix B.
If omitting @, (t), & (t), 4 (t) from the set of Egs.

(15), after some simplifications, the following differential
equation obtained as

WO 2 LT T cosru® =0 (16

are the static

SDT _ Ts SDT _ Ty
where Ty~ =—=— and Tg SOT
scr scr

SDT

and dynamic axial load factors, in which Ty~ is critical
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static axial load (in N/m) and wgpr (in 1/s) is natural

frequency for the FG orthotropic truncated cone within the
FSDT and are defined as

TSDT _ Vs —V¥»

scr - FT l//]_ (17)
and
Ospr = ViVs V>
Fv1 (18)
wherein
Y 2_[ S_Mj[u _m],%%_m,
U3 U3 U3 U3
F,.F F,.F F,,F
vy =Fp - 11 24’ _m 24—F22,U3—F23— 24 13’
F14 Fl4 14
(19)
_ _ F11F34 _ F12F34 _ _ F13F34
vy =Fy U5 = F, 06 = F33 !
F14 F14 F14
U7 — F4l_ F11F44 Vg = F12F44 ,Ug = F43 F13F44
F14 F14 F14
The dimensionless critical static axial load and

dimensionless natural frequency of FG orthotropic
truncated cones in the framework of the FSDT are defined
as

wor T SDT
Tieer = ISEL (20)
0S
and
- Vsza)/J

@ispr = Ospr Ry (21)

EOS
To obtain the minimum values of critical parameters
within the FSDT, Eqgs. (20) or (21) are minimized versus the
(m, n,) and parameter A . Magnitudes of dimensionless
frequency parameter and axial buckling load of freely-
supported FG orthotropic truncated conical shell using CST
and FSDT are found A=12and about1=2.1. For the
freely-supported cylindrical shells are obtainedat 2 =0.
Note that Eq. (16) is an equation of the Mathieu Hill
type. A periodic solution of this equation can be obtained
applying the method proposed by Bolotin (1964). The first-
order approximation to the solution with periodicity 2T can
be written as

w () =&y cos(%j +b, si n(%) (22)

where a;and b; are unknown parameters.

Substituting (22) into Eq. (16) and taking into account
that a, and b, are arbitrary functions, we obtain

{— % +40ky; (1—TSl - %leﬂal cos[%]

+ —r +4a)5DT 1—T51+5Td1 blsln ? :0

As a; #0 and b, =0, from Eq. (23), the formula for

the boundaries of main instability zones of FG orthotropic
truncated cones within the FSDT is obtained as

/ 1 :
FlstT =2w5p7,1-Ty +5le: (1=12) (24)

where T3°"(j=12)are the borders of main instability

zones based on the FSDT, sign (-) and (+) is used, as
j=1and 2, respectively, and the following definition

applies
_ 1-v2 .
FlstT _ 2ﬂerlstT {(Eﬂ (i=12) (25)
0s

By using Egs. (24) and (25) will be determined the
borders of main instability zones of FG orthotropic
truncated cones within the FSDT.

As neglecting the dynamic axial load factor from Eq.
(24), the expression for the point of origin of main
instability zones of inhomogeneous orthotropic cones
within the FSDT, in the special case.

As neglecting the shear stresses effects from Eq. (24),
the expressions for borders of main instability zones of
inhomogeneous orthotropic truncated conical shells within
the CST are obtained.

4. Numerical analysis

4.1 Comparative study

In Table 1, the magnitudes of T,7°"(j=12), with

various Ty, and circumferential wave numbers compared
with the results of Ng et al. (1998) for isotropic cylinders.
In the comparison v(Z) =1, Egs = Epy = Ey,

Vip=Vy =V, and y —0° R ~R,=R,L=L,, should
be taken into account in (24) and (25), as well as the shear

stresses were not considered. Here the radius of cylinder is
R and the length is L,. The static axial load factor is

T, =1/10, the computations parameters are considered
as, h=0.01m; R/h =100 L/h=200and E, =2.1x10"!Pa,

vo =0.3, p=8000kg/m>.
Comparisons show that the results are in harmony.

The magnitudes of @ =R\ 1-v{)p/E, for H
isotropic conical shell are compared with the results of Han
and Chu (2014), and Lam and Hua (1999) for different
L/R, and are given in Table 2. If the transverse shear
stresses are not considered and o(Z)=1
Eos =Egp =Ep, vsp =V =Vy considered in Eq. (21), as
well as the shear stresses were not considered, it is turn into
the expression for the homogeneous isotropic cones based

on the CST. The input parameters of the homogeneous
isotropic truncated conical shell are considered as,
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Table 1 Comparison of magnitudes of borders of main instability zones, T,5°"(j=1,2), for isotropic cylindrical shell

n=3 n=4
Ng et al. (1998) Present study Ng et al. (1998) Present study
T, o s 0 e 0 e e s
0 0.3862 0.3862 0.3945 0.3945 0.2572 0.2572 0.2621 0.2621
0.1 0.3859 0.3865 0.3934 0.3956 0.2566 0.2576 0.2614 0.2629
0.3 0.3855 0.3867 0.3923 0.3967 0.2561 0.2581 0.2607 0.2636
Table 2 Comparison of @, for homogenous isotropic conical shells for different L/R,
L/R,=05 L/R,=1

n Lam and Hua (1999) Present study Han and Chu (2014) Present study

3 0.7376 0.7507 0.4205 0.4369

4 0.6362 0.6470 0.3067 0.3088

5 0.5528 0.5606 0.2646 0.2579

6 0.4950 0.5002 0.2750 0.2647

7 0.4661 0.4695 0.3164 0.3102

8 0.4660 0.4682 - 0.3798

9 0.4916 0.4931 - 0.4660

v, =0.3,h/R, =0.01, y =30". As can be seen from Table
2, our results are in good agreement, as a rule, with the
results of Han and Chu (2014) and Lam and Hua (1999) for
different L/S,.

The magnitudes of @ =wyr (L2 /0)Jp/Ey, — TOr

cylindrical shells made of orthotropic materials using FSDT
and compared with the results of Timarci and Soldatos
(1995) (Table 3). The dimensionless frequency parameters
of cylindrical shells are presented for hyperbolic cosine
function of shear deformation functions as Timarci and
Soldatos (1995): ¢ (2) = ¢,(z) = hsinh(z)—zcosh(0.5) . In the
comparison, o(zZ)=1y —->0° R =R,=R and L=1L
should be taken into account in (18), the formula for @;gpr
of the homogenous orthotropic cylindrical shell are
obtained. The orthotropic material properties are taken to be
Eos / Eop = 25; Gosp / Egg = Gos; / Egp = 0.5; Gog, = 0.2Eqy;
v =025, p=1 and L;/h=100 . In Table 3, the
circumferential wave number corresponding to the
minimum values of the frequency parameters is given in
parentheses, in the present study. It is evident from the
Table 3 that very good agreement has been achieved.

Table 3 Comparison of @7 , for [0/90]S  cylinders made
of orthotropic material within the FSDT

R/L Timarci and Soldatos (1995) Present study
5 19.989 20.054(18)
10 16.492 16.534(28)
20 14.772 14.808(43)
50 13.825 13.859(71)

4.2 Influences of shear strains and material gradient
on the boundaries of main instability zones of orthotropic
conical shells

In this subsection, new computations were presented to
investigate the effects of shear strains and material gradient
on the boundaries of main instability zones using Egs. (23)
and (24). The material properties vary trough the thickness
direction with linear and quadratic functions, i.e.,

0(Z) =1+ 12" (k =1,2) , in which x is a material gradient
parameter, satisfying 0< 4 <1. Obviously, as the 4=0,

the FG orthotropic material becomes a homogeneous (H)
orthotropic material (Sofiyev 2014). In the all figures,
FG-linear and FG- quadratic functions are given as FG-L
and FG-Q. The truncated conical shells made of
boron/epoxy, in which material are considered as,

Eos = 2.069x10"'Pa, Ey, = 2.069x10'°Pa, G, = 6.9x10°Pa,
Gys, = 6.9x107Pa, Gy, =4.14x107Pa, v /vy = Egy / Egs,

vsy =0.3 and p =1950kg / m*(Reddy 2004).

The influences of material gradient and shear stresses on
the boundaries of main instability zones of orthotropic
conical shells for different R, /h are plotted in Fig. 2. The

geometry of orthotropic conical shells are considered as,
R, /L=5, y=30° and Ty =0.1T, =0,0.10.305
m=1 and n=3. The magnitudes of borders of main

instability areas for FG and H orthotropic cones diminish
considerable, as the R;/h increment, whereas, these

magnitudes decrease little, as Ty, increment.
If the magnitudes of T3°" and L°T(j=12) are

compared to each other, the difference between them reduce
from 40.7% to 11.7%, 39% to 10.97% and 42.57% to
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12.75%, when R, /h increment from 20 to 50, respectively.

The influences of material gradient on the magnitudes of
boundaries of main instability zones for FG-L and FG-Q
orthotropic cones based on the CST remain constant (4.2%)
and (7.2%), whereas, those based on the FSDT increment
from 1.85% to 3.3% and from 3.77% to 5.91%.

The effect of L/R;, on the magnitudes of borders of
main instability zones of FG and H orthotropic cones on the
basis of FSDT and CST for mode (1,4) are shown in Fig. 3.

The calculations data are considered as, y=30°,
R /h=25L/R =2, and T, =0.2. The magnitudes of
borders of main instability zones of truncated cones reduce,
as the L/R; increases from 0.3to 0.5. As the magnitudes
of borders of main instability zones for homogeneous, FG-L
and FG-Q orthotropic cones within the FSDT are compared
with those of CST, the influences of shear strains on the
borders of main instability zones diminish from 18.42% to
6.79%, 17.35% to 6.24% and 19.84% to 7.53%, when
L/R, varies between 0.3 and 0.5, respectively.

Ry/h 20 25 30
0.6 I, s e =S
FG-L =-s=cc  =mmeee  cemeee mmeees
2] c 2 N —
2a : bl
1 ol
i i
04 A ! P
L hl
i H
(AN} "
T, 03 Y |
i b
i 1
0.2 " i
" o
" R
" |"‘ "
0.1 ':,: H
i i
'
0.0 =
13 16 IS—SDT 21 23 26
rl_/ (j=12)
(a)
Ryh 20 25 30 40 50
0.6 1 H —_—
FG-L =--=+ ==+ == == -
FG-Q —--- i —— S—— e
BTl Bloe  flw R dELY G
T [ el g Rl M L I
0:4 9 Wl ] e t 2: A L 3 11 ix
ulf vl n i 1 i 1 Vi 11
" 2 " b I e (] Son i 3
T, o034u|!l ull ! " I Il 1 I
O I Y A | AT | I LT | BT
" " " nuoon (]
02 4 Il : Il i || s Il i nl
ny L o | 0 I @ ll " 1
] = [] =) " 5 " = " i
SR L R I
Lk o | . | I . I
1 e 1 : ' = 1 < ] s
0.0 —1L—11 L L1 L ’ —
15 18 21 24 27 30 33 36 39 42 45
T=CST
I‘lj (=12)
(b)

Fig. 2 Effect of non-homogeneity on the borders of
main instability areas of orthotropic conical on the
basis of (a) FSDT and (b) CST for different R, /h

The influences of FG-L and FG-Q compositional on the
magnitudes of borders of instability zones for orthotropic
truncated cones within the CST decrease from 4.14% to
3.73%, from 7.15% to 6.86%, while these influences within
the FSDT increase from 2.88% to 3.16% and from 5.29% to
6.04%, respectively. The effect of shear stresses appears to
reduce the effect of material gradient on the size of the
boundaries of the main unstable zones.

The effects of the half-hill angle, », on the magnitudes

of borders of main instability zones of FG and H orthotropic
shells for mode (1,2) are shown in Fig. 4. The calculations

data are, »=30° R,/h=30, L/R, =03 and
T4 =0.1. It is obvious that the magnitudes of borders of

main instability zones of truncated cones diminish very
little, as the half-hill angle, y, increases from 30°to 60°.

As the magnitudes of borders of main instability zones for
homogeneous, FG-L and FG-Q orthotropic cones within the
FSDT are compared with those of CST, the influences of
shear stresses on the boundaries of main instability zones
remain constant 13.47%, 12.6% and 14.6%, respectively,
when the half-hill angle, y, increases from30°to 60°.

0.5
45 6.5 8.5 10.5 12.5
=SDT
r]_/ (=1,2)
04 0.5
0.6 7 —
0.5 4 )
04 4 '"f[:
T
! s
Ty 031 4|l
Al
0.2 4 A
1" “
;I e
O l - " "
£ i
1| :
0.0 +—! ; ;
4.5 6.5 85 10.5 12.5 14.5 16.5
7=CST
rlj (=12)

(b)

Fig. 3 Influence of the material gradient on the
borders of main instability areas of orthotropic
conical shells within the (a) FSDT and (b) CST for
different L/R;
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The influences of FG-L and FG-Q orthotropic
compositions on the magnitudes of boundaries of main
instability zones for truncated cones within the CST
increase from 4.04% to 4.19%, from 7.09% to 7.19%, while
these influences within the FSDT increase from 3.08% to
3.22 % and from 5.65% to 5.73% respectively.

Fig. 5 depict the effects of the ratio, E,g/E,,, on the

L7 and T5°"(j=12) of H and FG orthotropic cones.

The cones data are, y=45° R, =25h, L=0.2R,;, and
(m,n)=(1,1). The axial static load factor is taken to be
T4 =0.1. The material properties are taken to be

EOS / Eog = 5,15, 25, GOS€ / Eog = GOSZ / Eog = 05, GO@Z /EOH = 06,

vey =0.25 and p=1950kg/m?. It is obvious that the

magnitudes of borders of main instability zones of truncated
cones diminish with increasing of Eyg /E,, from5to 25.

The sizes of main instability zones diminish, while the
influences of material gradient on the magnitudes of borders
of main instability zones nearly remain constant, when
Eos /Epy increases.
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Fig. 4 Influence of the material gradient on the
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Fig. 5 Influence of material gradient on the borders
of main instability areas of orthotropic conical shells
within FSDT and CST for different orthotropy ratio,
EOS /EOH

As can be seen that the influences of shear strains on the
boundaries of main instability zones for H, FG-L and FG-Q
orthotropic cones increase from 15.057% to 41.73%, from
14.14% to 40.25% and from 16.28% to 43.64%,
respectively, when Egg/Eg, varies between 5and 25. It is

shown that the influences of FG-L and FG-Q orthotropic
profiles on the magnitudes of boundaries of main instability
zones for truncated cones within the CST vary between
4.21% and 4.25%, 7.21% and 7.31%, while these influences
within the FSDT decrease from 3.19% to 1.82 % and from
5.66% to 3.71%, respectively.

5. Conclusions

The dynamic instability of truncated conical shells
subjected to dynamic axial load within the FSDT is
examined. The conical shell is made from FG and
orthotropic material. In the formulation of problem a
dynamic version of Donnell's shell theory is used. The
equations are converted to a Mathieu-Hill type differential

equation employing Galerkin's method. The boundaries of

main instability zones are found by using Bolotin method.

To verify these results, the results of other studies in the

literature were compared.

The numerical  results
conclusions:

a) The influences of material gradient on the magnitudes
of boundaries of main instability zones for FG-L and
FG-Q orthotropic cones based on the CST remain
constant, whereas, those based on the FSDT increases,
as R;/h increment.

b) The effect of shear stresses appears to reduce the effect
of material gradient on the size of the boundaries of
main unstable zones.

support the following
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¢) The influences of shear strains on the borders of main
instability zones for FG-L and FG-Q orthotropic cones
diminish, when L/R; varies between 0.3 and 0.5.

d) The influences of shear stresses on the boundaries of
main instability zones for FG-L and FG-Q orthotropic
cones remain constant when the half-hill angle, »,

increases from 30°to 60°.

e) The influences of shear strains on the boundaries of
main instability zones for FG-L and FG-Q orthotropic
cones increase, when Egg/Ey, varies between 5and

25.
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Appendix A

where Ly (i, j=12,...4) are differential operators and are
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Appendix B

The set of Egs. (15) contains the following coefficients
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