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1. Introduction 

 

Multi-component members are made by combining and 

interconnecting different structural elements to achieve a 

greater structural performance than the one exhibited by the 

combined contribution of the structural elements considered 

in isolation, e.g. built-up cold-formed members or members 

combining cold-formed thin-walled sections with concrete 

components. The multi-component response is highly 

dependent on the interface connection properties specified 

between adjacent components (i.e. ,  partial shear 

interaction). The first model describing the partial 

interaction behaviour was proposed by Newmark et al. 

(1951) for a two-layered composite steel-concrete beam. 

Since then, the model has been extended in the field of 

composite construction accounting for material and 

geometric non-linearities (e.g., Nguyen et al. 2014, Su et al. 

2015, Li et al. 2016, Liu et al. 2016), concrete time effects 

(e.g., Al-Deen et al. 2015), shear-lag of the slab (e.g. Dezi 

et al. 2003, 2006), shear deformability of the steel and 

concrete components (e.g., Chackrabarti et al. 2012, Gara et 

al. 2014, Nguyen et al. 2014) and transverse partial 

interaction (e.g., Adekola 1968). When dealing with thin-

walled members, different approaches have been proposed 

to predict their response, such as the Finite Strip Method 

(FSM) (e.g., Á dány and Shafer 2006, Eccher et al. 2008,  
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Vrcelj and Bradford 2008), perturbation approaches (e.g., 

Luongo 2001) and the Generalised Beam Theory (GBT). 

The latter was first introduced by Schardt (e.g., Schardt 

1989), while a significant contribution to this method of 

analysis was provided by Camotim and co-workers (e.g., 

Silvestre and Camotim 2002, Gonçalves et al. 2010). Its use 

was also applied to obtain reduced models in the buckling 

analysis performed within the FSM and finite element (FE) 

approaches (e.g., Á dány and Shafer 2008, Casafront and 

Marimon 2009). With the GBT model, the displacement 

field is assumed to be described by a linear combination of 

pre-determined (known) cross-section deformation fields 

(referred to as “modes”), depending on the only cross-

section curvilinear abscissa, and unknown intensity 

functions (referred to as “amplitudes”), which are only 

relied to beam abscissa. In this way, the three-dimensional 

continuum problem is reduced to a simpler one-dimensional 

vector-valued one, where the amplitude functions are the 

only problem unknowns. The GBT approach requires two 

steps. In the first step a cross-section analysis is performed 

and is used to identify a set of deformation modes. The 

second step determines the member behaviour (member 

analysis) by solving a reduced equivalent 1-D problem and 

determining the intensity functions.  

A composite beam considering thin-walled members 

coupled with concrete slabs within the framework of the 

GBT was presented by Camotim and co-workers (Silva et 

al. 2006, Gonçalves and Camotim 2010). In this work, the 

partial interaction behaviour was introduced in the 

longitudinal direction of the member by introducing 

appropriate deformation modes to account for the 
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longitudinal slip. This model was further extended to 

account for the material nonlinearity and buckling in 

(Henriques et al. 2015) and (Henriques et al. 2016), 

respectively. A different approach was recently proposed in 

references (Taig and Ranzi 2015, Taig et al. 2015a) to 

include the longitudinal partial interaction for two-layered 

composite members and extended in reference (Taig and 

Ranzi 2016) to account, for the first time within the GBT 

procedure, for both transverse and longitudinal partial 

interaction.  

In this context, this paper presents a new partial 

interaction model for the first-order (linear elastic) analysis 

of multi-component members formed by thin-walled and 

concrete sections developed using the dynamic GBT cross-

section approach (e.g., Ranzi and Luongo 2011, Piccardo et 

al. 2014). The main contribution of this work is related to 

the development of the procedure for the GBT cross-section 

analysis used to determine the set of conventional, 

extensional and shear modes. These are used within the 

GBT framework to account for both transverse and 

longitudinal interaction of multi-component members. 

Uniformly distributed deformable elastic springs are used to 

describe the flexibility of the interface connections. The 

proposed approach is then validated using the numerical 

results determined with a refined finite element model 

developed in ABAQUS/Standard (Dassault Systèmes 

Simulia 2008) as reference. 

 

 

2. GBT approach for multi-components 
 

2.1 Basis of the approach 
 

A multi-component thin-walled member, with length L, 

is assumed to be prismatic and formed by N components. In 

its undeformed configuration, the beam occupies the 

prismatic volume V=A×[0,L] generated by translating its 

cross-section A, with regular boundary ∂A, along a straight 

line perpendicular to the cross-section and parallel to the Z-

axis of the orthonormal reference system {O;X,Y,Z}. 

Without any loss of generality, each component (depicted 

by an area Ai with i=1,...,N) is described by a set of thin flat 

plates. The proposed approach is applicable to cross-

sections that are open, closed or partially-closed. 

The displacement field of a generic point P lying on the 

plate mid-surface S can be described as 

( , ) ( , ) ( , ) ( , )s z u s z v s z w s z  u i j k  (1) 

where u(s,z), v(s,z) and w(s,z) are the components of the 

displacement as shown in Fig. 1, i, j and k are unit vectors, z 

and s are the member coordinate and the curvilinear 

abscissa. By making use of the GBT formulation, Eq. (1) 

can be rewritten as follows 
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where subscript k specifies the deformation mode, Uk(s) and 

Vk(s) depict the displacement components in the tangential 

and transverse directions, Ωk(s) describe the longitudinal 

displacements, φk(z) represent the unknown amplitude 

function associated with the k-th mode, Wj(s) is the j-th 

shear mode, whose unknown amplitude function is depicted 

as ψj(z). Using Kirchhoff plate theory and considering the 

modes introduced in Eq. (2), the displacement field d(s,y,z) 

is written as follows 
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The corresponding infinitesimal strain field 

( ) ( ) ( ) ( ) ( ) ( )     
T

M M M F F F

s z sz s z sz        ε can be obtained 

from the kinematic strain-displacement relations. With the 

adopted notation 𝑀 represents the membrane strains and F 

the flexural ones. The materials considered are isotropic and 

linear elastic. The constitutive representation for the α-th 

material (α=1,…,Nm, being Nm the total number of material 

composing the multi-composed cross-section) can be 

expressed as 

 Eζ ε  (4) 

where σα represents the stress field acting on the α-th 

material and Eα represents its elastic matrix.  

Eq. (4) can be re-written as follows in terms of the 

adopted displacement field 
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(5) 

in which Eα is the elastic modulus, Gα represents the shear 

modulus and να is Poisson's ratio.  

 

 

Fig. 1 Displacement field. 
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2.2 Partial interaction 
 

The composite action is introduced using NSC shear 

connections placed along rectilinear lines Λn (with n=1,..., 

NSC) at the interface between the N components, similarly to 

what was recently proposed for composite two-layered thin-

walled beams in references (Taig and Ranzi 2015, 2016, 

Taig et al. 2015a) (Fig. 2(a)). The shear connections are 

assumed to allow relative displacement between adjoining 

elements in both longitudinal (i.e., along the z coordinate) 

and transverse (i.e., along the s coordinate) directions, while 

separation of the adjacent elements is prevented. For the n-

th shear connection, the domain of Λn that connects the i-th 

and j-th components of the cross-section is identified by the 

set of points  z,y,s )i(
n

)i(
n  and  z,y,s )j(

n
)j(

n  (Fig. 2(b)). 

The variables 
( )i

ns  and 
( )j

ns  define the location of the n-

th shear connection along the mid-line C of the i-th and j-th 

components, while the variables 
( )i

ny  and 
( )j

ny  describe 

the perpendicular distance from the mid-surface S to the 

interface for the i-th and j-th elements, respectively (Fig. 

2(b)). The longitudinal slip 
( ) ( )n

L z  and the transverse 

slip 
( ) ( )n

T z  can be determined for the n-th shear 

connection as (Fig. 2(c)) 
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where  ( ) ( ), ,k k

s n nd s y z  and  ( ) ( ), ,k k

z n nd s y z  depict 

the transverse and longitudinal slips calculated at the n-th 

connection interface extreme fibre of the generic k-th 

component. Eq. (6) can be expressed in the GBT context as 

a function of the deformation modes as follows 
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The composite action is provided by the presence of 

uniformly distributed linear elastic springs where the 

behaviour of the n-th shear connection is expressed as 
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(10) 

in which vector fn collects both the transverse and 

longitudinal forces per unit length induced in the spring, 

i.e., 
( )n

Tf  and 
( )n

Lf , while 
( )n

Tk  and 
( )n

Lk are the 

transverse and longitudinal shear connection rigidities, 

respectively. 
 

 

 
(a) Cross-section with shear connectors 

 
(b) Location of the shear connection 

 
(c) Longitudinal and transverse slips 

Fig. 2 Interface connection details 
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2.3 Member analysis 
 

The weak form of the problem is derived by means of 

the principle of virtual work 

1 1 1

ˆ ˆˆ    
m cs mN N N

T T T

n n

nV L V

dV dz dS

 
    

     ε σ δ f u p  (11) 

where the surface loads are collected in 

( , ) ( , ) ( , ) ( , )s y zs z p s z p s z p s z  p i j k , the hat ^ 

denotes a virtual quantity, Vα and ∂Vα describe the volume 

and the surface area of the α-th material. From the assumed 

displacement fields and constitutive models described 

above, the weak form can be expressed in compact form as 

follows 

      dz    ˆdz     ˆ
T

L

T

L

qdBAddA  B  (12) 

where B is the stiffness matrix, d = [φ; ψ], q is the loading 

vector, and A and B represent differential operators. All 

terms are defined in Appendix.  

Eq. (12) is solved using the finite element method by 

approximating the generalised displacements d with 

polynomial shape functions, i.e.,  e e

dd N d where the 

shape functions are specified in matrix e

dN  with 

dimensions of (K+J)(4K+3J) and e
d  is the generalised 

nodal displacements (4K+3J) vector. Cubic (Hermitian) 

polynomial and parabolic (Lagrangian) polynomials are 

adopted as shape functions for φ and ψ, respectively. The 

finite element representation can then be rewritten in 

compact form as follows 

e e eK d p  (13) 

where the stiffness matrix K
e
 and the load vector p

e
 are 

defined as 

   
T

e e e

d d

L

dz K BAN AN  (14) 

 

 
T

e e

d

L

dz p BN q  (15) 

The first-order (linear elastic) analysis is then carried out 

based on the finite element method, e.g., (Bathe 2006, 

Ranzi and Gilbert 2015). 

 

 

3. Cross-section analysis 
 

This section presents the procedure to evaluate the basis 

of GBT deformation modes (i.e., conventional, extensional 

and shear modes) suitable to describe the partial interaction 

behaviour of multi-component members. In particular, the 

conventional modes are derived from Vlasov’s theory 

(Vlasov 1961) based on the conditions of membrane 

unshearability and (transverse) inextensibility. In the case of 

closed loops, the former condition is replaced by Bredt’s 

hypothesis. As a consequence, conventional planar modes 

may be supplied with linear warping distributions with 

discontinuities at shear connection locations. Extensional 

modes are associated to non-nil in-plane elongation of the 

cross-section elements and nil warping. The shear modes 

are depicted by nil in-plane deformation and non-nil 

warping distributions.  

The determination of the conventional, extensional and 

shear modes is carried out by solving two eigenproblems 

following the procedure of the (dynamic) GBT-D approach 

previously proposed by the authors for the identification of 

the conventional, extensional and shear modes, e.g. (Ranzi 

and Luongo 2011, Piccardo et al. 2014, Taig et al. 2015b). 

In particular, one eigenvalue problem is used for the 

identification of the planar deformations modes associated 

with the conventional and extensional modes. For ease of 

reference, this is referred to as planar eigenvalue problem 

(PEP) and is described in Section 3.1. A second 

eigenproblem is required for the characterization of the 

warping components associated with the shear modes, 

denoted as the warping eigenvalue problem (WEP). The 

WEP is outlined in Section 3.2. The warping components of 

the conventional modes are determined by post-processing 

the results of the PEP solution. No additional calculations 

are required for the extensional or shear modes because 

they do not possess warping or in-plane deformations, 

respectively, in their modes based on the representation 

adopted in this paper.  

With this approach, the multi-component cross-section 

is represented by a frame unconstrained in its plane and 

discretized using the finite element method as shown, for 

illustrative purposes, in Fig. 3 reconsidering the cross-

section of Fig. 1.  

 

3.1 Planar eigenvalue problem (PEP) 

 
The PEP relies on the use of a planar extensible frame 

for the representation of the cross-section (Fig. 3). The 

numerical calculation of the dynamic modes of the frame is 

performed by means of the finite element method, e.g. 

(Bathe 2006, Ranzi and Gilbert 2015). In the spirit of the 

GBT-D, the frame’s dynamic modes correspond to the 

modes sought for the GBT basis. 

 

 

 

Fig. 3 Example of finite element discretization 

presented by considering the multi-component cross-

sections illustrated in Fig. 1 
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In the numerical implementation, the cross-section of 

the multi-component is discretised using one-dimensional 

finite elements. In this study, three finite elements are 

considered for the PEP to evaluate the possible implications 

of adopting different approximations for the model 

generalized displacements and how these influence the 

GBT numerical description. The three finite elements are 

referred to in the following as: (i) FE1 (Fig. 4(a)) which 

depicts a 6 DOF finite element with linear (Lagrangian) and 

cubic (Hermitian) polynomial shape functions describing 

the axial and transverse displacement, respectively; (ii) FE2 

(Fig. 4(b)) that represents a 7 DOF finite element with 

parabolic (Lagrangian) and cubic (Hermitian) shape 

functions; and (iii) FE3 (Fig. 4(c)) that depicts a 11 DOF 

finite element with quartic (Lagrangian) and quintic 

(Hermitian) polynomials approximating the axial and 

transverse displacement, respectively. Assembling the 

contribution of each element, the problem can be expressed 

as an algebraic eigenvalue problem 

 P P P K M 0q  (16) 

where λ and qP are the eigenpair, while KP is the frame 

stiffness matrix and MP represents its mass matrix. 

Linear elastic springs with negligible mass are specified 

at the location of the shear connections to account for the 

flexibility present in the transverse direction between 

adjacent components. This is carried out using the spring 

finite element depicted in Fig. 4(a) whose stiffness matrix 
( )n

PK  is 

( ) ( )

0 0 0 0 0 0

1 0 0 1 0

0 0 0 0

0 0 0

sym 1 0
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K

 

(17) 

 

 

Separation or penetration between adjacent components 

at their interface is prevented by enforcing an internal axial 

restraint to the 6 DOF link element representing the shear 

connection, therefore ensuring that the element remains 

inextensible along its length. In local coordinates, this can 

be written for the n-th link element (with end nodes i and j) 

by requiring its elongation to be zero (Fig 4(a)) 

( ) ( ) 0j i

n nu u   (18) 

A further internal constraint, to satisfy the in-plane 

rotation’s compatibility, is applied to the rotations at the link 

element ends as follows (Fig. 4(a)) 

( ) ( ) 0j i

n n    (19) 

The 2NSC constraint conditions specified in Eqs. (18) 

and (19) are re-written in global coordinates in the 

following form 

  PM

P M S

PS

 
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A A A 0

q
q

q
 (20a) 

where the Ndof nodal (global) displacements qP are 

partitioned into 2NSC slave displacements collected in qPS 

and the K (= Ndof - 2NSC) master displacements qPM as 

follows 

1
;

PM

P PM

PS S M



   
     

   

I
R R

A A

q
q q

q
 (20b,c) 

The eigenvalue problem of Eq. (16) can then be 

rewritten considering the above internal constraints as 

 PR PR PM K M 0q  (21) 

in which the reduced order (KK) stiffness KPR and mass 

  
(a) Finite Element FE1 (b) Finite Element FE2 

 
(c) Finite Element FE3 

Fig. 4 Nodal (local) degree of freedoms of finite elements used in the cross-section analysis 
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MPR matrices are defined as 

;T T

PR P PR P K R K R M R M R  (22a,b) 

Eigenvectors qP (obtained from qPM using Eq. (20b)) 

contain the nodal displacements that define the in-plane 

deformation modes and that provide a mixed description of 

the conventional and extensional modes. Since the frame is 

unconstrained, the stiffness matrix KP is positive semi-

definite and Eq. (21) admits a triple nil eigenvalue 

representing rigid planar motions of the frame. They can be 

conveniently chosen as the two rigid translation along the 

principal inertia axis and a rotation with respect to the shear 

centre.  

To obtain the set of modes commonly used in the GBT 

approach, the in-plane modes are now subdivided into those 

that are inextensible (i.e., conventional modes) and those 

that are free to extend (i.e., extensional modes). This 

procedure will produce NC conventional modes and NE (=K-

NC) extensional modes and is implemented by performing a 

change of base to the set of deformation modes after 

removing the three rigid modes, i.e., QP
*
=[qP4, qP5,…. qPK]

 

by solving the following eigenproblem 

  C D 0u  (23) 

where μ and u depict an eigenpair, matrices C and D have 

dimensions (K-3)(K-3) and are defined in Appendix. In 

particular, C accounts for the axial deformations of the plate 

elements and D considers their flexural deformations.  

Eq. (23) admits NCD (=NC-3) zero eigenvalues that 

represent the conventional (planar inextensible) modes (i.e. 

the conventional modes without the 3 in-plane rigid modes).  

The remaining NE (=K-NC) non-zero eigenvalues depict 

the extensional modes. By collecting the eigenvectors ui 

corresponding to the zero eigenvalues (i.e., i=1,…,NCD) in 

the transformation matrix 
*

1 2, ,...,
CDCD N

   T u u u  and 

the remaining ones ue corresponding to non-zero 

eigenvalues (i.e., i=NCD+1,…,K-3) in the transformation 

matrix 
*

1 3,..., ,...,
CDE N i K 

   T u u u , the conventional 

and extensional modes can be separated through the 

following linear transformations 

* *

*

* *

T T

TCD CD

PT T

E E

   
   

   

Q T
Q

Q T
 (24) 

where 
*

CDQ  and 
*

EQ  are the modal matrices, whose 

columns represent the conventional (without the rigid 

modes) and extensional planar modes, respectively. 

Although this set of modes could already be used in the 

member analysis, a further post-processing is performed to 

ensure that all identified modes reflect the response of the 

entire cross-section, rather than just displacements of 

localised parts of it. This latter change of basis is performed 

by solving the following eigenproblem 

 * *

1

T

CD CD  T DT I 0v  (25) 

from which the following transformation matrix TCD  is 

obtained 

1 2, ,...,
CDCD N

   T v v v  (26) 

Similarly, the basis of the extensional modes is revised 

by solving the eigenproblem 

 * *

2

T

E E  T CT I 0w  (27) 

from which the transformation matrix TE may be obtained 

1 2, ,...,
EE N

   T w w w  (28) 

The final sets of conventional (without the rigid modes) 

and extensional modes, in terms of nodal values, can be 

then evaluated based on the following linear 

transformations 

* *;T T T T T T

CD CD CD E E E Q T Q Q T Q  (29a,b) 

The complete set of conventional (planar inextensible) 

modes is then composed by the three rigid-body modes 

(removed at the beginning of this procedure) and the modes 

provided by QCD, i.e. QC=[qP1,qP2,qP3,QCD].  

The procedure to evaluate the out-of-plane components 

associated with each conventional mode is described below 

based on Vlasov theory. This is carried out by enforcing (i) 

tangential inextensibility (already satisfied by the set QC 

previously derived), (ii-a) nil membrane shear strain and/or 

(ii-b) piecewise constant membrane shear strain, enforced 

by post-processing the in-plane deformation modes as 

usually carried out in the dynamic GBT approaches, e.g., 

(Taig and Ranzi 2016). With this approach and as a 

consequence of Vlasov theory, the unknown warping 

profiles are assumed to vary linearly within each element 

and their unknown distribution is conveniently described in 

terms of unknown nodal values. In particular, the warping at 

the i-th node of the cross-section considering the k-th 

deformation mode is denoted as 
( )i

k . For each closed 

loop present in the cross-section, an additional unknown 

representing the tangential shear flow is introduced. The 

shear flow associated with the l-th loop is referred to as 
( )l

kQ  for the k-th mode.  

Conventional warping distributions are obtained by 

applying the following equation to each finite element used 

in the cross-sectional discretisation 

 ( ) ( ) ( ) ( )1 j i e l

e k k k k

le

G t U Q
b



 
     

 
  (30) 

where the e-th finite element has length be, thickness te and 

shear modulus Gα, 
( )i

k  and 
( )j

k  describe the value at 

the first node 𝑖 (i.e., at s=0) and the value at the second 

node j (i.e., at s=be), respectively, and 
( )e

kU  depicts the 

element constant axial deformation. For plate elements part 

of open sections or branches, the shear flow is nil and right-

hand side of Eq. (30) becomes zero, therefore simplifying to 
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 ( ) ( ) ( )1
0j i e

k k k

e

U
b

     (31) 

For elements describing the shear connection 

components, the following condition is applied 

( ) ( ) ( )n n l

L k k

l

k Q    (32) 

where 
( )n

k  (Eq. (9a)) can be re-written as 

( ) ( ) ( ) ( )n j i n

k k k n kh U     (33) 

in which  ( ) ( )j i

n n nh y y   represents the length of the n-

th link element as shown in Fig. 2(b). For link elements 

included in open sections and branches, Eq. (32) can be 

simplified to 

( ) 0n

k   (34) 

The remaining unknown warping displacement 

represents a uniform extension and is conveniently chosen 

so that the k-th warping distribution is orthogonal to the 

extension. This can be achieved by requiring that the k-th 

warping mode has nil average 

( ) 0k

C

s ds   (35) 

 

3.2 Warping eigenvalue problem (WEP) 
 

The warping eigenvalue problem is performed to a 

frame representing the cross-section able to deform only in 

the out-of-plane direction. In this case, the eigenproblem is 

denoted as WEP and the sought GBT (shear) modes are 

defined by the dynamic modes of the frame. The dynamic 

analysis is carried out by means of the finite element 

method (Fig. 3) by considering the following three finite 

element representations: (i) FE1 (Fig. 4(a)) represents a 2 

DOF finite element with linear (Lagrangian) polynomial 

shape functions, (ii) FE2 (Fig. 4(b)) depicts a 3 DOF finite 

element with parabolic (Lagrangian) shape functions, and 

(iii) FE3 (Fig. 4(c)) denotes a 5 DOF finite element with 

quartic (Lagrangian) polynomial interpolating functions.  

The algebraic eigenvalue problem related to the entire 

cross-section can then be written as 

 W W W K M 0q  (36) 

where KW is the section stiffness matrix, MW represents its 

mass matrix, qW is the out-of-plane displacement vector and 

λ is the squared natural frequency of vibration.  

The partial interaction response exhibited in the 

longitudinal direction for the shear connection is included 

by means of a 2 DOF spring element (Fig. 4(a)) with 

negligible mass. This element is used to connect the 

different components forming the cross-section and its 

degrees of freedom include the out-of-plane displacements 

at the shear connection interface. For the n-th link element, 

the stiffness matrix can be written as 

( ) ( )
1 1

1 1

n n

W LK k
 

  
 

 (37) 

where 
( )n

Lk  is the longitudinal shear connection rigidity of 

the n-th shear connector. The eigenvectors obtained from 

Eq. (36) define the nodal displacements of the J shear 

modes. 

 

 

4. Application 
 

The proposed GBT formulation is validated in this 

section by considering a composite steel-concrete beam 

subjected to an eccentric load. For this purpose, a composite 

member reported in reference (Hanaor 2000) is used as a 

case study. Its length is equal to 5m and its concrete slab 

has a thickness of 50 mm. The steel components consist of 

two Z cold formed steel profiles and a bottom flat steel 

plate, as shown in Fig. 5. All steel elements have thickness 

of 2 mm. The elastic modulus of the steel is 200 GPa and 

the one for the concrete is 35 GPa. Poisson’s ratio of 0.3 

and 0.2 are specified for the steel and concrete, respectively. 

The member is taken as simply-supported and is free to 

warp at the end supports, while it is restrained from warping 

at mid-span. A uniform pressure of 5 kPa is applied to the 

concrete slab as shown in Fig. 5(a). Three levels of shear 

connection rigidities have been considered and expressed in 

terms of dimensionless parameters αLL and αTL (referred to 

the longitudinal and transverse shear connection, 

respectively), commonly used for two-layered composite 

beams, e.g., (Taig and Ranzi 2015, 2016). In particular, 

αLL= αTL=1 depict a weak shear connection stiffness, while 

αLL= αTL=5 and αLL= αTL=20 denote a medium and a stiff 

shear connection rigidity, respectively.  

The conventional, extensional and shear modes for the 

cross-section of Fig. 5(a) are obtained with the proposed 

procedure. Representative subsets of these modes have been 

presented for illustrative purposes in Figs. 6-8 by 

considering the first 6 modes of each set of modes. The 

plotted modes have been obtained with a medium shear 

connection rigidity (i.e., αLL= αTL=5) using FE3 finite 

elements for both PEP and WEP.  

The conventional modes are outlined in Fig. 6. The first 

three modes consist of the in-plane rigid modes followed by 

the mixed in-plane translational-flexural modes. These 

modes do not exhibit axial elongations of the elements 

composing the cross-section. The partial interaction is 

described in these modes by the presence of transverse and 

longitudinal slips represented by deformations modes 
( ) ( ),n n

k kV   introduced in Eqs. (8) and (9(a)), respectively. 

Fig. 7 presents the representative extensional modes that 

are represented in terms of both in-plane displacements (uv) 

and tangential displacements u. Due to the presence of the 

closed loops, these modes are described not only by 

extension and/or shortening of the elements forming the 

cross-sections but are coupled with flexural deformations, 

as well depicted, for example, for modes E1, E3 and E4.  
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(a) built-up cross-section 

 
(b) geometry of the Z-section 

Fig. 5 Partially-closed composite steel-concrete member (Hanaor 2000). All dimension are in mm 

 

 

 

 
Continued- 
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The extensional modes do exhibit deformations 

associated with the partial interaction. The representative 

shear modes are illustrated in Fig. 8. In particular mode S1 

represents the case of uniform extension, while the other 

shear modes describe warping fields that might include 

partial interaction effects as defined by 
( )n

kW  of Eq. (9(b)). 

In these figures, the normalised longitudinal and 

transverse slips are presented for each mode and are 

expressed dividing the absolute slip value by the maximum 

value of either the warping (for the longitudinal slip) or the 

in–plane displacement (for the transverse slip) as follows 

     j

)n(
j)n(

j
k

)n(
k)n(

k
kk

)n(
k)n(

k
W

W
W
~

;
~

;
V,U

V
V
~

maxmaxmax





  (38a,b,c) 

A shell element model developed in ABAQUS/Standard 

(Dassault Systèmes Simulia 2008) is been used to validate 

the results calculated with the proposed GBT procedure. 

Representative comparisons are plotted in Fig. 9 

considering the case of αLL= αTL=1 in the implementation  

 

 

 

 

and solution of the PEP and WEP. All variables have been 

plotted at the member coordinate in which they reach their 

maximum values. This occurs at mid-span (i.e., z=L/2) for 

the in-plane displacements (uv), tangential and normal 

membrane and flexural stresses (i.e., 
( ) ( ) ( ) ( ), , ,M M F F

s z s z    ), while warping displacements w 

and shear stress components (i.e., 
( ) ( ),M F

sz sz  ) reach their 

maximum at the end sections (i.e., z=0,L). For clarity, the 

plotted variables have been suitably scaled and the 

maximum (absolute) value of each stress component has 

been specified.  

The results determined using different levels of shear 

connection rigidities have been used in Fig. 10. When 

considering weak shear connection (i.e., αLL= αTL=1), there 

is a negligible interaction taking place between the 

components forming the cross-section. This is shown, for 

example, by the two stiffer Z sections taking most of the 

load, as highlighted by the distributions of the membrane 

stresses 
( )M

z and membrane shear stresses 
( )M

sz . 

 

 

Fig. 6 Partially-closed composite steel-concrete member: conventional modes 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Partially-closed composite steel-concrete member: extensional modes 
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For medium shear connection rigidities (i.e., αLL= 

αTL=5), the four components start to act compositely, and 

the multi-component member behave as a partially closed 

cross-section. In this case, the stress distributions, e.g., 

membrane stress 
( )M

z  and the membrane shear stress 

( )M

sz , are resisted over the entire cross-section, therefore 

depicting how the different components are working 

together. The case of αLL= αTL=20 shows a stiffer response 

as expected and a higher interaction between the 

components forming the cross-section. In all cases, the GBT  

 

 

 

results well match the values calculated with the ABAQUS 

model.  

Comparisons between the values calculated using 

different finite elements (i.e., FE1, FE2 and FE3 in Fig. 4) in 

the GBT cross-section analysis are presented in Fig. 11 and 

are presented considering the results obtained with the FE3 

finite element (Fig. 4(c)) for reference in the following. The 

variations in displacements are negligible as the calculated 

in-plane and out-of-plane displacements (i.e., u, v and w) 

produce maximum errors within 0.05% for both the FE1 

(Fig. 4(a)) and FE2 (Fig. 4(b)), respectively. 

   

   

Fig. 8 Partially-closed composite steel-concrete member: shear modes 

 

 

 

 

 

Fig. 9 Partially-closed composite steel-concrete member: displacements and stress fields with weak shear connection 

(αLL = 𝛼TL =1) 
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Similar considerations can be made for the flexural 

s t r e s s e s ,  i . e . ,  
( ) ( ) ( ), ,F F F

s z sz    a n d  m e m b r a n e 

longitudinal stress, i.e., 
( )F

z , with maximum errors 

calculated using FE1 and FE2 within 1.5% and 0.01%, 

respectively. Different results are obtained when 

considering the membrane transverse stress 
( )M

s  (that 

depends on Uk,s, Ωk and Wj as outlined in Eq. (5)) and the 

shear stress 
( )M

sz  (that depends on Uk, Ωk,s and Wj,s as 

shown in Eq. (5)). These results are influenced by the orders 

 

 

 

 

of polynomials adopted in the cross-section analysis. In 

particular, when using the FE1 finite elements, 

discontinuities are observed between adjacent finite 

elements as illustrated in Fig. 11. 

These are produced by the fact that the cross-section 

modes Uk, Ωk and Wj contribute with different order 

polynomials to the evaluations of 
( )M

s and 
( )M

sz , and 

therefore lead to a locking problem. This aspect can be 

avoided by modifying the order of the finite element 

polynomials adopted in the GBT cross-section analysis to 

ensure a consistent set of generalised displacements. This 

 

 

 

 

 

Fig. 10 Partially-closed composite steel-concrete member: displacements and stress fields for different levels of shear 

connection stiffness 

 

 

Fig. 11 Partially-closed composite steel-concrete member: comparison of stress fields 
( )M

s  and 
( )M

sz  for 

different types of finite elements 

635



 

Alberto Ferrarotti, Gianluca Ranzi,, Gerard Taig and Giuseppe Piccardo 

can be achieved, for example, by adopting parabolic shape 

functions (as carried out for element FE2 – Fig. 4(b)) 

instead of linear ones (for element FE1 – Fig. 4(a)) in the 

finite elements used for the determination of Uk, Ωk and Wj. 

In doing so, the results calculated with the FE2 finite 

elements match those obtained with the reference solution, 

with maximum differences within 0.5%. 

 

 

5. Conclusions 
 

This paper presented a new approach for the first-order 

(linear elastic) multi-component partial interaction analysis. 

The particularity of this procedure is to identify a suitable 

set of deformation modes capable of describing both 

longitudinal and transverse partial interactions taking place 

at the interface plane between the adjacent components 

while accounting for the cross-sectional deformability. The 

deformation modes are described by the eigenmodes 

determined by solving a planar and a warping eigenvalue 

problem of a planar frame that represents the cross-section. 

The partial interaction has been introduced in the GBT 

cross-section step by specifying deformable spring finite 

elements at the shear connection location. The proposed 

approach has been validated against the numerical values 

obtained by means of a shell finite element model 

developed in ABAQUS/Standard by considering a case 

study of a multi-component member subjected to an 

eccentric load. For illustrative purposes, representative 

results have been presented to highlight the ease of use of 

the proposed methodology and to show how the structural 

response is influenced by different rigidities of the interface 

shear connection. The importance of selecting a consistent 

set of polynomials for the finite element representation 

specified for the GBT cross-section analysis has also been 

discussed. Locking problems have been shown to occur 

when this consistency is not satisfied.  

 

 

Acknowledgements 
 

The work in this article was supported by the Australian 

Research Council through its Future Fellowship scheme 

(FT140100130) and by Material & Structures Research 

Cluster of the University of Sydney. 

 

 

References 
 
Á dány, S. and Shafer, B.W. (2006), “Buckling mode 

decomposition of single-branched open cross-section members 

via finite strip method: Application and examples”, Thin Wall. 

Struct., 44, 585-600. 

Ádány, S. and Shafer, B.W. (2008), “A full modal decomposition 

of thin-walled, single branched open cross-section members via 

the constrained finite strip method”, J. Constr. Steel Res., 64, 

12-29. 

Adekola, A.O. (1968), “Partial interaction between elastically 

connected elements of a composite beam”, Int. J. Solids Struct., 

4, 1125-1135. 

Al-Deen, S., Ranzi, G. and Uy, B. (2015), “Non-uniform 

shrinkage in simply-supported composite steel-concrete slabs”, 

Steel Compos. Struct., 18(2), 375-394. 

Bathe, K.J. (2006), Finite Element Procedure, Prentice Hall, New 

Jersey. 

Casafront, M. and Marimon, M.M. (2009), “Calculation of pure 

distorsional elastic buckling loads of members subjected to 

compression via finite element method”, Thin Wall. Struct., 47, 

701-729. 

Chakrabarti, A., Sheikh, A.H., Grifith, M. and Oehlers, D.J. 

(2012), Analysis of composite beams with partial shear 

interaction using a higher order beam theory”, Eng. Struct., 36, 

283-291. 

Dassault Systèmes Simulia, (2008), ABAQUS User’s Manual”, 

version 6.8EF-2, Dassault Systèmes Simulia Corp., Providence, 

RI, USA. 

Dezi, L., Gara, F. and Leoni, G. (2003), “Shear-lag effect in twin-

girder composite decks”, Steel Compos. Struct., 3(2), 111-122. 

Dezi, L., Gara, F. and Leoni, G. (2006), “Effective slab width in 

prestressed twin-girder composite decks”, J. Struct. Eng., 

132(9), 1358-1370. 

Eccher, G., Rasmussen, K.J.R. and Zandonini, R. (2008), “Linear 

elastic isoparametric spline finite strip analysis of perforated 

thin-walled structures”, Thin Wall. Struct., 46, 242-260. 

Gara, F., Carbonari, S., Leoni, G. and Dezi, L. (2014), “A higher 

order steel-concrete composite beam model”, Eng. Struct., 80, 

260-273. 

Gonçalves, R. and Camotim, D. (2010), “Steel-concrete composite 

bridge analysis using Generalised Beam Theory”, Steel Compos. 

Struct., 10, 223-243. 

Hanaor, A. (2000), “Tests of composite beams with cold-formed 

sections”, J. Constr. Steel Res., 54, 245-264. 

Henriques, D., Gonçalves, R. and Camotim, D. (2015) “A 

physically non-linear GBT-based finite element for steel and 

steel-concrete beams including shear lag effects”, Thin Wall. 

Struct., 90, 202-215.  

Henriques, D., Gonçalves, R. and Camotim, D. (2016) “GBT-

based finite element to assess the buckling behaviour of steel-

concrete composite beams”, Thin Wall. Struct., 107, 207-220. 

Li, D., Uy, B., Patel, V. and Aslani, F. (2016), “Behaviour and 

design of demountable steel column-column connections”, Steel 

Compos. Struct., 22(2), 429-448. 

Liu, X., Bradford, M.A., Chen, Q.J. and Ban, H. (2016), “Finite 

element modelling of steel-concrete composite beams with 

high-strength friction-grip bolt shear connectors”, Finite Elem. 

Anal. Des., 108, 54-65. 

Luongo, A. (2001), “Mode localization in dynamics and buckling 

of linear imperfect continuous structures”, Nonlinear Dyn., 25, 

133-156. 

Newmark, N.M., Siess, C.P. and Viest, I.M. (1951), “Test and 

analysis of composite beams with incomplete interaction”, Proc. 

Soc. Exp. Stress Anal., 9(1), 75-92. 

Nguyen., Q.H., Hjiai, M. and Lai, V.A. (2014), “Force-based FE 

for large displacement inelastic analysis of two-layer 

Timoshenko beams with interlayer slips”, Finite Elem. Anal. 

Des., 85, 1-10. 

Piccardo, G., Ranzi, G. and Luongo, A. (2014), A complete 

dynamic approach to the Generalized Beam Theory cross-

section analysis including extension and shear modes”, Math 

Mech Solids, 19, 900-924. 

Ranzi, G. and Gilbert, R.I. (2015), Structural Analysis: Principles, 

Methods and Modelling, Spoon Press,  

Ranzi, G. and Luongo, A. (2011), “A new approach for thin-

walled member analysis in the framework of GBT”, Thin Wall. 

Struct., 49, 1404-1414. 

Schardt, R. (1989), Verallgemeinerte Technicsche Biegetheory, 

Springler-Verlag, Berlin, Germany. 

Silva, N.F., Silvestre, N. and Camotim, D. (2006), “GBT 

formulation to analyse the buckling behaviour of frp composite 

636



 

Partial interaction analysis of multi-component members within the GBT 

branched thin-walled beams”, Proceedings of the III European 

Conference on Computational Mechanics Solids, Structures 

and Coupled Problems in Engineering, Lisbon, Portugal, June. 

Silvestre, N. and Camotim, D. (2002), “First-order generalised 

beam theory for arbitrary orthotropic materials”, Thin Wall. 

Struct., 40, 755-789. 

Su, Q., Yang, G. and Bradford, M.A. (2014), “Static behaviour of 

multi-row stud shear connectors in high-strength concrete”, 

Steel Compos. Struct., 17(6), 967-980. 

Taig, G. and Ranzi, G. (2015), “Generalised beam theory (GBT) 

for composite beams with partial shear interaction”, Eng. 

Struct., 99, 582-602. 

Taig, G. and Ranzi, G. (2016), “Generalised beam theory for 

composite beams with longitudinal and transverse partial 

interaction”, Math. Mech Solids, DOI: 

10.1177/1081286516653799. 

Taig, G., Ranzi, G. and D’Annibale, F. (2015b) “An unconstrained 

dynamic approach for the Generalised Beam Theory”, Contin. 

Mech. Thermodyn, 27, 879-904. 

Taig, G., Ranzi, G., Dias-da-Costa, D., Piccardo, G and Luongo, A. 

(2015a), “A GBT model for the analysis of composite steel-

concrete beams with partial shear interaction”, Structures, 4, 

25-37. 

Vlasov, V.Z. (1961), Thin-Walled Elastic Beams, Monson, 

Jerusalem, Israel. 

Vrcelj, Z. and Bradford, M.A. (2008), “A simple method for the 

inclusion of external and internal supports in the spline finite 

strip method (SFSM) of buckling analysis”, Comput. Struct., 86, 

529-544. 

 

 
DL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

637



 

Alberto Ferrarotti, Gianluca Ranzi,, Gerard Taig and Giuseppe Piccardo 

Appendix 
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where 0N×M is zero matrix of size (NM); sub-matrices B
11

,  

B
13

, B
22

, B
33

 have size (KK); sub-matrices B
13

, B
24

, B
35

 

possess size (KJ); sub-matrices B
44

, B
55

 have size (JJ); 

sub-vectors q
(1)

 and q
(2)

 have dimensions of (K1); sub-

vector q
(3)

 has size (J1); IN is the identity matrix of size 

(NN); ∂ denotes differentiation with respect to z; Nm 

depicts the number of materials forming the cross-section; 

Aα is the area of the α-th material.  
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