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1. Introduction 
 

Since damage in structures can cause irrecoverable 

consequences, much researches and efforts have been made 

to propose different efficient non-destructive detect 

methods. Among those, the vibration-based techniques, 

based on the variations of structural vibration properties, 

have attracted the attention of many researchers (Mesina et 

al. 1998, Fugate et al. 2001, Yam et al. 2003, Yan et al. 

2007, Deraemaeker et al. 2008, Shih et al. 2009, Nicknam 

and Hosseini 2012). The main idea of the Vibration-Based 

Damage Detection (VBDD) methods is based on the fact 

that the damage reduces the structure stiffness and hence 

causes some changes in its vibration properties. 

Mathematically, damage detection is an indeterminate, 

nonlinear problem for which different methods have been 

proposed. 

Optimization search algorithms are the robust tools that 

are attractive for many researchers for solving engineering 

problems. (Kang et al. 2013a,b, Dizangian and Ghasemi 

2015a,b, Ghasemi and Varaee 2016a,b, Camp and Farshchin 

2014, Stolpe 2016, Artar 2016, Gholizadeh et al. 2017, 

Nobahari et al. 2017) 

For solving a structural damage identification problem, 

a very widely used method is to convert it to an 

optimization problem wherein the variables are the extents 

of damage to the structural members. 

Hao and Xia (2002) employed a genetic algorithm with 

real number encoding to detect the structural damages.  
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They considered three different criteria; the frequency 

changes, the mode shape changes and their combination in 

their study. Perera and Torres (2006) used genetic algorithm 

for structural damage identification. They considered the 

changes in frequencies and mode shapes of the structure. 

Sandesh and Shankar (2010) proposed a novel search 

algorithm, a hybrid of particle swarm optimization method 

and genetic algorithm. They benefited from this algorithm 

for multiple damages identification in a thin plate. A hybrid 

real-coded Genetic Algorithm with damage penalization 

was implemented by Meruane and Heylen (2011) to 

identify the structural damage location and severity. Kang et 

al. (2012) combined particle swarm optimization with an 

artificial immune system to assess the structural damages. 

They utilized natural frequencies and mode shapes to form 

the objective function. 

Although many researches have revealed the power and 

capability of optimization search algorithms in detecting 

damage in structures, they all have a common big problem; 

they need a massive computational volume to detect the 

damage, intensifying considerably with an increase in the 

number of members. Different methods have been proposed 

to reduce the computation volume; one of which is the two-

step technique. In the first step, the undamaged members 

are eliminated and hence the problem variables are reduced 

causing a reduction in the dimensions of the search space. 

In the second step, the optimization algorithm faces a 

problem with much fewer variables compared with the 

initial problem; causing relatively a less computational 

volume. This technique has attracted the attention of many 

researchers. 

Various two-stage methods for damage detections were 

carried out by researchers, details of which are introduced 
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here. A two-stage method was presented by Gue and Li 

(2009) to determine the location and extent of multiple 

structural damages by using information fusion technique 

and genetic algorithm. Yun et al. (2009) having utilized 

subset selection and genetic algorithm, proposed a two-

stage structural damage detection. In the first stage they 

used subset selection to locate multiple damages. In the 

second stage, the extents of the damaged members were 

quantified by applying genetic algorithm. Another two-

stage damage assessment approach was proposed by Cury 

et al. (2011). The first stage focused on structural damage 

location determination by means of the strain energy 

deviation between damaged and undamaged structural 

vibration modes. In the second stage damage quantification 

developed through the analysis of measured natural 

frequencies of damaged structure and its corresponding 

intact numerical model. Jiang et al. (2011) used fuzzy 

neural networks (FNNs) and data fusion techniques and 

proposed a two-stage structural damage identification 

method. Having employed PSO and modal strain energy 

concept, Seyepoor (2012) proposed a two-stage method for 

structural multiple damage identification. In the first stage, 

he introduced a modal strain energy based index to 

determine the suspected members to damage. In the second 

stage, by using the results of the first stage, the damage 

severity was determined using a particle swarm 

optimization technique. Xiang and Liang (2012) proposed a 

two-stage method for multiple damage assessment in thin 

plates. In the first stage they focused on damage location 

detection by applying the 2-D wavelet transform to the 

modal shape. The damage extents at the identified locations 

were then determined in the second stage using a particle 

swarm optimization (PSO) algorithm. 

This paper proposes a different two-stage damage 

identification method for truss structures. In the first stage, 

a residual force vector based index (RFVBI) is introduced 

to determine the most probable damaged members. In the 

second stage to evaluate the damage severity of the truss 

members, the damage assessment problem is defined as an 

optimization problem where the damage severity for the 

spotted members from the first stage, are the variables for 

optimization. A genetic algorithm is employed to solve this 

optimization problem. Finally, three numerical examples are 

considered to investigate the efficiency and robustness of 

the proposed method. 

 

 
2. Damage simulation 
 

The existence of damage in a member reduces its 

stiffness and can be simulated in the form of a reduction in 

such parameters as the elasticity modulus, moment of 

inertia, and cross sectional area. In this paper, the damage is 

defined as the reduction in the elasticity modulus a 

 
(1) 

Where E and Ei are the i
th

 member’s moduli of elasticity 

in correspondingly healthy and damaged states and xi is the 

damage variable varying between “zero” and “one”; it is 

“zero” if the member is fully healthy and “one” if it is 

completely damaged. The i
th

 member stiffness matrix after 

it is damaged is found as follows 

 (2) 

where  and  are the stiffness matrices of the i
th

 

member in respectively healthy and damaged states. It is 

worth mentioning that the variations in the mass matrix 

have been neglected in the present research. 
 
 
3. Defining damage detection in the form of an 
optimization problem 

 
As mentioned earlier, damage in a member results in a 

decrease in its stiffness and the variations in the stiffness 

matrix of a structure causes variations in some such 

parameters as the structure’s modal frequencies. Inverse 

damage detection methods can precisely detect the location 

and severity of damage by comparing the structure’s pre- 

and post-damage responses using optimization search 

algorithms to find a set of damage variables that minimize 

or maximize a correlation index between the structure’s pre- 

and post-damage responses. Therefore, damage detection 

can be stated as an optimization problem as follows 

 

 

 

(2) 

where X is the damage variables vector and ne is the 

number of members in the structure. Many objective 

functions have been proposed for such an optimization 

problem among which the effective correlation index 

proposed by Nobahari and Seyedpoor (2011) used here. It 

states that 

 

(4) 

where ΔF can be defined as follows 

 
(5) 

Here, the Fh and Fd are the frequencies of the healthy 

and damaged structures, respectively. fdi and fi(X) are the i
th

 

modal frequencies of the damaged structure and the 

analytical model, respectively.  is the change in the 

natural frequency vector of the structure resulted from an 

analytical model as compared to the natural frequency of 

the healthy structure, expressed as 

 
(6) 

It is worth mentioning that the first nf frequencies of the 

structure have been considered for damage detection. ECBI 
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ranges from 0 to 1; 1 means that frequency vectors found 

from the analytical model conform rather well to the natural 

frequencies of the damaged structure; therefore, the values 

of the damage variables are indications of the location and 

severity of damage occurred in the structure. 
 

 

4. Detecting damage using the residual force vector 
 

The residual force vector was widely used by many 

researchers on structural damage identification. Chen and 

Garba (1998) proposed a method for structural damage 

assessment using the minimum norm solution of the 

residual force equation. Zimmerman and Kaouk (1994) 

proposed a two-step damage identification, in the first step 

of which they focused on damage localization using 

residual force vector. Chiang and Lai (1999) used residual 

force vector to localize damages in their proposed damage 

detection method. Using the residual force vector, the node 

residual force vector is defined to determine the suspected 

damaged members preliminarily by Yang and Liu (2007). 

For damage assessment in shear frames, Amiri et al. (2013) 

proposed two approaches, one of which was the residual 

force vector. Seyedpoor and Montazer (2016) proposed 

modal residual vector based indicator (MRVBI) to 

determine most probable damaged members. 

In this section, using the residual force vector concept, a 

method is proposed for the detection of the damage-

suspected members in truss structures. Neglecting the 

variations in the mass matrix of the structure due to damage, 

the eigenvalue equation for an n-degree freedom damaged 

structure is as follows: 

 (7) 

where wdj and φdj are the frequency and mode shape vector 

of the j
th

 mode of the damaged structure, M is the mass 

matrix and  is its stiffness matrix as follows 

 

(8) 

where is the stiffness matrix of the i
th 

member of the 

damaged structure in the global coordinate. Substituting 

relations 2 and 8 in relation 7, we will have 

 

(9) 

Where  is the stiffness matrix of the healthy 

structure and is the stiffness matrix of i
th

 member in 

healthy state. It is notable that  is in the global 

coordinate and the dimension of  and  are similar. 

Rj is the residual force vector related to the j
th

 mode. As 

explained before, xi is the damage variable of the i
th

 member 

and equals to 0 if the member is healthy. Therefore, only 

those components of the Rj vector are nonzero that are 

related to the nodal degree of freedom of the damaged 

members; hence, the sign of the components of the Rj 

vector will not be important. If the first nm modes of the 

structure are used, we can find ASR parameter by adding the 

absolute values of the Rj for all modes as follows 

 

(10) 

Thus, ASR is an n×1 vector where n is the number of 

degrees of freedom of the structure. Using the values of the 

components of the ASR vector and considering the way 

members place to one another, we can determine the 

damage-suspected members as follows. 

Suppose AB is a member of a 3D truss structure 

between nodes A and B. If the values of the ASR vector 

related to the DOF of these nodes are shown as ASR
A
 and 

ASR
B
, we will have 

 

 

(11) 

where superscript T is the vector transpose. It is worth 

noting that if one end of the member is connected to the 

support and is restrained, the ASR value of that restrained 

degree of freedom is not calculable and it is conservatively 

assumed equal to the ASR of the corresponding DOF of the 

other node of the member. If the absolute values of the 

cosines of the angles between member AB and the global 

coordinate axes x, y, and z are shown as , and 

, then RFVAB will be determined as follows 

 (12) 

If AB is a damaged member, then both ASR
A 

and ASR
B
 

vectors should have nonzero corresponding components. In 

such case, the RFV will have a positive value for a damaged 

member. Now, the damage index of the truss member AB is 

defined as follows 

 
(13) 

where  is the maximum RFV relative to the 

members entering nodes A and B. If this index is positive, 

the member is probably damaged or else, it is definitely 

healthy; in other words, the members with RFVBI = 0 are 

definitely healthy and can be excluded from other members, 

considered now as variables, to reduce size of the 

optimization problem.  

Considering the noise measurement, the value of RFVI 

may be positive for all members. To avoid determination of 

the healthy members as damaged members, a minimum 

RFVI (RFVImin) is defined as a boundary between damaged 

and undamaged states. 

 (14) 

Where µ  and σ represent the average and standard 

deviation of the vector of {RFVI
i
|i=1:ne} respectively, and α 

is a coefficient between 0 and 1. Next, the proposed method 

will be assessed by attempting some numerical examples. 
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5. Numerical examples 
 

In this section, 3 examples have been provided to check 

the efficiency and versatility of the proposed method. 

Example 1 is a 31-member planar truss with 25 degrees of 

freedom, example 2 is a 47-member planar truss with 41 

degrees of freedom, and example 3 is a 52-member dome-

shaped 3D truss problem with 39 degrees of freedom. The 

maximum stiffness reduction allowed here to a member in 

all examples is assumed to be 50%. This obviously does not 

indicate a 50% damage of the member. The number of 

population and the probabilities of the crossover and 

mutation operators are assumed to be 20, 1, and 0.005, 

respectively. The crossover operator used in the GA is of the 

uniform type. In the first two examples, the noise 

measurement is not considered, but the last example is 

studied for both noisy and free noise measurement. 

 

5.1 The 31-member 2D truss 
 

The31-member planar truss (Messina et al. 1998) used 

as the first example (Fig. 1) had equal member cross 

sectional areas. The elasticity modulus and density for the 

materials used were assumed to be 2e5MPa and 7850 kg/ 

m
3
 respectively. Three damage scenarios (Table 1) were 

studied for this truss. 

In the first step, the members suspected to damage 

(Table 2) were obtained using the proposed RFVBI. 

Considering those results, one realizes that the proposed 

index could detect the damaged members with only the data 

gained from the first mode. Thus, considering more modes 

will not affect the final answer. 

 

 

Table 1 Three different damage scenarios set for the 31 

member planar truss problem 

Scenario 1 Scenario 2 Scenario 3 

Member 

No 

Damage 

percentage 

Member 

No 

Damage 

percentage 

Member 

No 

Damage 

percentage 

11 25 16 30 1 30 

25 15   2 20 

 

 

 

Table 2 Most probable damaged members predicted in the 

first stage; the 31 

Damage scenario 
Suspected members to damage 

1 mode 4 modes 8 modes 

Scenario1 11,25 11,25 11,25 

Scenario2 16 16 16 

Scenario 3 1,2,4 1,2,4 1,2,4 

 

 

 

 

Fig. 1 The 31-member planar truss 

 

 

 

Fig. 2 RFVBI values for scenario 1 for the 31-

member planar truss, considering first 6 modes 

 

 

 

Fig. 3 RFVBI values for scenario 2 for the 31-

member planar truss, considering first 6 modes 

 

 

 

Fig. 4 RFVBI values for scenario 3 for the 31-

member planar truss, considering first 6 modes 

 

 

The RFVBI values of the truss members under different 

damage scenarios for the first 6 modes are shown in Figs. 2-

4. 
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Table 3 The severity of found damaged members (11 and 

25), for the 31-bar truss problem in scenario1 

No. of 

analyses 
carried 

Required 
generations 

% severity of 

found damaged 
members 

Run No 

25 11 
40 2 15 25 1 

40 2 15 25 2 

100 5 15 25 3 

80 4 15 25 4 

40 2 15 25 5 

20 1 15 25 6 

100 5 15 25 7 

60 3 15 25 8 

140 7 15 25 9 

40 2 15 25 10 

66 3.3 15 25 Average damage 

  15 25 Actual damage 

 

 

 

Table 4 The severity of found damaged members (only 16), 

for the 31-bar truss problem in scenario 2 

 No. of 

analyses 
carried 

Required 
generations 

% severity of found 

damaged  
members  

Run No 

16 
20 1 30 1 

20 1 30 2 

20 1 30 3 

40 2 30 4 

20 1 30 5 

40 2 30 6 

20 1 30 7 

20 1 30 8 

20 1 30 9 

40 2 30 10 

26 1.3 30 Average damage 

  30 Actual damage 

 

 

 

Table 5 The severity of found damaged members (1 and 2), 

for the 31-bar truss problem in scenario3 

No. of 

analyses 
carried 

Required 
generations 

% severity of 

found damaged 
members 

Run No 

4 2 1 

160 8 0 20 30 1 

120 6 0 20 30 2 

140 7 0 20 30 3 

160 8 0 20 30 4 

220 11 0 20 30 5 

60 3 0 20 30 6 

180 9 0 20 30 7 

200 10 0 20 30 8 

60 3 0 20 30 9 

180 9 0 20 30 10 

148 7.4 0 20 30 Average damage 

  0 20 30 Actual damage 

 

 

 

Table 6 The results of the one-step method obtained by GA 

for 31-member planar truss 

Damage 

scenario 

% severity of found 

damaged members 
Required 

generations 

No. of 

analyses 

carried 1 2 11 16 25 

Scenario1 0 0 28 0 18 445.5 8910 

Scenario2 0 0 0 30 0 159 3180 

Scenario3 30 20 0 0 0 332.5 6650 

 

 

As shown, the proposed RFVBI has been able to detect 

the damaged members with high precision. Next, GA was 

used for the precise determination of the severity of the 

damage only on the suspected damaged members from the 

previous stage. Considering the stochastic nature of GA, 

each example was run 10 times, all results of which are 

shown in Tables 3-5 along with the total number of the 

analyses required at each run.  

It is to be noted that GA is only involved in determining 

the damaged severity of those members suspected to 

damage from stage one. 

To evaluate the capability of the proposed method in 

reducing the computational effort in structural damage 

identification, the average output for 10 independent runs 

using GA in a one-stage approach are shown in Table 6 for 

all damage scenarios. 

 

5.2 The 47-member planar truss 
 

The second example dealt with in this paper (Fig. 5) was 

a 47-member planar truss (Shirazi et al. 2014) which had 

equal cross sectional area members and the elasticity 

modulus and density of the materials used were assumed to 

be 2.1e5MPa and 8303 Kg/m
3
 respectively. In this example, 

4 different damage scenarios (Table 7) were studied. 

In the first step, the damage suspected members (Table 

8) were determined using the proposed RFVBI. In this 

example too, it can be observed that the proposed index can 

determine the damage-suspected members with the 

information of even one mode and considering more modes 

will not affect the final answer. 

In the first 3 scenarios, not only the damaged members 

were detected correctly, but also there were no healthy 

members among the damaged ones. In the 4
th

 scenario, 

although there were 4 healthy members among the 

suspected ones, both the damaged members were detected 

as the suspected ones by the information of only the first 

mode. The RFVBI values of the truss members under 

different damage scenarios for the first 6 modes are shown 

in the diagrams of Figs. 6-9. 
Next, GA was used for the precise determination of the 

location and severity of the damage after the suspected 

members were determined and the damage variables were 

considerably reduced. Considering the stochastic nature of 

GA, each example was run 10 times the results of all of 

which are shown in Tables 9-12 along with the number of 

the required analyses. 
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Table 7 Four different damage scenarios set for the 47-member planar truss problem 

Scenario1 Scenario2 Scenario3 Scenario4 

Member No 
Damage 

percentage 
Member No 

Damage 

percentage 
Member No 

Damage 

percentage 
Member No 

Damage 

percentage 

10 30 30 30 10 30 40 30 

- - - - 30 30 41 20 

Table 8 Most probable damaged members predicted in the first stage; the 47-member planar truss problem 

Damage scenario 
Suspected members to damage 

1 mode 4 modes 6 modes 

Scenario1 10 10 10 

Scenario2 30 30 30 

Scenario 3 10,30 10,30 10,30 

Scenario 4 40,41,44,45,46,47 40,41,44,45,46,47 40,41,44,45,46,47 

Table 9 The severity of found damaged members (only 10), for the 47-bar truss problem in scenario 1 

No. of analyses carried Required generations 

% severity of found damaged 

members Run No 

10 

20 1 30 1 

20 1 30 2 

20 1 30 3 

20 1 30 4 

20 1 30 5 

20 1 30 6 

20 1 30 7 

20 1 30 8 

20 1 30 9 

20 1 30 10 

20 1 30 Average damage 

  30 Actual damage 

Table 10 The severity of found damaged members (only 30), for the 47-bar truss problem in scenario 2 

No. of analyses carried Required generations 

% severity of found damaged 

members Run No 

30 

20 1 30 1 
20 1 30 2 

20 1 30 3 

20 1 30 4 

20 1 30 5 

20 1 30 6 

20 1 30 7 

20 1 30 8 

20 1 30 9 

20 1 30 10 

20 1 30 Average damage 

  30 Actual damage 
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Fig. 5 The 47-member planar truss 

 

 

 

Fig. 6 RFVBI values for scenario 1 for the 47-

member planar truss, considering first 6 modes 

 

 

 

Fig. 7 RFVBI values for scenario 2 for the 47-

member planar truss, considering first 6 modes 

 

 

 

Fig. 8 RFVBI values for scenario 3 for the 47-

member planar truss, considering first 6 modes 

 

 

In this example, the results of the single step structural 

damage identification, obtained by GA, are shown in 

Table13.These are average results obtained by 10 

independent runs of GA for each damage scenario. 

 

 

 

Table 11 The severity of found damaged members (10 and 30), for the 47-bar truss problem in scenario 3 

Run No 
% severity of found damaged members 

Required generations No. of analyses carried 
10 30 

1 30 30 3 60 

2 30 30 1 20 

3 30 30 4 80 

4 30 30 2 40 

5 30 30 1 20 

6 30 30 5 100 

7 30 30 1 20 

8 30 30 5 100 

9 30 30 5 100 

10 30 30 2 40 

Average damage 30 30 2.9 58 

Actual damage 30 30   
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Fig 9 RFVBI values for scenario 4 for the 47-

member planar truss, considering first 6 modes 

 

 

5.3 The 52-member 3D truss 
 

The 52-member steel dome structure (Naseralavi et al. 

2012) (Fig. 10) was used in the third and last example. All 

the members had equal cross sectional areas and the 

modulus of elasticity and density of the consumed materials 

were 2e5MPa and 7850 kg/m
3
. Two damage scenarios 

(Table 14) were considered for this truss. This example is 

studied in two cases of noise free and noisy measurement 

data. 

 

 

 

 

Fig. 10 The 52-member spatial truss 

 
 

Table 12 The severity of found damaged members (40 and 41), for the 47-bar truss problem in scenario 4 

Run No 
% severity of found damaged members Required 

generations 

No. of 

analyses 

carried 40 41 44 45 46 47 

1 30 20 0 0 0 0 3 60 

2 30 20 0 0 0 0 1 20 

3 30 20 0 0 0 0 4 80 

4 30 20 0 0 0 0 2 40 

5 30 20 0 0 0 0 1 20 

6 30 20 0 0 0 0 5 100 

7 30 20 0 0 0 0 1 20 

8 30 20 0 0 0 0 5 100 

9 30 20 0 0 0 0 5 100 

10 30 20 0 0 0 0 2 40 

Average damage 30 20 0 0 0 0 2.9 58 

Actual damage 30 20 0 0 0 0   

Table 13 The results of the one-step method obtained by GA for 47-member planar truss 

Damage scenario 
% severity of found damaged members Required 

generations 

No. of 

analyses 

carried 9 10 11 30 32 35 40 41 46 

Scenario1 2 29.5 1.5 0 0 0 0 0 0 530 10060 

Scenario2 0 0 0 28.5 0 2 0 0 0 670 13400 

Scenario3 0 25.5 0.5 35 1 0 0 0 0 923 18460 

Scenario4 0 0 0 0 0 0 35 20 0.5 812.3 16246 
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Table 14 Two different damage scenarios set for the 52-

member spatial truss problem 

Scenario 1 Scenario 2 

Member No Damage 

percentage 

Member no Damage 

percentage 

8 25 5 10 

33 15 6 35 

 

 

 

Table 15 Most probable damaged members predicted in 

the first stage; the 52-member spatial truss problem 

Damage 

scenario 

Suspected members to damage 

1 mode 4 modes 6 modes 

Scenario1 8,33,36,48 8,33,36,48 8,33,36,48 

Scenario2 5,6 5,6 5,6 

 

 

 

Table 16 The severity of found damaged members (8 and 

33), for the 52-bar truss problem in scenario 1 

No. of 

analyses 
carried 

Required 
generations 

% severity of 

found damaged 

members 
Run No 

48 36 33 8 

680 34 0 0 15
% 

25
% 

1 

560 28 0 0 15

% 
25
% 

2 

1440 72 0 0 15

% 
25
% 

3 

1180 59 0 0 15

% 
25
% 

4 

940 47 0 0 15

% 
25
% 

5 

1420 71 0 0 15

% 
25
% 

6 

580 29 0 0 15

% 
25
% 

7 

320 16 0 0 15

% 
25
% 

8 

960 48 0 0 15

% 
25
% 

9 

860 43 0 0 15

% 
25
% 

10 

894 44.7 0 0 15

% 
25
% 

Average damage 

  0 0 15

% 
25
% 

Actual damage 

 

 

 

Table 17 The severity of found damaged members (5 and 

6), for the 52-bar truss problem in scenario 2 

 No. of 

analyses 
carried 

Required 
generations 

% severity of 

found damaged 

members 
Run No 

6 5 

60 3 35 10
% 

1 

20 1 35 10
% 

2 

80 4 35 10

% 
3 

40 2 35 10
% 

4 

20 1 35 10
% 

5 

20 1 35 10
% 

6 

60 3 35 10
% 

7 

20 1 35 10
% 

8 

100 5 35 10
% 

9 

80 4 35 10
% 

10 

50 2.5 35 10
% 

Average damage 

  35 10
% 

Actual damage 

 

 

Results of the first step without considering 

measurement noise are provided in Table 15. As shown, the 

proposed index has been able to detect the damaged 

members of the truss structure with the information of only 

the first mode. The RFVBI values of the truss members 

under different damage scenarios for the first 6 modes are 

shown in the diagrams of Figs. 11 and 12 and the final GA 

results of the detection of the location and extent of damage 

are provided in Tables 16 and 17. 

As the second sub-problem, considering noise 

measurement for each damage scenario, results of 10 

independents runs as the first stage are shown in Tables 19 

and 21. The mean values of RFVBI for various damage 

scenarios can be seen in Figs 13 and 14. The values of 

RFVImin are shown as a red line in these Figs.  The 6 first 

modes data in this example are utilized for damage 

assessment and α is selected as 0.2. In this example the 

noise measurement is considered by a standard error 0.2% 

for modal frequencies and 3% for mode shapes. 

The results of the first stage exhibit that the proposed 

method could determine damaged members satisfactorily. 

According to Fig. 13 the proposed method could determine 

68% of healthy members in the first scenario and condense 

the members suspected to damage from 52 to 18. 

 

 

 

Fig. 11 RFVBI values for scenario 1 for the 52-

member spatial truss, considering first 6 modes 

 

 

 

 

Fig. 12 RFVBI values for scenario 2 for the 52-

member spatial truss, considering first 6 modes 
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In the second scenario, according to Fig. 14, the 

proposed method could predict 82% of healthy members 

correctly and thus condense the members suspected to 

damage from 52 to 11. Tables 20 and 22 present the final 

results of damage detection due to10 times independent 

runs for each damage scenario. 

The convergence histories of the 52-member truss 

considering measurement noise are shown in Figs 15 and 16. 

Although achieving the target value of ECBI (1) by 

considering measurement noise is very difficult, if not 

impossible, according to diagrams shown in Figs 15 and 16, 

the proposed method could achieve 0.98 after 

approximately 400 generations in the first scenario and 

approximately 300 generations in the second scenario. 

 

 

 

 

 

 

 

 

Table 21 Most probable damaged members predicted in the 

first stage; the 52-member spatial truss problem considering 

measurement noise for scenario2 

Run No Suspected members to damage 

1 1,2,3,5,6,7,11,12,17,18,49 

2 1,2,3,5,6,7,11,12,17,18,47,49 

3 2,3,5,6,7,11,18,47 

 4 1,2,3,4,5,6,7,10,17,18 

5 1,2,3,5,6,7,11,12,17,49 

6 2,3,5,6,7,17,18,47,49 

7 2,3,4,5,6,7,11,12,17,48,49 

8 1,2,3,5,6,7,11,18,48,49 

9 2,3,4,5,6,17,18,49 

10 2,3,5,6,7,11,17,18,47,49 

 

Table 18 The results of the one-step method obtained by GA for the 52-member spatial truss 

Damage scenario 
% severity of found damaged members Required 

generations 

No. of 

analyses 

carried 3 4 5 6 7 8 33 36 

Scenario1 0 0 0 0.5 1 27 12 1.5 923 18460 

Scenario2 1.5 1 10 32 0.5 0 0 0 670 13400 

Table 19 Most probable damaged members predicted in the first stage; the 52-member spatial truss problem 

considering measurement noise for scenario1 

Run No. Suspected members to damage 

1 1,2,3,4,5,7,8,12,17,18,20,33,36,48,49 

2 1,3,4,5,7,8,11,17,18,33,36,47,49 

3 1,3,4,5,7,8,9,18,20,33,36,47,48 

4 1,2,3,4,5,6,7,8,11,18,20,33,36,48,49 

5 1,3,4,5,8,11,12,17,19,33,36,49 

6 1,3,4,5,6,7,8,11,12,17,18,33,36,48,49 

7 1,3,5,6,8,17,18,33,36,48,49 

8 1,3,4,5,7,8,17,18,33,36,47,48,49 

9 1,2,3,4,5,6,8,11,17,18,20,33,47,48,49 

10 1,3,4,5,6,7,8,17,18,20,33,36,48,49 

Table 20 The severity of found damaged members (8 and 33), for the 52-bar truss problem in scenario 1 considering 

noise measurement 

Run No 
% severity of found damaged members 

1 2 3 4 5 6 7 8 9 11 12 17 18 19 20 33 36 47 48 49 

1 0 0 5 0 0 - 5 30 - - 5 0 0 - 0 15 5 - 0 5 

2 0 - 0 0 0 - 5 25 - 0 - 0 0 - - 20 5 0 - 0 

3 0 - 5 0 0 - 0 30 0 - - - 5 - 0 15 0 0 0 - 

4 0 0 0 0 0 0 0 30 - 0 - - 5 - 0 10 0 - 0 0 

5 0 - 5 0 5 - - 25 - 5 0 0 - 0 - 15 5 - - 0 

6 0 - 0 0 0 5 5 20 - 0 0 5 5 - - 15 0 - 0 5 

7 0 - 0 - 0 0 - 25 - - - 0 0 - - 20 0 - 0 0 

8 0 - 5 0 5 - 5 30 - - - 5 5 - - 15 5 0 0 5 

9 0 0 0 0 0 5 - 25 - 5 - 0 5 - 0 20 - 5 0 0 

10 0 - 5 0 0 0 5 30 - - - 0 5 - 0 15 5 - 0 0 

Average 0 0 2.5 0 1 1 2.5 26.5 0 1 0.5 1 3 0 0 15.5 2.5 0.5 0 1.5 
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Fig. 13 RFVBI values for scenario 1 for the 52-

member spatial truss, considering measurement noise 

 

 

Fig. 14 RFVBI values for scenario 1 for the 52-

member spatial truss, considering measurement noise 

 

 

Fig. 15 Convergence history of 52-bar spatial truss 

for scenario 1 considering measurement noise 

 

 

Fig. 16 Convergence history of 52-bar spatial truss 

for scenario 2 considering measurement noise 

 

 

6. Conclusions 
 

In this paper, a 2-step method has been proposed to 

enhance the precision and reduce the volume of the 

computations required in the solution of the problems that 

use optimization algorithms to detect damage in truss 

members. As the first step, the members suspected to 

damage are determined to be considered as the only 

variables suspected to damage for the next step. To do this, 

an index (called RFVBI) has been proposed using the 

residual force vector concept, as a result of which the 

suspected members to damage will be found. As the second 

step then, the severity of the damage for each member will 

be computed using the Genetic Algorithm (GA). To check 

the efficiency and precision of the proposed method, three 

examples were studied. The results showed that RFVBI is 

capable of detecting the damage location using the 

information of only the first mode; this is an advantage hard 

to overlook. Final results revealed that the proposed method 

is capable of detecting the damage location and severity 

with a significant limited volume of computations.  

 
 
References 
 
Artar, M. (2016). “Optimum design of braced steel frames via 

teaching learning based optimization”, Steel Compos. Struct., 

22(4), 733-744. 

Table 22 The severity of found damaged members (5 and 6), for the 52-bar truss problem in scenario 2 considering noise 

measurement 

Run No 
% severity of found damaged members 

1 2 3 4 5 6 7 10 11 12 17 18 47 48 49 

1 0 0 5 - 15 30 0 - 0 0 5 0 - - 5 

2 0 5 5 - 10 30 0 - 5 0 0 0 0 - 0 

3 - 0 5 - 10 30 0 - 0 - - 5 0 - - 

4 0 0 0 5 15 30 0 0 - - 5 0 - - - 

5 5 5 0 - 10 25 0 - 5 0 0 - - - 5 

6 - 0 0 - 15 30 10 - - - 0 0 0 - 0 

7 - 0 5 5 15 25 0 - 5 0 0 - - 5 0 

8 5 0 0 0 10 30 5 - 5 - - 0 - 5 0 

9 - 0 5 0 15 30 - - - - 0 5 - - 5 

10 - 0 0 - 15 30 0 - 5 - 0 5 0 - 0 

Average 1 1 2.5 1 13 29 1.5 0 2.5 0 1 1.5 0 1 1.5 

495



 

Mehdi Nobahari, Mohammad Reza Ghasemi and Naser Shabakhty 

Chen, J.C. and Garba, J.A. (1988), “On-orbit damage assessment 

for large space structures”, AIAA J., 26(9), 1119-1126. 

Chiang, D.Y and Lai, W.Y. (1999), “Structural damage detection 

using the simulated evolution method”, AIAA J., 37(10), 1331-

1333. 

Cury, A.A., Borges, C.C. and Barbosa F.S. (2011), “A two-step 

technique for damage assessment using numerical and 

experimental vibration data”, Struct. Health Monit., 10(4), 417-

428. 

Deraemaeker, A., Reynders, E., De Roeck, G. and Kullaa, J. (2008), 

“Vibration-based structural health monitoring using output-only 

measurements under changing environment”, Mech. Syst. Signal 

Pr., 22(1), 34-56. 

Dizangian, B. and Ghasemi, M.R. (2015), “A fast decoupled 

reliability-based design optimization of structures using B-

spline interpolation curves”, J. Braz. Soc. Mech. Sci. Eng., 38(6), 

1817-1829. 

Dizangian, B. and Ghasemi, M.R. (2015), “Ranked-based 

sensitivity analysis for size optimization of structures”, J. Mech. 

Design, 137(12), 121402. 

Fugate, M.L., Sohn, H. and Farrar, C.R. (2001), “Vibration-based 

damage detection using statistical process control”, Mech. Syst. 

Signal Pr., 15(4), 707-721. 

Ghasemi, M.R. and Varaee, H. (2016), “A fast multi-objective 

optimization using an efficient ideal gas molecular movement 

algorithm”, Eng. Comput., 33(3), 477-496. 

Ghodrati Amiri, G., Hosseinzadeh, A.Z., Bagheri, A. and Koo, K.Y. 

(2013), “Damage prognosis by means of modal residual force 

and static deflections obtained by modal flexibility based on the 

diagonalization method”, Smart Mater. Struct., 22(7),75032. 

Gholizadeh, S., Davoudi, H. and Fattahi, F. (2017), “Design of 

steel frames by an enhanced moth-flame optimization 

algorithm”, Steel Compos. Struct., 24(1), 129-140. 

Guo, H.Y. and Li, Z.L. (2009), “A two-stage method to identify 

structural damage sites and extents by using evidence theory 

and micro-search genetic algorithm”, Mech. Syst. Signal Pr., 

23(3), 769-782. 

Hao, H. and Xia, Y. (2002), “Vibration-based damage detection of 

structures by genetic algorithm”, J. Comput. Civil Eng., 16(3), 

222-229. 

Jiang, S.F., Zhang, C.M. and Zhang, S. (2011), “Two-stage 

structural damage detection using fuzzy neural networks and 

data fusion techniques” , Exp. Syst. Appl., 38(1), 511-519. 

Kang, F. and Li, J. (2016), “Artificial bee colony algorithm 

optimized support vector regression for system reliability 

analysis of slopes”, J. Comput. Civil Eng., 30(3), 04015040. 

Kang, F., Li, J.J. and  Xu, Q. (2012), “Damage detection based on 

improved particle swarm optimization using vibration data”, 

Appl. Soft Comput., 12(8), 2329-2335. 

Kang, F., Li, J.S. and Li, J.J. (2016), “System reliability analysis of 

slopes using least squares support vector machines with particle 

swarm optimization” , Neurocomputing, 209, 46-56. 

Meruane, V. and Heylen, W. (2011), “An hybrid real genetic 

algorithm to detect structural damage using modal properties”, 

Mech. Syst. Signal Pr., 25(5), 1559-1573. 

Messina, A., Williams, E.J. and Contursi, T. (1998), “Structural 

damage detection by a sensitivity and statistical-based method”, 

J. Sound Vib., 216(5), 791-808. 

Naseralavi, S.S., Salajegheh, E., Salajegheh, J. and Fadaee, M.J. 

(2012), “Detection of damage in cyclic structures using an 

eigenpair sensitivity matrix”, Comput. Struct., 110, 43-59. 

Nicknam, A. and Hosseini, M.H. (2012), “Structural damage 

localization and evaluation based on modal data via a new 

evolutionary algorithm”, Arch. Appl. Mech., 82(2), 191-203. 

Nobahari, M. and Seyedpoor, S.M. (2011),“Structural damage 

detection using an efficient correlation-based index and a 

modified genetic algorithm”, Math. Comput. Model., 53(9), 

1798-1809. 

Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017), “A novel 

heuristic search algorithm for optimization with application to 

structural damage identification”, Smart Struct. Syst., 19(4), 

449-461 

Perera, R. and Torres, R. (2006), “Structural damage detection via 

modal data with genetic algorithms”, J. Struct. Eng., 132(9), 

1491-1501. 

Sandesh, S. and Shankar, K. (2010), “Application of a hybrid of 

particle swarm and genetic algorithm for structural damage 

detection”, Inverse Problems in Science and Engineering; 

Formerly Inverse Problems in Engineering, 18(7), 997-1021. 

Seyedpoor, S.M. (2012), “A two stage method for structural 

damage detection using a modal strain energy based index and 

particle swarm optimization”, Int. J. Nonlinear Mech., 47(1), 1-

8. 

Seyedpoor, S.M. and Montazer, M. (2016), “A two-stage damage 

detection method for truss structures using a modal residual 

vector based indicator and differential evolution algorithm”,  

Smart Struct. Syst., 17(2), 347-361. 

Shih, H.W., Thambiratnam, D.P. and Chan, T.H. (2009), 

“Vibration based structural damage detection in flexural 

members using multi-criteria approach”, J. Sound Vib., 323(2) 

645-661. 

Shirazi, M.N., Mollamahmoudi, H. and Seyedpoor, S.M. (2014), 

“Structural damage identification using an adaptive multi-stage 

optimization method based on a modified particle swarm 

algorithm”, J. Optimiz. Theory Appl., 160(3), 1009-1019. 

Stolpe, M. (2016), “Truss optimization with discrete design 

variables: a critical review”, Struct. Multidiscip. O., 53(2), 349-

374. 

Varaee, H. and Ghasemi, M.R. (2016), “Engineering optimization 

based on ideal gas molecular movement algorithm”, Eng.  

Comput., 33(1), 71-93. 

Xiang, J. and Liang, M. (2012), “A two-step approach to multi-

damage detection for plate structures”, Eng. Fract. Mech., 91, 

73-86. 

Yam, L.H., Yan, Y.J. and Jiang, J.S. (2003), “Vibration-based 

damage detection for composite structures using wavelet 

transform and neural network identification”, Compos. Struct., 

60(4), 403-412. 

Yan, Y.J., Cheng, L., Wu, Z.Y and Yam, L.H. (2007), 

“Development in vibration-based structural damage detection 

technique”, Mech. Syst. Signal Pr., 21(5), 2198-2211. 

Yang, Q.W. and Liu, J.K. (2007), “Structural damage identification 

based on residual force vector”, J. Sound Vib., 305(1), 298-307. 

Yun, G.J., Ogorzalek, K.A., Dyke, S.J. and Song, W. (2009), “A 

two-stage damage detection approach based on subset selection 

and genetic algorithms”, Smart Struct. Syst., 5(1), 1-21. 

Zimmerman, D.C. and Kaousk, M. (1994), “Structural damage 

detection using a minimum rank update theory”, J. Vib. Acoust., 

116(2), 222-231. 

 

 

CC 

 

 

 

496




