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1. Introduction 

 

The applications and usages of nanostructures are 

increasing every year from energy harvesting to biomedical 

diagnosis. Thus, it is needed to understand the nature of the 

behavior of these nanostructures before starting the 

expensive manufacturing process.  So, many scientists 

have worked on the different characteristics of 

nanosystems.  

Among these studies, many papers are published 

regarding the vibration behavior of nanobeams. Şimşek 

(2014) used nonlocal beam model to study the nonlinear 

vibration of nanobeams with axially immovable ends. 

Eltaher et al. (2013a) studied the vibration of a nonlocal 

Euler–Bernoulli nanobeams using finite element analysis. 

Malekzadeh and Shojaee (2013) studied the surface and 

nonlocal effects on the nonlinear flexural vibration of non-

uniform nanobeams. Thai and Vo (2012) studied a nonlocal 

sinusoidal shear deformation beam theory to study the 

bending, buckling, and vibration behaviors of nanobeams. 

Using nonlocal theory, Hayati et al. (2017) studied the static 

and dynamic behavior of a curved single-walled carbon 

nanotube under twist–bending couple. Hosseini and 

Rahmani (2017) studied the axial and transverse dynamic 

response of a functionally graded nanobeam under a 

moving constant load.  The free vibration model of a 

cantilever FG nanobeam with an attached mass at tip and 

under thermal loading is discussed by Rahmani et al. 

(2017b). buckling and free vibration of a curved  
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Timoshenko FG microbeam is studied by Rahmani et al. 

(2017a) based on strain gradient theory (SGT) theory. In 

another study, Eltaher et al. (2013b) performed analysis on 

the coupled effects of surface properties and nonlocal 

effects on vibration behavior of nonlocal nanobeams by 

utilizing FEM. These were only a few examples of the 

expanded studies in the field of nanobeams and so many 

other studies have been focused on the vibrational analysis 

on nanobeams (Murmu and Adhikari 2010, Berrabah et al. 

2013, Zhang et al. 2009, Lei et al. 2013, LI et al. 2011), etc. 

Many nanosystems are subjected to thermal effects as 

the working temperature of these systems might rise up or 

come down. Hence, many researches on vibrational analysis 

of the nanobeams have considered the thermal effects. 

Youssef and Elsibai (2011) studied the thermal vibrational 

behavior of nanobeams made of gold. They studied the non-

Fourier effect in heat conduction and also the coupling 

effect between temperature and strain rate. In addition, Ke 

and Wang (2012) analyzed the thermoelectric vibration of 

the piezoelectric Timoshenko nanobeams based on the 

nonlocal theory. Amirian et al. (2014) investigated the free 

vibration of nanobeams made of circular alumina 

considering the surface and thermal effects. Elsibai and 

Youssef (2011) analyzed the vibration of gold nano-beam 

resonator induced by ramp type heating. 

Functionally graded materials (FGMs) are a special 

branch of composite materials which have varying material 

composition along its direction(s). As the functionally 

graded materials (FGMs) can possess the different material 

characteristics, their applications are wide -range. 

Optoelectronic devices (Wośko et al. 2005), advanced 

thermal barrier coating (Lee et al. 1996), sensor and energy 

applications (Müller et al. 2003), bio-medical applications 

(Pompe et al. 2003, Watari et al. 2004) and also solid  
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insulator in gaseous insulation system (Kato et al. 2006) are 

just a few applications of FGMs. Importance of FGMs in 

future technology have made many researchers to conduct 

some wats for manufacturing these materials. Hassanin and 

Jiang (2010) have utilized infiltration to fabricate 

microceramic elements. They have utilized soft lithography, 

colloidal powder processing and the infiltration of yttria 

stabilized zirconia with a pre-ceramic polymer solution in 

their technique. Olevsky et al. (2007) have shown that 

electrophoretic deposition (EPD) sintering is an applicable 

method to produce net-shape bulk FGM. In addition, Anné 

et al. (2005) have fabricated a complex shaped functionally 

graded alumina and zirconia components for biomedical 

applications using EPD. For the reason that these materials 

have high temperature resistance, many studies are 

conducted to investigate the vibration of those nanobeams 

which are made of FGMs, with or without the thermal 

effects. Ansari et al. (2015) studied the nonlinear forced 

vibration of FG nanobeams in a thermal environment and 

by including the surface effects. Nazemnezhad and 

Hosseini-Hashemi (2014) have studied the nonlinear free 

vibration of Euler–Bernoulli FG nanobeams using the 

nonlocal elasticity theory. Hosseini-Hashemi et al. (2014) 

have studied the free vibration of FG nanobeams by 

considering surface effects and the piezoelectric field using 

nonlocal elasticity theory. Rahmani and Pedram (2014) 

studied vibration of Timoshenko nanobeam made of 

functionally graded material (FGM). Li (2013) studied the 

transverse vibrations of axially traveling nanobeams 

including strain gradient and thermal effects. Ahouel et al. 

(2016) studied bending, buckling, and vibration of 

functionally graded (FG) nanobeams using the nonlocal 

differential constitutive relations of Eringen. Ebrahimi and 

Salari (2015) studied the size-dependent thermal buckling 

and vibration of FG nanobeams using nonlocal elasticity 

theory of Eringen. Functionally graded materials were also  

considered in so many other studies on nanobeams,  

nanoplates, etc., such as (Natarajan et al. 2012, Belkorissat 

et al. 2015, Şimşek and Yurtcu 2013a, Shafiei et al. 2016b, 

Rafiee et al. 2013), etc. 

Porous materials which contain pores are a type of 

material with different usages from oil industry to micro- 

and nano-technologies. In addition to FGMs, porous 

materials are also considered to study the behavior of beams 

and nanobeams. Renault et al. (2011) studied the visco-

elastic parameters of soft, highly damped porous materials 

from beam bending vibrations. Della and Shu (2015) 

studied the vibration behavior of porous beams with 

embedded piezoelectric sensors and actuators. Leclaire et 

al. (2001) studied the vibrations of a rectangular porous 

plate. Zhou and Ma (2014) presented analysis on the 

dynamic of the 2D fluid-saturated porous beam based on 

the linear elastic theory and the Biot‘s model for saturated 

porous media. In one of the first studies on 2D-FGMs 

Nemat-Alla (2003) studied the ability of these materials to 

withstand super high temperatures and to give more 

reduction in thermal stresses. In another study, Nemat-Alla 

et al. (2009) proposed a 3D finite element model to study 

the elastic-plastic stress of 2D-FGM plates. 

It is seen that no one has ever studied the vibration 

behavior of a nanobeam made of porous two dimensional 

functionally graded (2D-FG) materials even without 

consideration of thermal effects. Thus, here this problem is 

analyzed taking the thermal effects into the consideration.  

The nanobeam is considered to be in the framework of 

Timoshenko beam theory and the material is changing 

along both thickness and length according to the power law 

function. Using the Eringen‘s nonlocal theory, the 

governing equations are developed and the generalized 

differential quadrature method (GDQM) is used to solve the 

equations. The effects of temperature change, FG and AFG 

power indexes, L/h, temperature distribution and nonlocal 

parameter are studied by presenting figures and tables. 

 

 

2. Problem and formulation 
 

2.1 Functionally graded material  
 

Consider a 2D-FG porous nanobeam which is composed 

of metal and ceramic with varying material composition 

along x and z directions (Fig. 1). The material composition 

can be varying along length (Fig. 1(a)), along thickness 

(Fig. 1(b)) and also along thickness and length 

simultaneously (Fig. 1(c)). It is clear that the mechanical 

properties of the nanobeam, i.e., Young‘s modulus ‗E‘, 

Poisson‘s ratio ‗ν‘, shear modulus ‗G‘ and mass density ‗ρ‘ 

vary with the material composition.  

Considering two types of even (type I) and uneven (type 

II) of porosity distribution across the thickness, and with the 

porosity volume fraction of  β (β <<1), the modified rule 

of mixture for the2D-FG porous nanobeam becomes 

m m c cP(x, z) P V P V
2 2

   
      

   

 
 (1) 

Where the subscripts of ()c and ()m  are used to define 

the ceramic and metal, respectively. The power law of the 

volume fraction of ceramic is (Şimşek 2016, Shafiei et al. 

2016b) 
nz nx

c

1 z x
V (x, z)

2 h L

   
    
   

 (2) 

Here, ‗nx‘ and ‗nz‘ are the AFG (axially functionally 

graded), and FG (functionally graded) power indexes 

respectively, which are related to the volume fraction 

change of the material composition. It should be noted that 

when both of nz and nx have non-negative values, the 

nanobeam is then 2D-FG. Hence, the material properties of 

the even porosity (FGM-I, Fig. 2) is obtained as 

(Wattanasakulpong and Chaikittiratana 2015, Şimşek 2016, 

Shafiei et al. 2016b) 

     
nz nx

m c m c m

1 z x
P x, z P P P P P

2 h L 2

   
        

   

  
(3) 

where nz and nx are FG and AFG power indexes and z and 

x are the distance from the mid-plane and left end of the FG 

beam respectively. The material of the beam is pure ceramic 

when nx and nz are set to be zero and increment of nx and 

nz increase the metal volume fraction. Thus, Young‘s  
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modulus ‗E‘, Poisson‘s ratio ‗ν‘, the thermal distribution 

‗𝛼‘, mass density ‗ρ‘ and shear modulus ‗G‘ equations of 

the imperfect FGM-I nanobeam is defined as 

     
nz nx

m c m c m

1 z x
E x, z E E E E E

2 h L 2

   
        

   

  (4a) 

 

     
nz nx

m c m c m

1 z x
x, z

2 h L 2

   
        

   


       (4b) 

 

     
nz nx

m c m c m

1 z x
x, z

2 h L 2

   
        

   


       (4c) 

 

     
nz nx

m c m c m

1 z x
x, z

2 h L 2

   
        

   


       (4d) 

 

 
 

 

E x, z
G x, z

2 2 x, z



 (4e) 

On the other hand, the mechanical properties of uneven 

porosity distribution of FG porous II (Fig. 2) can be 

obtained as 

     
nz nx

m c m c m

2 z1 z x
E x, z E E E E E 1

2 h L 2 h

    
          

     

  
(5a) 

 

     
nz nx

m c m c m

2 z1 z x
x, z 1

2 h L 2 h

    
          

     


     

 
(5b) 

 

     
nz nx

m c m c m

2 z1 z x
x, z 1

2 h L 2 h

    
          

     


     

 
(5c) 

 

     
nz nx

m c m c m

2 z1 z x
x, z 1

2 h L 2 h

    
          

     


     

 
(5d) 

 

 

 

 
 

 

E x, z
G x, z

2 2 x, z



 (5e) 

 

 

 
(a) 

 
(b) 

Fig. 2 Cross section area of FG porous beam. A: 

even distribution of porosities (FGM-I). B: uneven 

distribution of porosities (FGM-II) 

 
(a) 

 
(b) 

 
(c) 

Fig. 1 Schematic of the different material distributions, (a) AFG, (b) FG and (c) 2D-FG 
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For the Using the nonlinear thermo-elasticity equation, 

the temperature-dependent  material properties can be 

obtained at temperature T as (Touloukian and Ho 1970) 

 1 2 3

0 1 1 2 3 1P P P T PT PT PT

      (6) 

here, 𝑃0, 𝑃−1, 𝑃1, 𝑃2 𝑎𝑛𝑑 𝑃3 are the temperature-dependent 

coefficients of material properties which are given in Table 

1. 

 

2.2 Mathematical modeling 
 

2.2.1 Nonlocal theory 
The classic continuum theory considers every point in a 

body dependent on the small neighborhood of that point. 

Besides, the classic theories neglect the effect small 

distances between the atoms of a mass. For these reasons, 

the classic theories can‘t yield perfect results in studying the 

nano-sized materials as the small distances are considerable 

comparing to length, width and thickness of a nanobeam.  

The Eringen‘s nonlocal elasticity theory defines the state 

of a point as a function of the region around that point 

(Eringen and Edelen 1972). In fact, the nonlocal elasticity 

theory not only considers the long range interactions in the 

material, but also considers the effect of tiny distances 

between the atoms. These exhaustive assumptions in the 

development of nonlocal theory, have made it a powerful 

tool in study of nanosystems (Juntarasaid et al. 2012, Ke 

and Wang 2012, Lee and Chang 2011). Here, using the 

nonlocal theory, the vibration equation of 2D-FG porous 

Timoshenko nanobeam is expressed as (Şimşek and Yurtcu, 

2013b, Rahmani and Pedram 2014) 

 
2 2 2 2 2

2

0 1 0 0 12 2 2 2 2
: xx xx

u u u
u A B N m m e a m m

x x x t t x t t

  


         
        

          

 
(7a) 

 

 
2 2 2 2 2

2

1 2 .0 1 22 2 2 2 2

: xx xx xz

u w
B D M C

x x x x

u u
m e a m

t t x t t
m m


 

 

      
      

      

     
    

     

 
(7b) 

 

 

 

2
2

0 2

2 2 2
2

0 0 02 2 2

: xz

w w w
w C N e a N

x x x x x x x

w w
m e a m

t x t

 
              

                          

   
   

   

 

(7c) 

 

 

 

where 

     2, , , z,T 1, , xx xx xx

A

A B D E x z z dA  
(8a) 

 

 

  
, ,

2 1 , ,



xz S

A

E x z T
C K dA

x z T
 (8b) 

 

 , , 
i

i

A

m x z T z dA  
(8c) 

𝑁 and 𝑀̅ are the external axial thermal load and thermal 

moment, respectively. 

         0

A

x, z,T x, zN, M E T T 1,z, dT A    
(9) 

where T0 is the reference temperature and here 0e a  is the 

nonlocal parameter in Eringen‘s nonlocal elasticity theory. 

―KS=5/6‖ is the shear correction factor. The boundary 

conditions for fully clamped are 

0 0u at x and x L    (10a) 
 

0 0w at x and x L    (10b) 
 

0 0at x and x L     (10c) 
 

 

2.3 Type of temperature rise 
 

The temperature gradient nonlinear and along thickness. 

TUL and TDR define the temperature of the upper (at x=L) 

and lower (at x=0) surfaces respectively. According to the 

power function along thickness, the nonlinear temperature 

gradient is as follows (De Pietro et al. 2016, Mirjavadi et al. 

2017) 

0

1

2

z x
z x

T T
h L

 
   

      
   

 (11) 

T0=300(K) is reference point, where αx and αz is the 

power index of temperature variation function along length 

and thickness of beam and also, ΔΤ= TUL-TDR. 
 

 

 

Table 1 Temperature dependent coefficients of Young‘s modulus, thermal expansion coefficient and mass density 

(Yang and Shen 2002) 

Material Properties P0 P-1 P1 P2 P3 

SUS304 

E (Pa) 2.0104e+11 0 0.000308 -6.53e-07 0 

α (K-1) 1.23e-05 0 0.000809 0 0 

ρ (Kg/m3) 8166 0 0 0 0 

ν 0.3262 0 -0.0002 3.80e-07 0 

 

Al2O3 

E (Pa) 3.4955e+11 0 -0.0003853 4.027e-07 -1.673e-11 

α (K-1) 6.8269e-06 0 0.0001838 0 0 

ρ (Kg/m3) 3750 0 0 0 0 

ν 0.26 0 0 0 0 
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3. Solution methodology 
 

The solving procedure is processed using the 

generalized differential quadrature method (GDQM). For 

this purpose, the r-th order derivative of function 𝑓(𝑥𝑖) is 

     
1







P

r k
r

ij ir
jx x

f x
C f x

x
 (12) 

k is the number of grid points along x direction and  is 

   

   

   

1

1 1

1,

; , 1, 2,..., n i j

;
 

  


  

i

ij

i j j

n

ij ij

j i j

M x
C i j and

x x M x

C C i j

 
(13) 

where M(x) is: 

   
1,

k

i i j

j j i

M x x x
 

   (14) 

The weighting coefficient C
(r)

, as 

     
 

 

   

1

1 1

1,

; , 1,2,..., , i j 2 r 1

; , 1,2,..., 1 r 1

r

r r ij

ij ij ij

i j

n
r r

ii ij

j i j

C
C r C C i j k and k

x x

C C i j k and k





 

 
       

  

     

 

(15) 

The distribution of the mesh points is obtained using the 

Chebyshev-Gauss-Lobatto technique as 

 

 

1
1 cos 1,2,3, ... ,

2 1
i

iL
x i k

N

  
        

  (16) 

The motion equations and boundary conditions of the 

bi-directional FG nanobeam (Eqs. (7) and (10)) are the 

combination of two matrixes. Then the stiffness matrixes 

can be calculated as 

     2 0 K M   (17) 

Then, the motion equation is solved by GDQM and 

applying the ,the weighting coefficients (Eq. (15)) to the 

linear motion equation yields 

           
21 1 1 22

0 1 0 0 1

1 1 1 1

n n n n

rs xx rs s xx rs s s s rs s s

s s s s

dN
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Using the boundary conditions of nanobeam (Eq. (10)) 

and by assembling the related matrixes to the boundary 

conditions and governing equations, the linear fundamental 

vibration of nanobeam can be calculated as below (Shafiei 

et al. 2016a) 

   
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dd db dd dbd d

bd bb bd bbb b

K K M M

K K M M

 


 
 (19) 

where b and d indexes indicate the boundary and domain, 

respectively and 𝜆 is the mode shape. 
 

 
4. Numerical result 
 

The evaluation of the thermo-mechanical vibrational 

behavior of 2D-FG porous nano-beam is performed through 

illustration of different figures and tables. The results are 

derived for FG, AFG and 2D-FG Timoshenko nano-beam 

considering two different types of porous materials.  The 

boundary condition is clamped in the presented figures and 

tables. The results show the effect of porosity volume 

fraction, FG and AFG power indexes, L/h, temperature 

gradient, temperature change and nonlocal value on the 

non-dimensional frequency of 2D-FG porous nanobeams.   

To have better illustration of the results, the non-

dimensional parameters are defined as below 

0e a

L
   (20a) 

 
4

2 20



  
xx pure ceramic

m L

D
 (20b) 

where μ and Ψ are the non-dimensional nonlocal parameter 

and non-dimensional frequency, respectively. The validity 

of the derived equations and the solution procedure are 

shown through the comparison of the results with the results 

of Wang et al. (2007) in Table 2. 

Fig. 3 is served to depict the effect of FG and AFG power 

indexes (nz and nx) on the non-dimensional frequency of 

perfect and porous local and nano-beams. It is seen that the 

increment of FG and AFG power indexes decrease the non-

dimensional frequency. Besides, it can be said that the effect of 

nx is more than that of nz and also, increasing FG or AFG 

power indexes, decrease the effect of AFG or FG power 

indexes respectively. It should be noted that the decrement of 

the non-dimensional frequency due to the increment of nx or nz 

happens because as the FG or AFG power indexes increase, the 

volume portion of metal which have lower stiffness increases. 

And this decreases the total stiffness of the nanobeam, which 

leads to the decrement of the frequency. Comparing Figs. 3(a) 

and 3(c) respectively with Figs. 3(b) and (d) shows that the 

frequency of local beam is higher than nanobeam, which is due 

to the lower stiffness of the nonlocal nanobeams. 

The non-dimensional frequency of FG and AFG porous 

types I and II local beams is shown with respect to the FG and 

AFG power indexes and for different values of porosity 

volume fractions (β). Similar to Fig. 3, it is seen in Fig. 4 that  
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the increment of FG and AFG power indexes decreases the 

non-dimensional frequency of local beam.Figs. 4(c) and 4(d) 

show that the non-dimensional frequency of local beam 

increases with the porosity volume fraction (  ) and the 

increment of FG or AFG power indexes decrease the 

dependency of frequency on the porosity volume fraction 

(  ). The more complex behavior of FGM-I local beam is 

shown in Figs. 4(a) and 4(b) where the effect of   

depends on the value of FG and AFG power indexes. The 

reason of this behavior is that the dependency of the non-

dimensional frequency of FGM-I on the FG or AFG power 

indexes is highly affected by   and as   increases, the 

effect of FG and AFG power indexes increases. Finally, this  

changes the effect of   in higher values of FG/AFG 

power indexes. 

 

 

 

 

Non-dimensional frequency of two dimensional FG 

(2D-FG) nanobeam is shown in Fig. 5 versus FG and AFG 

power indexes simultaneously. It is observed that increasing 

the porosity volume fraction (  ) increases the frequency 

of FGM-II nanobeams as the stiffness of the nanobeam 

increases with the porosity volume fraction. In addition, 

increment of FG/AFG power indexes and nonlocal 

parameter decreases the non-dimensional frequency as it 

decreases the stiffness. 

Figs. 6-8 show the non-dimensional frequency of 

nanobeam versus the temperature change respectively for 

different porosity volume fractions, different nonlocal values 

and different power indexes of temperature variation function. 

It is seen in Figs. 6-8 that the non-dimensional frequency 

decreases with the increment of temperature change, FG and 

AFG power indexes.  

Table 2 Comparison of the results of non-dimensional frequency (√ ) with Wang et al. (2007) 

  
Simply supported 

 
Clamped 

 
Clamped-Simply supported 

 
Clamped-Free 

μ=0 
Wang et al. (2007) 3.1416 

 
4.73 

 
3.9266 

 
1.8751 

Present 3.141589 
 

4.730024 
 

3.926595 
 

1.875102 

μ=0.1 
Wang et al. (2007) 3.0685 

 
4.5945 

 
3.8209 

 
1.8792 

Present 3.068528 
 

4.594441 
 

3.820884 
 

1.879161 

μ=0.3 
Wang et al. (2007) 2.68 

 
3.9184 

 
3.2828 

 
1.9154 

Present 2.680000 
 

3.918355 
 

3.282835 
 

1.915367 

μ=0.5 
Wang et al. (2007) 2.3022 

 
3.3153 

 
2.7899 

 
2.0219 

Present 2.302229 
 

3.315312 
 

2.789921 
 

2.02192 

 

Fig. 3 Non-dimensional frequency of clamped FG-Imperfect and porous nanobeams versus the FG power index 

when L/h=15 
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(d): Nonlocal,  = 0.2 and imperfect,  = 0.2
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Fig. 4 Non-dimensional frequency of FG and AFG porous-I and II clamped local beams (μ=0) when L/h=15 

 

Fig. 5 Non-dimensional frequency of 2D-FG porous-II clamped nanobeam versus FG/AFG power indexes when 

L/h=15, FG-II 
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Besides, it is seen in Fig. 6 that the increment of porosity 

volume fraction increases the non-dimensional frequency due 

to the increment of stiffness. 

Figs. 7 and 8 also depict the effect of αz, αx
 
and nonlocal 

parameter on the dependency of the non-dimensional 

frequency on temperature change. It is seen in Fig. 7 that 

increasing the nonlocal parameter increases the effect of 

temperature change on the frequency. In fact, it can be 

observed that the temperature have no significant effect on the 

frequency of local beam. On the other hand, it is shown if Fig. 

8 that the effect of temperature change decreases with the 

increment of power index of temperature (αz=αx=1) . 

The non-dimensional frequency of 2D-FG nanobeams in 

different values of FG and AFG power indexes, L/h and  

 

 

temperature change are given in Tables 3 and 4. Table 3 

shows the values when μ=β=0.1, αz=αx=1 and Table 4 

shows the non-dimensional frequencies of nanobeam when 

μ=0.2 and β=0.1 and αz=αx=1. It is shown that the 

increment of L/h increases the non-dimensional frequency. 

Also, the non-dimensional frequency decreases slightly 

with the increment of temperature change. And also, the 

effect of temperature change increases with the value of 

L/h. The effects of nz and nx are shown in Tables 3 and 4. It 

is seen that the increment of nx and/or nz decreases the non-

dimensional frequency as it decreases the stiffness. Also, 

increment of nx or nz, reduces the effect of the other one. It 

is also noted that the effect of nx is a bit more than that of 

nz. 

 

 

Fig. 6 Non-dimensional frequency of FG, AFG, and 2D-FG porous-II clamped nanobeams versus temperature 

change when μ=0.1, L/h=20, αz=αx=0.1, with uniform temperature gradient for different values of porosity 
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Fig. 7 Non-dimensional frequency of FG, AFG, and 2D-FG porous-II clamped nanobeams versus temperature change 

when β=0.1, L/h=40, αz=αx=0.1 with uniform temperature gradient for different values of nonlocal parameter 

Table 3 Non-dimensional frequency of 2D-FG porous-II nanobeam in different values of L/h and temperature change with 

uniform temperature gradient when μ=0.1, β=0.1 and αz=αx=1 

  
ΔT = 0 ΔT = 20 ΔT = 40 

  
nx=0 nx=0.1 nx=1 nx=10 nx=0 nx=0.1 nx=1 nx=10 nx=0 nx=0.1 nx=1 nx=10 

L/h=5 

nz=0 17.54208 16.44937 12.22371 9.711243 17.5286 16.43545 12.20835 9.695641 17.51502 16.42072 12.18961 9.675508 

nz=0.1 16.28193 15.41227 11.90479 9.673358 16.26811 15.39813 11.88918 9.657618 16.25353 15.38264 11.87 9.637284 

nz=0.5 13.67949 13.2049 11.1258 9.577812 13.66503 13.19031 11.10985 9.561877 13.64829 13.17308 11.08987 9.541179 

nz=1 12.3568 12.05092 10.65729 9.520231 12.34207 12.03612 10.64133 9.504282 12.32424 12.01799 10.62108 9.483468 

nz=2 11.30739 11.11866 10.24175 9.470203 11.29251 11.10373 10.22592 9.454323 11.27395 11.08498 10.2056 9.433495 

nz=10 9.974691 9.912385 9.638467 9.382344 9.959508 9.897166 9.622873 9.366627 9.939879 9.877423 9.602441 9.345825 

L/h=10 

nz=0 20.41425 19.15177 14.27557 11.32524 20.36408 19.09984 14.2189 11.26724 20.31352 19.04657 14.15744 11.20276 

nz=0.1 18.93205 17.92859 13.88903 11.27764 18.8805 17.8758 13.83109 11.21899 18.82762 17.82089 13.76804 11.15373 

nz=0.5 15.88893 15.34386 12.95911 11.16084 15.83474 15.28923 12.89934 11.10119 15.77709 15.23071 12.83373 11.03466 

nz=1 14.36716 14.01601 12.41463 11.09438 14.3119 13.96056 12.35466 11.03458 14.2521 13.90028 12.28847 10.96776 

nz=2 13.18713 12.96757 11.94548 11.04073 13.13139 12.91171 11.886 10.98112 13.07037 12.85039 11.82005 10.91439 

nz=10 11.68086 11.60207 11.25971 10.94264 11.62407 11.54514 11.20116 10.88353 11.56108 11.48191 11.13578 10.8172 

L/h=15 

nz=0 21.13043 19.82577 14.78944 11.72961 21.01817 19.70953 14.66253 11.59977 20.90466 19.59077 14.52838 11.46017 

nz=0.1 19.59232 18.5556 14.38528 11.67933 19.47694 18.43741 14.25542 11.54796 19.35904 18.31566 14.11781 11.40663 

nz=0.5 16.43882 15.87625 13.41669 11.55677 16.31742 15.75386 13.28256 11.42306 16.19067 15.62556 13.13957 11.27897 

nz=1 14.86826 14.50583 12.85343 11.48805 14.74443 14.38158 12.71882 11.35395 14.61377 14.25015 12.57483 11.20929 

nz=2 13.65772 13.43031 12.37178 11.43367 13.5328 13.30514 12.23829 11.29995 13.40003 13.1719 12.09511 11.15559 

nz=10 12.11042 12.0271 11.66632 11.33306 11.98315 11.89954 11.53498 11.20042 11.8467 11.76265 11.39353 11.05709 
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Fig. 8 Non-dimensional frequency of FG, AFG, and 2D-FG porous-II clamped nanobeams versus temperature 

change when β=0.1, μ=0.2, L/h=40 with different temperature gradients 

Table 4 Non-dimensional frequency of 2D-FG porous-II nanobeam in different values of L/h and temperature change when 

μ=0.2, β=0.1 and αz=αx=1 

  
ΔT = 0 ΔT = 20 ΔT = 40 

  
nx=0 nx=0.1 nx=1 nx=10 nx=0 nx=0.1 nx=1 nx=10 nx=0 nx=0.1 nx=1 nx=10 

L/h=5 

nz=0 15.28668 14.35044 10.62267 8.428844 15.26531 14.32832 10.59774 8.404003 15.24383 14.30552 10.56981 8.374965 

nz=0.1 14.18486 13.441 10.35072 8.399131 14.16289 13.41844 10.32563 8.374164 14.14019 13.39469 10.29736 8.344948 

nz=0.5 11.913 11.50893 9.683651 8.324495 11.88991 11.48555 9.658379 8.299336 11.8647 11.45977 9.629503 8.269788 

nz=1 10.76271 10.50292 9.28142 8.280073 10.73919 10.4792 9.256215 8.254895 10.71279 10.45245 9.227146 8.225242 

nz=2 9.854395 9.693997 8.924767 8.242174 9.830642 9.67011 8.899764 8.217065 9.803503 9.642735 8.870695 8.187415 

nz=10 8.700618 8.64689 8.404193 8.17438 8.676421 8.622614 8.379438 8.149423 8.648178 8.59423 8.35029 8.119818 

L/h=10 

nz=0 17.71591 16.64001 12.36655 9.790316 17.63504 16.556 12.27459 9.697233 17.55335 16.47017 12.17701 9.596639 

nz=0.1 16.42798 15.57359 12.03587 9.752816 16.34465 15.48785 11.94265 9.65907 16.2595 15.39946 11.8435 9.557705 

nz=0.5 13.78541 13.32239 11.23807 9.661078 13.69755 13.23333 11.14296 9.56619 13.60561 13.13974 11.0412 9.463437 

nz=1 12.46585 12.16794 10.76982 9.609369 12.37625 12.0776 10.67448 9.514166 12.28142 11.98175 10.5721 9.410973 

nz=2 11.44452 11.25828 10.36597 9.568196 11.35421 11.16746 10.27115 9.473008 11.25787 11.07044 10.16903 9.369759 

nz=10 10.14072 10.07356 9.7736 9.491681 10.04891 9.981432 9.679473 9.396613 9.950043 9.88215 9.577644 9.293395 

L/h=15 

nz=0 18.32116 17.2104 12.80258 10.13141 18.13974 17.0218 12.59637 9.922352 17.95534 16.82861 12.37903 9.69861 

nz=0.1 16.98672 16.10465 12.45673 10.09174 16.79968 15.91208 12.24747 9.88111 16.60803 15.71358 12.02648 9.655587 

nz=0.5 14.25163 13.77376 11.62565 9.995297 14.05415 13.57354 11.41174 9.781935 13.84841 13.36429 11.18477 9.553228 

nz=1 12.89042 12.58284 11.14109 9.941651 12.68894 12.37968 10.92653 9.727484 12.47724 12.1658 10.69823 9.497779 

nz=2 11.84219 11.64928 10.72608 9.899675 11.63908 11.44504 10.51265 9.685449 11.42435 11.22884 10.28505 9.455602 

nz=10 10.50229 10.43149 10.11635 9.820805 10.29579 10.22427 9.904464 9.60669 10.07567 10.00326 9.677743 9.376892 
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(a): Uniform temperature gradient
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(b): x = 0.5, z = 0.1
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(c): x = 0.1, z = 0.5
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Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams 

4. Conclusions 
 

The thermal vibrational analysis is performed on two-

dimensional functionally graded (2D-FG) porous 

nanobeams based on Timoshenko beam theory and 

Eringen‘s nonlocal elasticity theory. The results are 

obtained using the generalized differential quadrature 

method (GDQM) and the boundary condition is taken as 

clamped-clamped.  The main results are briefly explained 

here: 

 Increasing nx and nz decrease the frequency. Also, the 

effect of nx or nz decreases by increment of the other 

one. 

 Increasing the 2D-FG power indexes, decreases the 

effect of porosity volume fraction in porous-II. 

 The effect of porosity volume fraction of porous-I is 

vice versa in low and high values of 2D-FG power 

indexes. 

 Increasing the power index of the temperature variation 

function (αz and αx), porosity volume fraction and also 

nonlocal parameter decrease the dependency of the 

non-dimensional frequency on the temperature change. 

 Increment of L/h and nonlocal parameter increases the 

non-dimensional frequency. 

 Increment of L/h does not have any effect on the 

dependency of the critical buckling temperature on 2D-

FG power indexes. 

 The non-dimensional frequency decreases with the 

increment of temperature change. 
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