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1. Introduction 
 

It is noted long that sandwich structures are widely 

employed in areas of aerospace, marine, construction, 

transportation, and wind energy systems due to their 

outstanding mechanical characteristics (Vinson 2001, 2005, 

Tian et al. 2016). Although sandwich structures provides 

the benefits over other kinds of structures, the abrupt 

variation in material characteristics within the interfaces 

between the face sheets and the core can lead in high 

interlaminar stresses, often resulting to delamination, which 

is a great problem in classical sandwich structures. One way 

to overcome this problem is the use of functionally graded 

material (FGM). FGM presents non-homogenous composite 

material where the material characteristics are gradually 

changed from one surface of the structure to the other, 

which leads to eliminating the above indicated abrupt 

variations of mechanical properties (Koizumi 1997, Shaw 

1998, Birman et al. 2013, Bouderba et al. 2013, 

Swaminathan et al. 2015, Akbaş 2015, Arefi 2015a, b, Arefi 

and Allam 2015, Zemri et al. 2015, Kar et al. 2015a, b, 

Bouguenina et al. 2015, Darabi and Vosoughi 2016, Celebi 

et al. 2016, Chikh et al. 2016, Trinh et al. 2016, Turan et al. 

2016, Ebrahimi and Shafiei 2016, Bounouara et al. 2016, 

Barka et al. 2016, Mahapatra et al. 2017, El-Haina et al. 

2017, Zidi et al. 2017). 

A number of applications of functionally graded (FG) 

structures have led the development of various plate/beam 

models to examine accurately their bending, stability and 
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vibration responses. These theories can be generally 

presented by: classical plate theory (CPT) neglecting the 

effects of transverse shear deformation (Feldman and 

Aboudi 1997, Javaheri and Eslami 2002, Mahdavian 2009, 

Chen et al. 2006), first-shear deformation theory (FSDT) 

with linear distribution of displacements (Chen et al. 2006, 

Praveen and Reddy 1998, Croce and Venini 2004, Efraim 

and Eisenberger 2007, Hosseini-Hashemi et al. 2011, Panda 

and Katariya 2015, Meksi et al. 2015, Adda Bedia et al. 

2015, Bouderba et al. 2016, Bellifa et al. 2016, Ebrahimi 

and Jafari 2016, Hadji et al. 2016), higher-order shear 

deformation theory (HSDT) with nonlinear variations of 

displacements within the structure thickness such as third-

order shear deformation plate theory (TSDT), sinusoidal 

shear deformation plate theory (SSDT), hyperbolic shear 

deformable plate theory (HDT) (Reddy 2000, Jha et al. 

2013, Reddy 2011, Talha and Singh 2010, Matsunaga 2008, 

El Meiche et al. 2011, Bourada et al. 2012, Tounsi et al. 

2013, Zidi et al. 2014, Ait Atmane et al. 2015, Mahi et al. 

2015, Mahapatra and Panda 2015, Merazi et al. 2015, 

Belkorissat et al  2015, Bennai et al. 2015, Nguyen et al. 

2015, Mahapatra et al. 2015, Bakora and Tounsi 2015, 

Bousahla et al. 2016, Barati and Shahverdi 2016, Mouaici 

et al. 2016, Beldjelili et al. 2016, Mahapatra et al. 2016a, b, 

c, d, Kar et al. 2016, Mahapatra and Panda 2016, Becheri et 

al. 2016, Baseri et al. 2016, Laoufi et al. 2016, 

Mohammadimehr et al. 2016, Ebrahimi and Habibi 2016, 

Houari et al. 2016, Ahouel et al. 2016, Raminnea et al. 

2016, Saidi et al. 2016, Ghorbanpour Arani et al. 2016, El-

Hassar et al. 2016, Benferhat et al. 2016, Javed et al. 2016, 

Mouffoki et al. 2017, Taibi et al. 2017, Bellifa et al. 2017, 

Kar et al. 2017, Tounsi et al. 2016, Klouche et al. 2017), 

quasi-3D theories taking into account the effect of normal 
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stretching (Carrera et al. 2008, Wu and Chiu 2011, Chen et 

al. 2009, Hebali et al. 2014, Bourada et al. 2015, Akavci 

2016). Moreover, owing to smooth distributions of material 

characteristics, FG sandwich plates have recently been 

proposed to overcome interface problems between faces 

and core found in conventional sandwich structures. Many 

plate models have been employed to predict behaviors of 

FG sandwich plates: static behaviors (Neves et al. 2013, 

Hamidi et al. 2015, Carrera et al. 2011), vibration and 

buckling behaviors (Neves et al. 2013, Carrera et al. 2011, 

Li et al. 2008, El Meiche et al. 2011, Sobhy 2013, 

Natarajan and Manickam 2012, Ait Amar Meziane et al. 

2014, Bennoun et al. 2016). 

The objective of this article is to propose a new 

hyperbolic shear deformation theory for vibration and 

buckling analyses of FG sandwich plates. The present 

theory differs from other HSDTs because, in proposed 

theory the displacement field which use undetermined 

integral terms and contains only four variables which is not 

considered by the other articles. Equations of motion 

derived here are solved for sandwich plates with FG faces. 

Closed-form solutions are obtained to predict the critical 

buckling loads and natural frequencies of simply supported 

FG sandwich plates. Comparison studies are performed to 

check the validity of the present results. 

 

 

2. Problem formulation 
 

Consider a rectangular FG sandwich plate with uniform 

thickness h , length a  and width b . The Cartesian 

coordinate system xyz  is considered such that the xy  

plane ( 0z  ) coincides with the mid-surface of the 

sandwich plate. Layer 1, 2, 3 denote the bottom, middle and 

top layer, respectively. The sandwich core is isotropic (fully 

ceramic) and face sheets are made of a FGM through the 

thickness. The bottom face sheet varies from a metal-rich 

surface ( 0z h ) to a ceramic-rich surface while the top face 

sheet changes from a ceramic-rich surface to a metal-rich 

surface ( 3z h ), as presented in Fig. 1.  

There are no interfaces between core and face sheets. 

The volume fraction of sandwich plate is expressed as 
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where ( )nV  is the volume fraction of n-th layer and p  is 

a parameter that denotes the power index and takes values 

greater than or equal to zero. 

The effective material properties for n-th layer, like the 

Young's modulus ( )nE , the Poisson's ratio 
( )n  and the 

mass density 
( )n  at a point can be obtained by the linear 

rule of mixture (Marur 1999, Attia et al. 2015) as 

 ( ) ( )
1 2 2( ) ( )n nP z P P V z P    (2) 

where ( )nP  is the effective material property of FGM 

of layer n. 1P  and 2P  are the properties of the top an

d bottom faces of layer 1, respectively, and vice versa

 for layer 3 depending on the volume fraction ( )nV , 

( 1,2,3n  ). 

 

2.1 Kinematics and strains 
 

In this study, further simplifying consideration are taken 

to the classical HSDTs so that the number of variables is 

reduced. The displacement field of the classical HSDTs is 

written by  
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where 0u ; 0v ; 0w , x , y  are five unknown 

displacements of the mid-plane of the plate, )(zf  denotes 

shape function representing the variation of the transverse 

shear strains and stresses within the thickness. By 

considering that  dxyxx ),( and  dyyxy ),( , 

the displacement field of the present theory can be written 

in a simpler form as (Bourada et al. 2016, Hebali et al. 2016, 

Merdaci et al. 2016, Chikh et al. 2017, Besseghier et al. 

2017, Fahsi et al. 2017, Khetir et al. 2017, Meksi et al. 

2017) 
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In this study, the present HSDT is obtained by setting 




























h

z
hhzzzf  tanh

2

3

2

1
sec

2

3
1 )( 2 

 (5) 

It can be observed that the displacement field in 

equation (4) uses only four variables ( 0u , 0v , 0w  and  ). 

The nonzero strains associated with the displacement field 

in Eq. (4) are 
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where 
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and 

dz

zdf
zg

)(
)(   (6c) 

The integrals used in the above equations shall be 

resolved by a Navier type procedure and can be expressed 

as follows 
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where the coefficients 'A  and 'B  are expressed 

according to the type of solution used, in this case via 

Navier method. Therefore, 'A , 'B , 1k  and 2k  are 

expressed as follows 
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where   and   are defined in expression (24). 

For elastic and isotropic FGMs, the constitutive 

relations can be written as 
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(9) 

where ( x , y , xy , yz , xz ) and ( x , y , xy , 

yz , xz ) are the stress and strain components, 

respectively. Using the material properties defined in Eq. 

(2), stiffness coefficients, ijC , can be given as 
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2.2 Equations of motion 
 

Hamilton’s principle is herein employed to deduce the 

equations of motion (Ait Yahia et al. 2015) 

 

t

dtKVU

0

 )   (0   (11) 

where U  is the variation of strain energy; V   is the 

variation of the external work done by external load applied 

to the plate; and K  is the variation of kinetic energy. 

The variation of strain energy of the plate is expressed 

by 

 

Fig. 1 FGM face sheets and homogeneous core. 

391



 

Mohamed Sekkal, Bouazza Fahsi, Abdelouahed Tounsi and S.R. Mahmoud 

 



 0                  

             

       

00000

000000











dARRLSLSLS

kMkMkMNNN

dVU

xzxzyzyzxyxyyyxx

A

xyxyyyxxxyxyyyxx

V

xzxzyzyzxyxyyyxx






 

(12) 

where A  is the top surface and the stress resultants N , 

M , S , and R  are defined by 
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where nh  and 1nh  are the top and bottom z-coordinates of 

the nth layer       

The variation of the external work can be written as 
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where (
000 ,, xyyx NNN ) are in-plane applied loads. 

The variation of kinetic energy of the plate can be 

written as 
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where dot-superscript convention indicates the 

differentiation with respect to the time variable t ; )(z  

is the mass density given by Eq. (1); and ( iI , iJ , iK ) are 

mass inertias expressed by 
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By substituting Eqs. (12), (14) and (15) into Eq. (11), 

the following can be derived: 
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(17) 

Substituting Eq. (5) into Eq. (9) and the subsequent 

results into Eqs. (13), the stress resultants are obtained in 

terms of strains as following compact form 
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and stiffness components are defined as 
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By substituting Eq. (18) into Eq. (17), the equations of 

motion can be expressed in terms of displacements ( 0u , 

0v , 0w ,  ) and the appropriate equations take the form 
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where ijd , ijld  and ijlmd  are the following differential 

operators 
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3. Close-form solutions 
 

The Navier solution procedure is employed to determine 

the analytical solutions for which the displacement 

variables are expressed as product of arbitrary parameters 

and known trigonometric functions to respect the equations 

of motion and boundary conditions. 
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where  is the frequency of free vibration of the plate, 

1i  the imaginary unit. 
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am /  and bn /   (24) 

Considering that the plate is subjected to in-plane 

compressive forces of form: 0
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xy NN  (here   are non-dimensional 

load parameter). Substituting Eq. (23) into Eq. (21), the 

following problem is obtained 
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Eq. (25) is a general form for stability and free vibration 

analysis of FG sandwich plates under in-plane loads. The 

critical buckling loads ( crN ) can be determined from the 

stability problem 0ijS  while the free vibration 

problem is achieved by omitting in-plane loads. 

 

 

4. Numerical results and discussion 
 

In this section, natural frequencies and critical buckling 

loads of simply supported FG sandwich plates are presented 

and compared with existing solutions to check the accuracy 

of the proposed new HSDT. The FG plate is considered to 

be made of aluminum and alumina with the following 

material characteristics: 

 Ceramic ( 1P : Alumina, Al2O3): 1 380E  GPa, 

0.3  , 1 3800  kg/m
3
.    

 Metal ( 2P : Aluminum, Al): 2 70E  GPa, 

0.3  , 2 2707  kg/m
3
. 

For convenience, the following non-dimensional 

parameters are employed: 

2
0

0

b

h E


  ,  

2

2
0100

Na
N

h E
  (27) 

Where 0 1  kg/m
3
 and 0 1E  GPa. 

 

4.1 Results of free vibration analysis 
 

The natural frequencies of the structure are computed 

using Eq. (25) as eigenvalue problem by omitting in-plane 

loads. The non-dimensional fundamental frequencies of FG 

sandwich plates are presented here to estimate the accuracy 

of the presented new HSDT. 

First, for the verification purpose, the results determined 

by the present HSDT are compared with other theories 

existing in the literature such as CPT, FSDT, PSDT, SSDT, 

HySDT and three-dimensional linear theory of elasticity by 

Li et al. (2008). The description of various displacement 

models is presented in Table 1. We also take the shear 

correction factor 5 / 6K   in FSDT. 

The results of the FG sandwich plates with five material 

distributions are compared in Table 2 with the results based 

on CPT, FSDT, PSDT, SSDT, HySDT and 3D elasticity. 

Young’s modulus E  and mass density   are based on 

the power-law distribution (Eq. (2)). Table 2 demonstrates a 

 

 

good agreement by comparisons of FG plates of five 

different gradient index with other HSDTs. Hence, the 

proposed theory (with only four unknown functions) gives 

comparable results to those determined with higher order 

theories with five variables. Compared to the 3D linear 

theory of elasticity (Li et al. 2008), the proposed theory 

gives more accurate results than the other theories such as 

PSDT and SSDT and especially for the case of non-

symmetric (2–1–1) and (2–2–1). 

The second comparison is presented in Table 3 for both 

the symmetric (1–2–1) and non-symmetric (2–2–1) types of 

square FG sandwich plates. It can be seen that increasing 

the mode number lead to an increase of frequencies. Again, 

we found that the natural frequencies obtained by the 

present HSDT are in a good agreement with other shear 

deformation theories. 
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Fig. 2 Fundamental frequency ( ) versus the side-to-

thickness ratio ( /b h ) of symmetric and non-symmetric 

square FG sandwich plates for various values of p : (a) 

The (2–1–2) FG sandwich plate and (b) the (2–1–1) FG 

sandwich plate 

Table 1 Displacement models 

Model Theory Unknown 

function 

CPT Classical plate theory 3 

FSDT First shear deformation plate theory (Mindlin 1951) 5 

PSDT Parabolic shear deformation plate theory (Reddy 2011) 5 

SSDT Sinusoidal shear deformation plate theory (Touratier 1991) 5 

HySDT Hyperbolic shear deformation plate theory (El Meiche et al. 2011) 4 

Present New HSDT 4 
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Table 2 Comparisons of natural fundamental frequency parameters    simply supported square FG plates with other 

theories ( / 0.1h b  ) 

 
Theory   

1–0–1 2–1–2 2–1–1 1–1–1 2–2–1 1–2–1 

0 CPT 1.87359 1.87359 1.87359 1.87359 1.87359 1.87359 

FSDT 1.82442 1.82442 1.82442 1.82442 1.82442 1.82442 

PSDT 1.82445 1.82445 1.82445 1.82445 1.82445 1.82445 

SSDT 1.82452 1.82452 1.82452 1.82452 1.82452 1.82452 

Elasticity  – –  –  –  –  –  

HySDT 1.82449 1.82449 1.82449 1.82449 1.82449 1.82449 

Present 1.82449 1.82449 1.82449 1.82449 1.82449 1.82449 

0.5 CPT 1.47157 1.51242 1.54264 1.54903 1.58374 1.60722 
FSDT 1.44168 1.48159 1.51035 1.51695 1.55001 1.57274 

PSDT 1.44424 1.48408 1.51253 1.51922 1.55199 1.57451 

SSDT 1.44436 1.48418 1.51258 1.51927 1.55202 1.57450 
Elasticity 1.44614 1.48608 1.50841 1.52131 1.54926 1.57668 

HySDT 1.44419 1.48405 1.50636 1.51922 1.54714 1.57458 

Present 1.44432 1.48415 1.50644 1.51925 1.54717 1.5745 

1 CPT 1.26238 1.32023 1.37150 1.37521 1.43245 1.46497 

FSDT 1.24031 1.29729 1.34637 1.35072 1.40555 1.43722 

PSDT 1.24320 1.30011 1.34888 1.35333 1.40789 1.43934 
SSDT 1.24335 1.30023 1.34894 1.35339 1.40792 1.43931 

Elasticity 1.24470 1.30181 1.33511 1.35523 1.39763 1.44137 

HySDT 1.24310 1.30004 1.33328 1.35331 1.39559 1.43940 
Present 1.2433 1.30019 1.33344 1.35337 1.39567 1.43931 

5 CPT 0.95844 0.99190 1.08797 1.05565 1.16195 1.18867 

FSDT 0.94259 0.97870 1.07156 1.04183 1.14467 1.17159 
PSDT 0.94598 0.98184 1.07432 1.04466 1.14731 1.17397 

SSDT 0.94630 0.98207 1.07445 1.04481 1.14741 1.17399 

Elasticity 0.94476 0.98130 1.02942 1.04532 1.10983 1.17567 
HySDT 0.94574 0.98166 1.03033 1.04455 1.10875 1.17397 

Present 0.94621 0.98201 1.03069 1.04477 1.10904 1.17398 

10 CPT 0.94321 0.95244 1.05185 1.00524 1.11883 1.13614 

FSDT 0.92508 0.93962 1.03580 0.99256 1.10261 1.12067 
PSDT 0.92839 0.94297 1.03862 0.99551 1.10533 1.12314 

SSDT 0.92875 0.94232 1.04558 0.99519 1.04154 1.13460 

Elasticity 0.92727 0.94078 0.98929 0.99523 1.06104 1.12466 
HySDT 0.92811 0.94275 0.99184 0.99536 1.06081 1.12311 

Present 0.92864 0.94453 0.99222 0.99564 1.06115 1.12317 

Table 3 Comparisons of natural frequency parameters   simply supported square FG sandwich plates with ot

her theories ( 2p  , / 0.1h b  ) 

m  n  
1–2–1 

CPT FSDT PSDT SSDT HySDT Present 

1 1 1.32200 1.30020 1.30246 1.30244 1.30250 1.30244 

1 2 3.26976 3.14452 3.15698 3.15686 3.15726 3.15692 

2 2 5.17700 4.88021 4.90879 4.90849 4.90978 4.90895 

1 3 6.42690 5.98487 6.02667 6.02622 6.02866 6.02741 

2 3 8.27066 7.57215 7.63674 7.63601 7.64151 7.63953 

1 4 10.67355 9.57284 9.67233 9.67121 9.68465 9.68143 

3 3 11.26475 10.05424 10.16314 10.16193 10.17821 10.17467 

2 4 12.43611 10.99612 11.12461 11.12321 11.14644 11.1422 

3 4 15.30248 13.23801 13.41936 13.41755 13.46652 13.46038 

4 4 19.17579 16.13722 16.40035 16.39820 16.50693 16.49783 

m  n  
2–2–1 

CPT FSDT PSDT SSDT HySDT Present 

1 1 1.28650 1.26524 1.26775 1.26780 1.24375 1.24392 

1 2 3.18172 3.05968 3.07353 3.07382 3.01698 3.01796 

2 2 5.03724 4.74815 4.77998 4.78065 4.69456 4.69689 

1 3 6.25311 5.82264 5.86924 5.87022 5.76658 5.76981 

2 3 8.04649 7.36640 7.43850 7.44002 7.31319 7.31812 

1 4 10.38339 9.31198 9.42315 9.42552 9.27437 9.28178 

3 3 10.95830 9.78007 9.90179 9.90439 9.74847 9.75652 

2 4 12.09731 10.69588 10.83951 10.84261 10.67885 10.68823 

3 4 14.88418 12.87543 13.07809 13.08260 12.91005 12.92283 

4 4 18.64932 15.69346 15.98701 15.99393 15.83764 15.85526 
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In general, the frequencies given by the CPT are much 

higher than those calculated from the shear deformation 

theories. This implies the well-known fact that the results 

computed by the CPT are grossly in error for a thick plate 

and/or for higher mode numbers. From these results (Tables 

2 and 3), the frequencies decrease as the gradient index p  

increases and as the core thickness, with respect to the total 

thickness of the plate, decreases. 

The variations in non-dimensional fundamental 

frequencies of FG sandwich plates for different gradient 

index p  as a function of the side-to-thickness ratio is 

presented in Fig. 2 by employing the proposed theory. It can 

be deduced from this figure that the fundamental frequency 

is reduced with increasing the gradient index p . The 

maximum values are found for the ceramic plates while the 

minimum ones are for the metal plates.  

 

4.2 Results of buckling analysis 
 

The critical stability loads of the structure are computed 

using Eq. (25) as an eigenvalue problem by omitting mass 

matrix. The critical buckling forces of FG sandwich plates 

are illustrated here to demonstrate the accuracy of the 

proposed HSDT. 
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Fig. 3 Non-dimensional critical buckling load ( N ) versus 

the side-to-thickness ratio ( /b h ) of  (2–1–2) FG 

sandwich plates for various values of p : (a) Plate 

subjected to uniaxial compressive load ( 0  ) and (b) 

Plate subjected to biaxial compressive load ( 1  ) 

Tables 4 and 5 give critical buckling forces of various 

types of FG sandwich plates by employing different plate 

models and different values of the gradient index p . It can 

be deduced from these two tables that the results of the 

proposed model are in an excellent agreement with those 

reported by other shear deformation theories. Hence, the 

proposed model (with only four unknown functions) 

provides comparable results to those determined with 

higher order theories with five unknown functions. From 

these results, it can be seen that the critical buckling loads 

reduce with increasing the gradient parameter decrease p . 

In general, the fully ceramic plates produce the higher 

critical buckling loads. The uniaxial buckling load may be 

twice the biaxial one and this irrespective of the used value 

of p  and the type of the FG sandwich plate. 

Fig. 3 and 4 present the variation of the critical buckling 

loads of the symmetric (1–2–1) and non-symmetric (2–2–1) 

types of square FG sandwich plates versus side-to-thickness 

ratio by employing the proposed new theory. It can be seen 

from these figures that the critical buckling load decreases 

with increasing the gradient index p . Indeed, the 

maximum values are found for the ceramic plates while the 

minimum ones are for the metal plates.  
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Fig. 4 Non-dimensional critical buckling load ( N ) versus 

the side-to-thickness ratio ( /b h ) of  (2–1–1) FG 

sandwich plates for various values of p : (a) Plate 

subjected to uniaxial compressive load ( 0  ) and (b) 

Plate subjected to biaxial compressive load ( 1  ) 
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Table 4 Comparisons of non-dimensional critical buckling load N  of square FG plates subjected to uniaxial 

compressive load ( 0  , / 0.1h b  ) 

p  Theory N  

1–0–1 2–1–2 2–1–1 1–1–1 2–2–1 1–2–1 

0 CPT 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791 

FSDT 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449 

PSDT 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495 

SSDT 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606 

HySDT 13.00552 13.00552 13.00552 13.00552 13.00552 13.00552 

Present 13.00552 13.00552 13.00552 13.00552 13.00552 13.00552 

0.5 CPT 7.65398 8.25597 8.56223 8.78063 9.18254 9.61525 

FSDT 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517 

PSDT 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681 

SSDT 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670 

HySDT 7.36380 7.94046 8.22471 8.43647 8.81029 9.21757 

Present 7.36523 7.94155 8.2251 8.43684 8.81016 9.21663 

1 CPT 5.33248 6.02733 6.40391 6.68150 7.19663 7.78406 

FSDT 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365 

PSDT 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656 

SSDT 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629 

HySDT 5.16629 5.83941 6.19371 6.46450 6.94952 7.50719 

Present 5.16804 5.84083 6.19437 6.46515 6.94964 7.5063 

5 CPT 2.73080 3.10704 3.48418 3.65732 4.21238 4.85717 

FSDT 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475 

PSDT 2.65821 3.04257 3.40351 3.57956 4.11209 4.73467 

SSDT 2.66006 3.04406 3.40449 3.58063 4.11288 4.73488 

HySDT 2.65679 3.04141 3.40280 3.57874 4.11157 4.73463 

Present 2.65951 3.04362 3.40419 3.58031 4.11263 4.7348 

10 CPT 2.56985 2.80340 3.16427 3.27924 3.79238 4.38221 

FSDT 2.46904 2.72626 3.07428 3.27521 3.68890 4.26040 

PSDT 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991 

SSDT 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175 

HySDT 2.48574 2.74498 3.09111 3.19373 3.70686 4.27964 

Present 2.48966 2.74256 3.09263 3.19556 3.70812 4.28014 

Table 5 Comparisons of non-dimensional critical buckling load N  of square FG plates subjected to biaxial 

compressive load ( 1  , / 0.1h b  ) 

p  Theory N  

1–0–1 2–1–2 2–1–1 1–1–1 2–2–1 1–2–1 

0 CPT 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896 

FSDT 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224 

PSDT 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248 

SSDT 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303 

HySDT 6.50276 6.50276 6.50276 6.50276 6.50276 6.50276 

Present 6.50276 6.50276 6.50276 6.50276 6.50276 6.50276 

0.5 CPT 3.82699 4.12798 4.28112 4.39032 4.59127 4.80762 

FSDT 3.66866 3.95660 4.10117 4.20517 4.39336 4.59758 

PSDT 3.68219 3.95660 4.11235 4.21823 4.40519 4.60878 

SSDT 3.68248 3.97097 4.112269 4.21856 4.40519 4.60835 

HySDT 3.68190 3.97023 4.11236 4.21823 4.40514 4.60878 

Present 3.68261 3.97078 4.11255 4.21842 4.40508 4.60832 

1 CPT 2.66624 3.01366 3.20195 3.34075 3.59831 3.89203 

FSDT 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182 

PSDT 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328 

SSDT 2.58423 2.92060 3.090731 3.23270 3.47490 3.75314 

HySDT 2.58315 2.91970 3.09686 3.23225 3.47476 3.75359 

Present 2.58402 2.92041 3.09719 3.23258 3.47482 3.75315 

5 CPT 1.36540 1.55352 1.74209 1.82866 2.10619 2.42859 

FSDT 1.31921 1.51126 1.69269 1.77979 2.04642 2.35737 

PSDT 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734 

SSDT 1.33003 1.52203 1.70224 1.79032 2.05644 2.36744 

HySDT 1.32839 1.52071 1.70140 1.78937 2.05578 2.36731 

Present 1.32976 1.52181 1.7021 1.79015 2.05632 2.3674 

10 CPT 1.28493 1.40170 1.58214 1.62962 1.89619 2.19111 

FSDT 1.23452 1.36313 1.53714 1.58760 1.84445 2.13020 

PSDT 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995 

SSDT 1.24475 1.37422 1.56721 1.59728 1.57287 2.19089 

HySDT 1.24287 1.37249 1.54556 1.59687 1.85343 2.13982 

Present 1.24435 1.37374 1.54631 1.59779 1.85406 2.14007 
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5. Conclusions 
 

A new HSDT has been proposed for the buckling and 

free vibration analyses of FG sandwich plates. By assuming 

further simplifying considerations to the conventional 

HSDTs, with introducing undetermined integral term, the 

number of variables and equations of motion of the 

proposed theory are reduced by one, and thus, make this 

formulation simple and efficient to use. Analytical solutions 

are found for simply-supported sandwich plates to examine 

the critical buckling load and natural frequencies for various 

gradient index and side-to-thickness and skin-core-skin 

thickness ratios. A good agreement between the computed 

results and those reported by existing shear deformation 

theories is demonstrated within several numerical examples 

which shows the accuracy of the proposed theory in 

predicting the stability and vibration responses of FG 

sandwich plates. An improvement of present formulation 

will be considered in the future work to consider the 

thickness stretching effect by using quasi-3D shear 

deformation models (Bessaim et al. 2013, Bousahla et al. 

2014, Belabed et al. 2014, Fekrar et al. 2014, Hebali et al. 

2014, Meradjah et al. 2015, Larbi Chaht et al. 2015, Hamidi 

et al. 2015, Bourada et al. 2015, Bennoun et al. 2016, 

Draiche et al. 2016, Benbakhti et al. 2016, Benahmed et al. 

2017, Ait Atmane et al. 2017, Benchohra et al. 2017, 

Bouafia et al. 2017) and the wave propagation problem 

(Mahmoud et al. 2015, Ait Yahia et al. 2015, Boukhari et 

al. 2016). 
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