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1. Introduction 
 

Classical continuum models, like beam and shell 

theories, do not admit intrinsic size dependence such as in 

the elastic solutions of inclusions and inhomogeneities. The 

small size scales associated nanotechnology are often 

sufficiently small to call the applicability of classical 

continuum models into question. In structures with 

nanometer scales, size effects often become prominent, the 

cause of which need to be explicitly addressed with an 

increasing interest in the general area of nanotechnology 

(Sharma et al. 2003). The modeling of such a size-

dependent structures has become an interesting subject of 

some researchers in this field (Sheehan and Lieber 1996, 

Yakobson and Smalley 1997). It is thus concluded that the 

classical continuum models at very small scales cannot be 

used and their applicability is questionable, since the 

material microstructure at small size, such as lattice spacing 

between individual atoms, becomes increasingly important 

and the discrete structure of the material can no longer be 

homogenized into a continuum. Therefore, newly proposed  
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continuum model rather than the classical continuum 

models may be an alternative to taking into account the 

scale effect in the investigations of nanostructures. 

In one of these newly continuum model, well-known as 

nonlocal elasticity theory, the scale effect was accounted in 

elasticity by assuming the stress at a reference point is 

considered to be a functional of the strain field at every 

point in the body (Eringen 1976). Up to now, several types 

of researches have been done on the nonlocal elasticity 

theory (Bounouara et al. 2016, Ahouel et al. 2016, 

Belkorissat et al. 2015, Shahsavari et al. 2017, Shahsavari 

and Janghorban 2017). In this theory, the internal size scale 

could be considered in the fundamental equations simply as 

a material parameter. (Peddieson et al. 2003) proposed the 

application of nonlocal elasticity models in nanostructures.  

They developed the Euler–Bernoulli beam model based 

on nonlocal elasticity theory and concluded that nonlocal 

continuum mechanics could potentially play a useful role in 

nanotechnology applications. Further applications of the 

nonlocal continuum mechanics have been employed in 

studying the mechanical behavior of nanostructures. The 

free vibration analysis of rotating axially functionally 

graded nanobeams under an in-plane nonlinear thermal 

loading was provided by (Azimi et al. 2017). Their results 

showed that the fundamental frequency of AFG nanobeam 

decreases with nonlocal value. (Amara et al. 2010) 

proposed nonlocal elasticity model for investigation the 

buckling of multiwalled carbon nanotubes under 

temperature field. Their results showed that the small scale 

effect reduces the critical buckling strain. (Nami et al. 
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2015) investigated the thermal buckling analysis of 

functionally graded rectangular nanoplates by using 

nonlocal elasticity theory and third-order shear deformation 

theory. In their studies, results showed that the critical 

buckling temperatures of piezoelectric nanoplates under 

nonlinear temperature distribution decreases with increase 

nonlocal parameter. (Chaht et al. 2015) provided the size-

dependent bending and buckling behaviors of nanobeams 

made of functionally graded materials (FGMs) including 

the thickness stretching effect. In their studies a Navier-type 

solution is developed for simply-supported boundary 

conditions, and exact expressions were proposed for the 

deflections and the buckling load. (Heireche et al. 2010) 

investigated the nonlocal elasticity effect on vibration 

characteristics of protein microtubules. Also, the vibration 

characteristics of protein microtubules were examined 

based on a nonlocal Timoshenko beam model and using the 

wave propagation approach. (Murmu et al. 2012) proposed 

nonlocal elasticity model for investigation the vibration 

response of double-walled carbon nanotubes subjected to an 

externally applied longitudinal magnetic field. Also, 

(Murmu et al. 2013) examined the effect of in-plane 

magnetic field on the transverse vibration of single layer 

graphene sheets. In their study, governing equations of 

SLGS by considering the effect of in-plane magnetic field 

was obtained via nonlocal elasticity theory and Maxwell’s 

relation. And, again (Murmu et al. 2014) on the basis of 

nonlocal elasticity theory have studied the influence of a 

transverse magnetic field on the axial vibration of nanorods 

such as carbon nanotubes. (Daneshmehr and Rajabpoor 

2014) examined the stability analysis of size dependent 

functionally graded nanoplates on the basis of nonlocal 

elasticity and higher order plate theories including different 

boundary conditions. 

One of the other theories that consider the small-scale 

effect is the gradient elasticity theory. For the most common 

form of strain gradient elasticity theory, stresses are 

explained by the kinematic parameters effective on the 

strain density (Lei et al. 2013). Strain gradient theory with 

one gradient parameter used by (Papargyri-Beskou and 

Beskos 2008) for gradient plates is another form of gradient 

theory with higher industrial application. In the past decade, 

researchers have had remarkable studies on the static and 

dynamic analysis of gradient nanostructures. As an 

example, the wave propagation behavior in rectangular 

nanoplates by using strain gradient theory with one gradient 

parameter was studied by Nami and Janghorban (Nami and 

Janghorban 2014b). Then, (Karami and Janghorban 2016) 

examined the effect of magnetic field on the wave 

propagation in rectangular nanoplates based on mentioned 

theory. They concluded that wave frequency will increase 

with increasing the gradient parameter. Furthermore, the 

bending analysis of rectangular nanoplates subjected to 

mechanical loading based on the strain gradient elasticity 

theory with one gradient parameter was investigated by 

(Nami and Janghorban 2014a). It was the first time that the 

exponential shear deformation formulation based on strain 

gradient elasticity theory was carried out. 

(Askes and Aifantis 2009) provided the strain gradient 

elasticity theory with two length scale parameters which 

contained the nonlocal elasticity theory and strain gradient 

elasticity theory with one parameter to consider the effects 

of nonlocal and gradient parameter. This theory has been 

used by various authors for different structures in recent 

years (Li et al. 2016a, Li and Hu 2016, Mehralian et al. 

2017, Zhu and Li 2017, Zeighampour et al. 2017, Xiao et 

al. 2017). The effect of the in-plane magnetic field on the 

wave propagation in rectangular nanoplates based on 

nonlocal strain gradient theory was presented by 

(Janghorban and Nami 2015). They used this theory for the 

first time in order to investigate the wave propagation in 

nanoplates. (Li et al. 2016a) examined the behavior of wave 

propagation in viscoelastic single-walled carbon nanotubes 

with surface effect under magnetic field based on nonlocal 

strain gradient theory. (Ebrahimi et al. 2016) investigated 

the wave propagation in temperature-dependent 

inhomogeneous nanoplates based on nonlocal strain 

gradient four variable refined shear deformation plate 

theory. By implementing Hamilton’s principle, the 

governing differential equations was derived. It was 

observed that the frequencies and phase velocities with the 

increase of gradient parameter will increase, and will 

decrease with the increase of nonlocal parameter.  The 

nonlinear free vibration of functionally graded nanobeam 

by using nonlocal strain gradient theory was studied by 

(Şimşek 2016). A closed-form solution was obtained for the 

nonlinear frequencies by the novel Hamiltonian approach. 

(Li et al. 2016b) examined the free vibration analysis of 

functionally graded beams based on the nonlocal strain 

gradient theory. The equations of motion and boundary 

conditions were deduced by employing the Hamilton 

principle. The model contains a material length scale 

parameter introduced to consider the significance of strain 

gradient stress field and a nonlocal parameter introduced to 

consider the significance of nonlocal elastic stress field. 

Recently, based on the nonlocal strain gradient theory, 

(Karami et al. 2017) investigated the effects of magnetic 

field on the wave propagation characteristics of rectangular 

FG nanoplate, (Zhu and Li 2017) studied a small-scaled rod 

in tension and the governing equations and boundary 

conditions for the nonlocal strain gradient rod in tension are 

using the principle of virtual work, wave propagation in 

fluid-conveying viscoelastic carbon nanotubes examined by 

(Li and Hu 2016), and wave propagation in double-walled 

carbon nanotube conveying fluid considering slip boundary 

condition and shell model presented by (Zeighampour et al. 

2017). 

Wave propagation is an exciting field in many 

engineering branches. In the field of smart structures and 

structural engineering, wave propagation especially in the 

area active control of vibrations and noise and structural 

health monitoring based tools have found increasing 

applications. Besides, tremendous development occurred in 

the area of material science, wherein a new classification of 

structural materials is proposed to meet the specific 

application. In real life, the materials are generally 

anisotropic but in some cases they can be approximated 

with more simple structures. Study of these structures is 

more complex in comparison with isotropic structures. 

Flexural wave propagation analysis of nanoplates resting on  

362



 

Effects of triaxial magnetic field on the anisotropic nanoplates 

 

 

elastic medium performed by Wang et al. (Wang et al. 

2010a). Also, (Wang et al. 2010b) studied the size effects on 

axial wave propagation of nanoplate. The wave propagation 

characteristics of a piezoelectric nanoplate were studied by 

(Zhang et al. 2014a). (Zhang et al. 2014b) examined wave 

propagation behavior of nanoplates incorporating surface 

stress effects.  Also, (Zang et al. 2014) investigated the 

size effects on the longitudinal wave propagation of a 

piezoelectric nanoplate considering surface effects. Wave 

propagation analysis of size-dependent structures based on 

nonlocal elasticity and strain gradient theory proposed by 

(Lim et al. 2015). 

In this paper, three-dimensional elasticity theory in 

conjunction with nonlocal strain gradient theory, known as 

strain gradient theory with two parameters, is derived in 

Cartesian coordinate with considering all elastic constants. 

This comprehensive theory with no approximation in 

displacements has the ability to study different models such 

as size-dependent structures, hexagonal and trigonal 

materials and multi-directional functionally graded 

materials. Present theory has only two length scale 

parameters which seems to be accurate and somehow 

simple for various problems. Moreover, the influence of 

triaxial magnetic field on the wave propagation in 

anisotropic nanoplates on the basis of Maxwell’s relations is 

investigated. 

 

 

2. Anisotropic materials 
 

For almost all types of elastic materials such as isotropic 

and anisotropic materials, Hook's law usually represents the 

material behavior and relates the unknown stresses and 

strains. The general equation for Hooke's law is 

C   (1) 

in above equation   and   denote stress and strain 

components, respectively and C is the elastic constant that 

is different in various structures. As a consequence, the 

above stress-strain relations are governed by 
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One of the main topics in mechanical systems is 

anisotropic structures analysis, which has absorbed 

considerable attention in classical continuum mechanics. 

However, the emergence of modern technologies 

considering to small-scale elements highlights the 

importance of length scale effect on the miniature systems. 

Although plenty of studies have been adopted for the 

analysis of micro- and nano-structures with isotropic 

material properties, the analysis of size effect on structures 

with general anisotropy has not been studied much in the 

literature so far. According to the anisotropic characters of 

many nano-engineered materials, the analysis of anisotropic 

nanostructures is essential. In continue, some examples of 

materials with anisotropic structure are provided. 

 

2.1 Orthotropic materials 
 

In material science and solid mechanics, orthotropic 

materials have material properties that differ along three 

mutually-orthogonal twofold axes of rotational symmetry.  

They are a subset of anisotropic materials, because their 

properties change when measured from different directions. 

A familiar example of an orthotropic material is wood. 

In wood, one can define three mutually perpendicular 

directions at each point in which the properties are different.  

For orthotropic nanoplates, the thickness and material 

properties used are tabulated in Table 1. The behaviors of 

bulk waves in orthotropic rectangular nanoplates 

considering different values of wave numbers, ―size effect‖ 

and triaxial magnetic field are listed in Table 3 and 8. 

 

2.2 Hexagonal materials 
 

In materials with hexagonal crystallinity the crystal is 

conventionally described by a right rhombus prism unit cell 

with two equal axes. The hexagonal crystal family consists 

of the 12 point groups such that at least one of their space 

groups has the hexagonal lattice as underlying lattice, and is 

the union of the hexagonal crystal system and the trigonal 

crystal system. 

One of the materials with hexagonal system is beryllium 

crystal. It has an axis of symmetry such that a rotation of 

the crystal through 60  about that axis brings the space 

lattice into coincidence with its original configuration 

(Batra et al. 2004). The elastic constants are 

 

 

 

Table 1 Orthotropic nanoplates in our study. For each nanoplate, the dimensions and nonlocal parameter are shown, 

along with the material properties (Shen et al. 2010) 

Nanoplate type   h nm   1E GPa   2E GPa   12G GPa  12   3

kg
m

   nm  

Armchair sheet I  0.129 2434 2473 1039 0.197 6316 0.67 

Armchair sheet II  0.143 2154 2168 923 0.202 5727 0.47 

Armchair sheet III  0.156 1949 1962 846 0.201 5295 0.27 

Zigzag sheet IV  0. 145 2145 2097 938 0.223 5624 0.47 

Zigzag sheet V  0.149 2067 2054 913 0.204 5482 0.32 

Zigzag sheet VI  0.154 1987 1974 857 0.205 5363 0.22 
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298.2 27.7 11.0 0 0 0

298.2 11.0 0 0 0

340.8 0 0 0
GPa

sym. 165.5 0 0

165.5 0

135.3

 
 
 
 

 
 
 
 
  

 
(3) 

and the mass density of beryllium equals to 
3

kg
1850

m
  .  

The trend of wave frequencies for hexagonal rectangular 

nanoplates with considering nonlocal and gradient 

parameters are listed Table 4. 

 

2.3 Trigonal materials 
 

The components of the rotated elastic stiffness tensor 

used in the present study for a trigonal material are given in 

matrix form as (Batra et al. 2004) 

86.74 6.99 11.91 17.91 0 0

86.74 11.91 17.91 0 0

107.2 0 0 0
GPa

sym. 57.94 0 0

57.94 17.91

39.88

 
 
 
 

 
 
 
 
  

 
(4) 

and 
3

kg
2649

m
  . 

The behaviors of bulk waves in trigonal rectangular 

nanoplates with different values of wave numbers and ―size 

effect‖ are listed in Table 5. 

 

2.4 Monoclinic materials 
 

A crystal system of monoclinic materials is described by 

three vectors. Also, the crystal system is defined by vectors 

of unequal lengths, as in the orthorhombic system. The 

monoclinic crystal system has different names such as 

Hermann–Mauguin notation, Schoenflies notation and point 

groups (Prince et al. 2006). 

Here the elastic constants used in present work for 

monoclinic materials are as follow (Batra et al. 2004), 

86.74 6.99 11.91 17.91 0 0

86.74 11.91 17.91 0 0

107.2 0 0 0
GPa

sym. 57.94 0 0

57.94 17.91

39.88

 
 
 
 

 
 
 
 
  

 
(5) 

and set 
3

kg
2649

m
  . 

Computed wave frequencies in monoclinic rectangular 

nanoplates for different values of wave numbers in 

conjunction with small scale effects are listed in Table 6. 

 

 

 

2.5 Triclinic materials 
 

The matrix of elastic constants of a triclinic material can 

be obtained from that of a transversely isotropic material by 

appropriate rotations about the x- and the rotated y-axis 

(Batra et al. 2004). Generally, the triclinic materials have 21 

elastic constants and three components of the propagation 

vector leading. Here the elastic constants used in present 

study for triclinic materials are defied (Batra et al. 2004) 

98.84 53.92 50.78 0.10 1.05 0.03

99.19 50.87 0.18 0.55 0.03

87.23 0.18 1.03 0.02
GPa

sym. 21.4 0.07 0.25

21.10 0.04

22.55

 
 


 
 

 
 
 
 
  

 (6) 

and 
3

kg
7750

m
  . 

The variations of wave frequencies in triclinic 

rectangular nanoplates with respect to length scale 

parameter and wave number are also listed in Table 7. 

 

 

3. Maxwell’s relations 
 

Denoting J as current density, h as distributing vector of 

the magnetic field, and e as strength vectors of the electric 

field, the Maxwell relation according to (Kraus 1984, 

Mahmoud et al. 2014, Mahmoud et al. 2015) is given as 

.J h  (7) 

 

t



  


h
e  (8) 

 

0 h  (9) 

 

t


 
   

 

U
e H  (10) 

 

  h U H  (11) 

in which   is the magnetic field permeability. Also, 

x y z

  
   

  
i j k is the Hamilton operator, 

u v w U i+ j k  is the displacement vector. For the 

present analysis, we consider the triaxial magnetic field as a 

vector  , ,x y zH H HH= i i k  acting on the nanoplate. 

 , ,i j k  are the unit vectors. We can obtain the distributing 

vector of the magnetic field by Eq. (11) 

364



 

Effects of triaxial magnetic field on the anisotropic nanoplates 

  x y z

x y z

x y z

v w u u
H H H

y z y z

v u w v
H H H

x x z z

w w u v
H H H

x y x y

      
         

      

      
     

     

      
     

      

h U H i

j

k

 (12) 

 

2 2 2 2 2

2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2 2

2 2

x y

z x

y z

v w u w w
H H

x z x y x z y z

u v v v w w
H H

x y y zy z x z

u w u u v
H H

y z x y x yx z

H

  

        
        
           

          
           

           

        
        

          



J h

i

j

2 2 2 2 2 2

2 2 2 2

2 2

x y

z

v v w u u w
H

y z x zx y x y

u v
H

y z x z

         
        

          

   
    

     
k

 (13) 

The Lorentz force induced by the triaxial magnetic field 

is given as 
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Therefore, the Lorentz forces along the x, y and z- 

directions are 

2 2 2 2 2 2 2 2 2
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(17) 

It should be noted that in present paper, the effective 

Lorentz force is a function of magnetic permeability 

and  x y zH ,H ,H . For the present wave propagation 

analysis, at the best knowledge of authors, it is the first time 

that triaxial magnetic field is used for investigating 

graphene sheets with considering size effects. 

 

 

4. Theoretical formulation 
 

In this section, to study the behaviors of anisotropic 

structures containing magnetic field, geometry and 

belongings of which is presented in Fig. 1, the governing 

equations with considering the both nonlocal and gradient 

parameter in Cartesian coordinate are proposed. 

 
4.1 Governing equations 

  
In this section, we derive the nonlocal strain gradient 

three-dimensional elasticity theory. The displacements for 

three-dimensional elasticity theory are given by (Sadd 

2009) 

 

 

 

, , ,

, , ,

, , ,

u u x y z t

v v x y z t

w w x y z t







 (18) 

where u, v, and w are the displacements in the x, y, and z- 

directions, respectively. For elastic materials, the general 

equation for strain-displacement can be defined by 

 
1

2

T
u u     

 
 (19) 

According to the above displacement field, the strain-

displacement relations, based on Eq. (8) can be obtained as 

x y z

xy yz xz

u v w

x y z

u v v w w u

y x z y x z

  

  

  
  
  

         
          

         

 (20) 

 
 

 

Fig. 1 Geometry of anisotropic structures under 

triaxial magnetic field 
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Equation of motion, which is an expression of Newton's 

second law can be expressed as follow 

. F u     (21) 

where F denote body forces and  indicates the mass 

density. 

The stress fields must satisfy the equilibrium condition, 

which yields the equilibrium equations obtained. According 

to Eq. (21) and the displacement field in Eq. (18) the 

following equilibrium equations can be obtained (Sadd 

2009) 
2

2

2

2

2

2

yxxx zx

x

xy yy zy

y

yzxz zz

z

u
F

x y z t

v
F

x y z t

w
F

x y z t

 


  


 



   

   


   

   


   

   

 
(22) 

 
4.2 The nonlocal strain gradient theory 
 
Under consideration nonlocal strain gradient theory, the 

stress field takes into consider the effects of nonlocal elastic 

stress field and strain gradient stress field. Also, the stress 

can be defined as (Lim et al. 2015, Ebrahimi et al. 2016) 
 1

xx

xx xx

d
t

dx


   (23) 

where the classical stress 
xx  and the higher-order stress 

 1

xx   are related to strain 
x  and strain gradient 

,x x , 

respectively and can be stated as (Ebrahimi et al. 2016, Lim 

et al. 2015), 

   0 0

0

, , :

L

xx ijkl xC x x e a C x dx        (24) 

 

     1 2

1 1 ,

0

, ,

L

xx x xl C x x e a x dx        (25) 

where L  is the length of the plate, 
ijklC  is the fourth-

order elasticity tensor, l  is the material length scale 

parameter introduced to consider the significance of strain 

gradient stress field, 
0e a  and 

1e a , which are nonlocal 

parameters, are introduced to consider the significance of 

nonlocal elastic stress field (Nami and Janghorban 2015). 

 0 0, ,x x e a   and  1 1, ,x x e a   are the nonlocal 

functions for the classical stress tensor and the strain 

gradient stress tensor, respectively (Eringen 1983). The 

linear nonlocal differential operator which is written as 

follows, is applied to the both sides of Eq. (23); operator 

can be defined as 

 
2 21 0,1i iL e a for i     (26) 

in above relation 
2  is the Laplacian operator and can be 

defined as 
2 2 2

2

2 2 2x y z

  
   

  
 (27) 

Now, by applying Eq. (26) in Eq. (23) a clearer 

constitutive equation for the size-dependent can be derived 

as 
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Suppose 
0 1e e e   and the nonlocal functions 

 0 0, ,x x e a   and  1 1, ,x x e a   satisfy the conditions in 

Eringen (Lim et al. 2015), 

  2 21 xx ijkl xxea C     (29) 

and the general constitutive for size-dependent plate can be 

simplified as (Askes and Aifantis 2009), 

   2 2

, ,ij ij mm ijkl ij ij mmC l        (30) 

In this step, by differentiating from above equations, 

some of the terms in 3D elasticity theory with considering 

the both nonlocal and gradient parameters will appear. By 

considering the equilibrium equations, governing equations 

for investigating anisotropic nanoplates are achieved as 

follow 
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The second governing equation of 3D elasticity theory 
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Finally, according to equilibrium equations, the third 

governing equation of nonlocal strain gradient 3D elasticity 

theory can be directly written in terms of displacements u, v 

and w as 
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(23) 

 
 
5. Solution procedure 
 

In this section, the equations of motion are solved using 

eigenvalue method to calculate the behaviors of the wave 

frequency in anisotropic materials. In the present study, 

wave propagation in anisotropic nanoplates is investigated 

away from any boundary conditions (simply supported, free, 

clamped, etc.) similar to many other studies on macro and 

nanostructures.  

367



 

Behrouz Karami, Maziar Janghorban and Abdelouahed Tounsi 

In order to find the wave propagation behavior of 

anisotropic rectangular nanoplates, the displacement fields 

of the waves propagating in the x-y-z coordinate are 

assumed with the following terms 
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 (34) 

where
1A ; 

2A  and 
3A  are the coefficients of wave 

amplitude, 
xk , 

yk  and 
zk  are the wave numbers of 

wave propagation along x, y and z- directions respectively 

and   is frequency.  

By substituting Eq. (34) in Eqs. (31)-(33), gives 

     2 0K M X   (35) 

in above equation the unknown parameters are 

   1 2 3, ,
T

X A A A . 

The dispersion relations of wave propagation in the 

anisotropic rectangular nanoplate can be developed by 

setting the following determinant to zero 

   2 0K M   (36) 

 
 

6. Numerical results 
 
In this paper, the wave propagation of anisotropic 

nanoplates under triaxial magnetic field is presented by 

some numerical examples. The effects of various 

parameters such as nonlocal and gradient parameter, 

uniaxial, biaxial and triaxial magnetic field and wave 

number on the wave propagation of anisotropic nanoplates 

are investigated. It is mentioned that the thickness, material 

properties and elastic constants of five different anisotropic 

structures such as orthotropic, hexagonal, trigonal, 

monoclinic, and triclinic used in present paper are given in 

Table 2 and relations (3-6) which can be found here (Shen 

et al. 2010, Batra et al. 2004). In some numerical examples, 

according to the lack of elastic constant for different types 

of anisotropic nanostructures, the elastic constants for 

macro structures are used. 

 
6.1 Verification 
 
For isotropic nanoplates, following material properties 

and thickness are used, E=1.06 TPa, υ=0.25, ρ=2250 

(kg/m
3
) and h=0.34 nm (Karami and Janghorban 2016) and 

(e0a) varies from 0 to 1.0 nm. Wave number is handled in 

offering the results in graphical and tabular forms as below 

k 2 2 2

x y zk + k + k  (37) 

In Table 2, the wave frequencies of isotropic nanoplates 

based on nonlocal strain gradient three-dimensional 

elasticity theory are compared with the results of 

Janghorban and Nami (Janghorban and Nami 2016). One 

can find great agreement between the results. For this 

comparison, we derived the nonlocal strain gradient 

governing equations for the second-order shear deformation 

theory and solved them for wave propagation of isotropic 

nanoplates. 

 

6.2 Wave propagation of anisotropic nanoplates 

excluding magnetic field  

 

In this section, the wave propagation of anisotropic 

materials is presented in Tables 3-7. For this investigations, 

the effects of magnetic field are neglected. In Tables 3-7, 

the effects of nonlocal and gradient parameters and various 

wave numbers on the wave frequency of anisotropic 

materials such as orthotropic, hexagonal, trigonal, 

monoclinic and triclinic are presented. 

Table 3, shows the effect of variation of wave numbers 

in three directions on the wave propagation of orthotropic 

nanoplates. It can be understood that inclusion of nonlocal 

parameter leads to reduction in wave frequency of 

orthotropic nanoplates. So, nonlocal parameter has a 

stiffness-softening influence on the plate structure. Also, 

nonlocal parameter has a significant influence on wave 

frequency when the gradient parameter effect is included in 

the model. From this table, it is obvious that the value of 

wave frequency increases by an increase in the gradient 

parameter. Furthermore, the effect of both length scale 

parameters on wave frequency becomes more significant at 

larger wave numbers. Moreover, as wave number increases, 

an increase in the value of wave frequency can be seen. 

From Tables 4-7, it is concluded that with the increase 

of nonlocal and gradient parameter, the wave frequency of 

anisotropic materials will increase and decrease 

respectively. Moreover, it is noticed that the wave 

frequencies of anisotropic materials increase as the wave 

number increase. Also, the wave frequency of anisotropic 

materials is not very sensitive with length scale parameters 

changes at small wave numbers, but in higher wave 

numbers the variations of wave frequency is more 

noticeable. For all the values of the nonlocal and gradient 

parameters and wave numbers, hexagonal and monoclinic 

square plates have the highest and lowest wave frequencies, 

respectively. 
 
6.3 Wave propagation of anisotropic nanoplates 

including triaxial magnetic field 
 
In this section, wave propagation of anisotropic 

materials under different magnetic field changes are 

presented in Tables 8-11. Note, in Tables 8-11, the 

frequencies extracted from the equation of motions by using 

eigenvalue method and MATLAB software are sorted in 

three different modes named as M1, M2, and M3. It is 

mentioned that for biaxial and triaxial cases, the magnitude 

of magnetic field in the y and z directions are equal to the x 

direction. In Tables 8-11, the effects of triaxial magnetic 

field, nonlocal and gradient parameters and wave numbers 

on the wave frequency of anisotropic materials such as 

orthotropic, hexagonal, trigonal, monoclinic and triclinic 

are presented. 
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Table 2 Comparison of solutions for isotropic wave propagation  1410 , 0w w y zk k      

     
w      

   0.0 nml    0.5l nm   1.0 nml    1.5 nml   

k  nm  a Present a Present a Present a Present 

91 10  0.0 0.2241 0.2241 0.2506 0.2506 0.3170 0.3170 0.4041 0.4041 

 0.5 0.2005 0.2005 0.2242 0.2242 0.2836 0.2836 0.3615 0.3615 

 1.0 0.1585 0.1585 0.1772 0.1772 0.2242 0.2242 0.2858 0.2858 
a Ref. (Janghorban and Nami 2016) 

Table 3 Wave frequency  1410w w    in orthotropic nanoplates for various nonlocal and gradient parameters and 

wave numbers 

w  

   0 0l = . nm    1 5l = . nm  

   nm  

  0.0 0.75 1.5  0.0 0.75 1.5 

91 10x y zk = k = k            

Armchair sheet I  0.1780 0.1098 0.0647  0.4472 0.2728 0.1607 

Armchair sheet II  0.1771 0.1080 0.0636  0.4400 0.2684 0.1581 

Armchair sheet III  0.1753 0.1069 0.0630  0.4356 0.2657 0.1565 

Zigzag sheet IV  0.2860 0.1745 0.1027  0.4362 0.2661 0.1567 

Zigzag sheet V  0.2837 0.1731 0.1019  0.4393 0.2680 0.1578 

Zigzag sheet VI  0.2780 0.1708 0.1006  0.4352 0.2655 0.1563 
93 10x y zk = k = k            

Armchair sheet I  0.5399 0.1342 0.0687  3.7172 0.9239 0.4730 

Armchair sheet II  0.5313 0.1321 0.0676  3.6567 0.9089 0.4653 

Armchair sheet III  0.5258 0.1307 0.0692  3.6203 0.8998 0.4607 

Zigzag sheet IV  0.8580 0.2133 0.1092  3.6236 0.9006 0.4611 

Zigzag sheet V  0.8512 0.2116 0.1083  3.6516 0.9076 0.4647 

Zigzag sheet VI  0.8399 0.2088 0.1069  3.6165 0.8989 0.4602 

Table 4 The effects of length scale parameters and wave number on the wave frequency of hexagonal square 

plate  1410 , 0w w y zk k      

   
w  

    l nm  

k  nm   0.0 0.25 0.75 1.25 1.75 

91 10  

0.0  0.1270 0.1309 0.1587 0.2032 0.2559 

0.75  0.1016 0.1047 0.1270 0.1626 0.2047 

1.5  0.0704 0.0726 0.0880 0.1127 0.1419 

        

92 10  

0.0  0.2539 0.2839 0.4578 0.6837 0.9242 

0.75  0.1408 0.1575 0.2539 0.3792 0.5127 

1.5  0.0803 0.0898 0.1448 0.2162 0.2923 
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Table 8, examines the effects of wave number, both 

length scale parameters, uniaxial, biaxial, and triaxial 

magnetic field on the wave propagation in orthotropic 

nanoplates for Hx=100, 500 and 1000. The nonlocal and 

gradient parameters are taken 1nm. It can be seen that with 

the increase of magnetic field, the wave frequency 

increases. Besides, for higher values of wave numbers, 

magnetic field shows less effect on the wave frequencies. 

Also, the effect f variations of biaxial magnetic field on the  

wave propagation in different types of orthotropic  

 

 

 

 

 

 

 

nanoplates with considering wave number in x direction is 

more than uniaxial and triaxial magnetic field. In realizing 

the influence of triaxial magnetic field, the wave frequency 

in anisotropic structures are shown in Tables 9-11. They are 

tabulated for three cases including uniaxial, biaxial, and 

triaxial magnetic field. Tables 9-11, demonstrates the effect 

of magnetic field on changes of wave frequency for four 

different anisotropic structures versus wave number at 

0l   . It is seen that the wave frequency has a notable 

increasing trend versus wave number. Also, it can be  

Table 5 The effects of length scale parameters and wave number on the wave frequency of trigonal square 

plate  1410 , 0w w y zk k      

   
w  

    l nm  

k   nm   0.0 0.25 0.75 1.25 1.75 

91 10  

0.0  0.0572 0.0590 0.0715 0.0916 0.1153 

0.75  0.0458 0.0472 0.0572 0.0733 0.0923 

1.5  0.0317 0.0327 0.0397 0.0508 0.0640 

        

92 10  

0.0  0.1144 0.1280 0.2063 0.3082 0.4166 

0.75  0.0635 0.0710 0.1144 0.1709 0.2311 

1.5  0.0362 0.0405 0.0652 0.0974 0.1317 

Table 6 The effects of length scale parameters and wave number on the wave frequency of monoclinic square 

plate  1410 , 0w w y zk k      

   
w  

    l nm  

k   nm   0.0 0.25 0.75 1.25 1.75 

91 10  

0.0  0.0331 0.0341 0.0414 0.0530 0.0667 

0.75  0.0265 0.0273 0.0331 0.0424 0.0534 

1.5  0.0184 0.0189 0.0229 0.0294 0.0370 

        

92 10  

0.0  0.0662 0.0740 0.1193 0.1782 0.2409 

0.75  0.0367 0.0410 0.0662 0.0989 0.1336 

1.5  0.0209 0.0234 0.0377 0.0564 0.0762 

Table 7 The effects of length scale parameters and eave number on the wave frequency of triclinic square 

plate  1410 , 0w w y zk k      

   
w  

    l nm  

k   nm   0.0 0.25 0.75 1.25 1.75 

91 10  

0.0  0.0357 0.0368 0.0446 0.0572 0.0720 

0.75  0.0286 0.0295 0.0357 0.0457 0.0576 

1.5  0.0198 0.0204 0.0248 0.0317 0.0399 

        

92 10  

0.0  0.0714 0.0799 0.1288 0.1923 0.2600 

0.75  0.0396 0.0443 0.0714 0.1067 0.1442 

1.5  0.0226 0.0253 0.0407 0.0608 0.0822 
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concluded that the wave frequency in three different modes 

increased significantly for increasing all magnetic field 

changes. The influences of triaxial magnetic field on the 

wave frequency (M3) are more than other cases but for the 

wave frequency (M1) and (M2), the effects of biaxial and 

uniaxial magnetic field are more notable, respectively. 

Furthermore, the review of results indicates that hexagonal 

structure has the highest, and the triclinic structure, the 

lowest wave frequency in all magnetic field cases (uniaxial, 

biaxial, and triaxial) and modes (M1, M2, and M3). It 

should be noted that these results are independent of the 

wave number. Moreover, the variations of magnetic field 

have no sensible effects on the wave frequency at lower 

wave numbers. 
 

 

 
 

 
 
7. Conclusions 
 

In this work, for the first time, the effects of triaxial 

magnetic field on the wave propagation in anisotropic 

single-layered graphene sheets were presented. The 

equations of motion were determined by the three-

dimensional elasticity theory in conjunction with the 

nonlocal strain gradient theory.  Different types of 

anisotropic structures such as orthotropic, hexagonal, 

trigonal, monoclinic and triclinic materials were modeled 

and compared with each other. The effects of different 

parameters such as nonlocality, gradient parameter and 

uniaxial, biaxial and triaxial magnetic field were also 

studied. Hence, the following conclusions were notable, 

 

Table 8 Wave frequency  14

M3 M3 10    in orthotropic nanoplates for different wave numbers under the 

variations of magnetic field,  9 91 10 , 1 10 , 0y zl k k         

  
w  

  9k 1 10    9k 2 10   

  Uniaxial Biaxial Triaxial  Uniaxial Biaxial Triaxial 

Hx =100         

    Armchair sheet I  1.2829 2.0027 1.2829  2.5654 4.0054 2.5654 

    Armchair sheet II  1.2699 1.9806 1.2699  2.5393 3.9613 2.5393 

    Armchair sheet III  1.2644 1.9590 1.2644  2.5283 3.9180 2.5283 

    Zigzag sheet IV  1.2918 2.0038 1.2918  2.5832 4.0077 2.5832 

    Zigzag sheet V  1.2909 1.9840 1.2909  2.5813 3.9679 2.5813 

    Zigzag sheet VI  1.2645 1.9671 1.2645  2.5285 3.9342 2.5285 

Hx =1000         

    Armchair sheet I  1.3131 2.0440 1.3094  2.5897 4.0879 2.5825 

    Armchair sheet II  1.3034 2.0269 1.2989  2.5664 4.0537 2.5574 

    Armchair sheet III  1.3008 2.0099 1.2955  2.5577 4.0197 2.5471 

    Zigzag sheet IV  1.3254 2.0504 1.3209  2.6103 4.1008 2.6013 

    Zigzag sheet V  1.3254 2.0324 1.3205  2.6092 4.0647 2.5995 

    Zigzag sheet VI  1.3005 2.0171 1.2953  2.5576 4.0340 2.5473 

Table 9 Effects of uniaxial, biaxial and triaxial magnetic field on the wave frequency (M1) of anisotropic 

nanostructures,  13

M1 M1 10 , 0y zk k      

 
M1  

 Uniaxial   Biaxial   Triaxial   

 100 500 1000 100 500 1000 100 500 1000 
8k 1 10            

Hexagonal 0.0858 0.0930 0.1125 0.0858 0.0919 0.1005 0.0858 0.0920 0.0994 

Trigonal 0.0336 0.0450 0.0572 0.0336 0.0418 0.0468 0.0335 0.0394 0.0419 

Monoclinic 0.0337 0.0451 0.0572 0.0336 0.0410 0.0448 0.0336 0.0417 0.0467 

Triclinic 0.0169 0.0244 0.0357 0.0169 0.0227 0.0262 0.0169 0.0216 0.0238 
9k 1 10            

Hexagonal 0.8568 0.8938 1.0008 0.8568 0.8832 0.8874 0.8568 0.8838 0.8934 

Trigonal 0.3337 0.4081 0.5680 0.3336 0.3739 0.3100 0.3335 0.3541 0.2823 

Monoclinic 0.3338 0.3959 0.5461 0.3337 0.3557 0.2699 0.3337 0.3632 0.3197 

Triclinic 0.1688 0.2127 0.3060 0.1688 0.1918 0.1501 0.1689 0.1902 0.1544 
9k 2 10            

Hexagonal 1.7116 1.7417 1.8324 1.7116 1.7207 1.6069 1.7116 1.7221 1.6280 

Trigonal 0.6648 0.7553 0.9254 0.6647 0.6838 0.2230 0.6644 0.6481 0.1575 

Monoclinic 0.6641 0.7166 0.8603 0.6639 0.6345 0.2313 0.6640 0.6497 0.2615 

Triclinic 0.3376 0.3771 0.4686 0.3376 0.3328 0.1788 0.3377 0.3334 0.1131 
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 Based on a general conclusion, the three-

dimensional elasticity theory in conjunction with the 

nonlocal strain gradient theory, as a single theory, can show 

accuracy consequence for the wave propagation 

characteristics of anisotropic structures including size 

effects. 

 The wave frequency of anisotropic structures can 

be increased by an increase in the value of gradient 

parameter or a decrease in the nonlocal parameter’s 

magnitude. In other words, the presented model can 

estimate both stiffness-softening and stiffness-hardening 

influences generated by nonlocal and gradient parameters, 

respectively. 

 

 

 

 

 

 The effect of nonlocal parameter and gradient 

parameter on the anisotropic structures with higher wave 

numbers is more significant than anisotropic structures with 

lower wave numbers. 

 The wave frequencies of anisotropic structures 

depend on the magnitude of the magnetic field. So, with the 

increase of magnetic field changes, the wave frequencies 

grow significantly. 
 
 
 
 
 
 

Table 10 Effects of uniaxial, biaxial and triaxial magnetic field on the wave frequency (M2) of anisotropic 

nanostructures,  13

M2 M2 10 , 0y zk k      

 
M 2  

 Uniaxial   Biaxial   Triaxial   

 100 500 1000 100 500 1000 100 500 1000 
8k 1 10            

Hexagonal 0.0949 0.1015 0.1198 0.0949 0.1015 0.1198 0.0949 0.1006 0.1169 

Trigonal 0.0514 0.0572 0.0695 0.0514 0.0580 0.0774 0.0514 0.0592 0.0794 

Monoclinic 0.0513 0.0572 0.0695 0.0513 0.0595 0.0798 0.0513 0.0565 0.0752 

Triclinic 0.0174 0.0247 0.0395 0.0174 0.0244 0.0395 0.0174 0.0246 0.0398 
9k 1 10            

Hexagonal 0.9487 1.0148 1.1980 0.9487 1.0148 1.1980 0.9487 1.0053 1.1445 

Trigonal 0.5134 0.5722 0.5722 0.5134 0.5767 0.7740 0.5134 0.5801 0.7476 

Monoclinic 0.5134 0.5722 0.5722 0.5134 0.5951 0.7983 0.5132 0.5631 0.7180 

Triclinic 0.1725 0.2438 0.3570 0.1724 0.2439 0.3953 0.1724 0.2356 0.3639 
9k 2 10            

Hexagonal 1.8974 2.0295 2.3959 1.8974 2.0295 2.3959 1.8973 2.0104 2.2736 

Trigonal 1.0263 1.1445 1.1445 1.0262 1.1502 1.5478 1.0262 1.1479 1.4530 

Monoclinic 1.0267 1.1445 1.1445 1.0267 1.1902 1.5966 1.0263 1.1248 1.4093 

Triclinic 0.3427 0.4879 0.7141 0.3426 0.4877 0.7906 0.3426 0.4671 0.7040 

Table 11 Effects of uniaxial, biaxial and triaxial magnetic field on the wave frequency (M3) of anisotropic 

nanostructures,  13

M3 M3 10 , 0y zk k      

 
M 3          

 Uniaxial   Biaxial   Triaxial   

 100 500 1000 100 500 1000 100 500 1000 
8k 1 10            

Hexagonal 0.1270 0.1270 0.1270 0.1272 0.1329 0.1552 0.1274 0.1386 0.1744 

Trigonal 0.0572 0.0595 0.0798 0.0576 0.0684 0.1004 0.0579 0.0753 0.1182 

Monoclinic 0.0572 0.0595 0.0798 0.0576 0.0676 0.0994 0.0579 0.0762 0.1191 

Triclinic 0.0357 0.0357 0.0396 0.0359 0.0412 0.0587 0.0361 0.0454 0.0697 
9k 1 10            

Hexagonal 1.2696 1.2696 1.2696 1.2717 1.3289 1.5383 1.2739 1.3853 1.7383 

Trigonal 0.5722 0.5868 0.7829 0.5756 0.6785 0.9723 0.5789 0.7518 1.1745 

Monoclinic 0.5722 0.5951 0.7983 0.5756 0.6723 0.9646 0.5790 0.7603 1.1833 

Triclinic 0.3572 0.3572 0.3954 0.3590 0.4102 0.5724 0.3607 0.4529 0.6923 
9k 2 10            

Hexagonal 2.5392 2.5392 2.5392 2.5435 2.6572 3.0635 2.5478 2.7702 3.4714 

Trigonal 1.1445 1.1660 1.5597 1.1512 1.3516 1.9140 1.1578 1.5024 2.3415 

Monoclinic 1.1445 1.1902 1.5966 1.1511 1.3410 1.9009 1.1580 1.5191 2.3589 

Triclinic 0.7143 0.7143 0.7975 0.7179 0.8190 1.1304 0.7215 0.9050 1.3800 
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