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Effects of triaxial magnetic field on the anisotropic nanoplates
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Abstract. In this study, the influences of triaxial magnetic field on the wave propagation behavior of anisotropic nanoplates
are studied. In order to include small scale effects, nonlocal strain gradient theory has been implemented. To study the nanoplate
as a continuum model, the three-dimensional elasticity theory is adopted in Cartesian coordinate. In our study, all the elastic
constants are considered and assumed to be the functions of (x, y, z), so all kind of anisotropic structures such as hexagonal and
trigonal materials can be modeled, too. Moreover, all types of functionally graded structures can be investigated. eigenvalue
method is employed and analytical solutions for the wave propagation are obtained. To justify our methodology, our results for
the wave propagation of isotropic nanoplates are compared with the results available in the literature and great agreement is
achieved. Five different types of anisotropic structures are investigated in present paper and then the influences of wave number,
material properties, nonlocal and gradient parameter and uniaxial, biaxial and triaxial magnetic field on the wave propagation
analysis of anisotropic nanoplates are presented. From the best knowledge of authors, it is the first time that three-dimensional
elasticity theory and nonlocal strain gradient theory are used together with no approximation to derive the governing equations.
Moreover, up to now, the effects of triaxial magnetic field have not been studied with considering size effects in nanoplates.
According to the lack of any common approximations in the displacement field or in elastic constant, present theory has the
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potential to be used as a bench mark for future works.
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1. Introduction

Classical continuum models, like beam and shell
theories, do not admit intrinsic size dependence such as in
the elastic solutions of inclusions and inhomogeneities. The
small size scales associated nanotechnology are often
sufficiently small to call the applicability of classical
continuum models into question. In structures with
nanometer scales, size effects often become prominent, the
cause of which need to be explicitly addressed with an
increasing interest in the general area of nanotechnology
(Sharma et al. 2003). The modeling of such a size-
dependent structures has become an interesting subject of
some researchers in this field (Sheehan and Lieber 1996,
Yakobson and Smalley 1997). It is thus concluded that the
classical continuum models at very small scales cannot be
used and their applicability is questionable, since the
material microstructure at small size, such as lattice spacing
between individual atoms, becomes increasingly important
and the discrete structure of the material can no longer be
homogenized into a continuum. Therefore, newly proposed
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continuum model rather than the classical continuum
models may be an alternative to taking into account the
scale effect in the investigations of nanostructures.

In one of these newly continuum model, well-known as
nonlocal elasticity theory, the scale effect was accounted in
elasticity by assuming the stress at a reference point is
considered to be a functional of the strain field at every
point in the body (Eringen 1976). Up to now, several types
of researches have been done on the nonlocal elasticity
theory (Bounouara et al. 2016, Ahouel et al. 2016,
Belkorissat et al. 2015, Shahsavari et al. 2017, Shahsavari
and Janghorban 2017). In this theory, the internal size scale
could be considered in the fundamental equations simply as
a material parameter. (Peddieson et al. 2003) proposed the
application of nonlocal elasticity models in nanostructures.

They developed the Euler—Bernoulli beam model based
on nonlocal elasticity theory and concluded that nonlocal
continuum mechanics could potentially play a useful role in
nanotechnology applications. Further applications of the
nonlocal continuum mechanics have been employed in
studying the mechanical behavior of nanostructures. The
free vibration analysis of rotating axially functionally
graded nanobeams under an in-plane nonlinear thermal
loading was provided by (Azimi et al. 2017). Their results
showed that the fundamental frequency of AFG nanobeam
decreases with nonlocal value. (Amara et al. 2010)
proposed nonlocal elasticity model for investigation the
buckling of multiwalled carbon nanotubes under
temperature field. Their results showed that the small scale
effect reduces the critical buckling strain. (Nami et al.
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2015) investigated the thermal buckling analysis of
functionally graded rectangular nanoplates by using
nonlocal elasticity theory and third-order shear deformation
theory. In their studies, results showed that the critical
buckling temperatures of piezoelectric nanoplates under
nonlinear temperature distribution decreases with increase
nonlocal parameter. (Chaht et al. 2015) provided the size-
dependent bending and buckling behaviors of nanobeams
made of functionally graded materials (FGMs) including
the thickness stretching effect. In their studies a Navier-type
solution is developed for simply-supported boundary
conditions, and exact expressions were proposed for the
deflections and the buckling load. (Heireche et al. 2010)
investigated the nonlocal elasticity effect on vibration
characteristics of protein microtubules. Also, the vibration
characteristics of protein microtubules were examined
based on a nonlocal Timoshenko beam model and using the
wave propagation approach. (Murmu et al. 2012) proposed
nonlocal elasticity model for investigation the vibration
response of double-walled carbon nanotubes subjected to an
externally applied longitudinal magnetic field. Also,
(Murmu et al. 2013) examined the effect of in-plane
magnetic field on the transverse vibration of single layer
graphene sheets. In their study, governing equations of
SLGS by considering the effect of in-plane magnetic field
was obtained via nonlocal elasticity theory and Maxwell’s
relation. And, again (Murmu et al. 2014) on the basis of
nonlocal elasticity theory have studied the influence of a
transverse magnetic field on the axial vibration of nanorods
such as carbon nanotubes. (Daneshmehr and Rajabpoor
2014) examined the stability analysis of size dependent
functionally graded nanoplates on the basis of nonlocal
elasticity and higher order plate theories including different
boundary conditions.

One of the other theories that consider the small-scale
effect is the gradient elasticity theory. For the most common
form of strain gradient elasticity theory, stresses are
explained by the kinematic parameters effective on the
strain density (Lei et al. 2013). Strain gradient theory with
one gradient parameter used by (Papargyri-Beskou and
Beskos 2008) for gradient plates is another form of gradient
theory with higher industrial application. In the past decade,
researchers have had remarkable studies on the static and
dynamic analysis of gradient nanostructures. As an
example, the wave propagation behavior in rectangular
nanoplates by using strain gradient theory with one gradient
parameter was studied by Nami and Janghorban (Nami and
Janghorban 2014b). Then, (Karami and Janghorban 2016)
examined the effect of magnetic field on the wave
propagation in rectangular nanoplates based on mentioned
theory. They concluded that wave frequency will increase
with increasing the gradient parameter. Furthermore, the
bending analysis of rectangular nanoplates subjected to
mechanical loading based on the strain gradient elasticity
theory with one gradient parameter was investigated by
(Nami and Janghorban 2014a). It was the first time that the
exponential shear deformation formulation based on strain
gradient elasticity theory was carried out.

(Askes and Aifantis 2009) provided the strain gradient
elasticity theory with two length scale parameters which

contained the nonlocal elasticity theory and strain gradient
elasticity theory with one parameter to consider the effects
of nonlocal and gradient parameter. This theory has been
used by various authors for different structures in recent
years (Li et al. 2016a, Li and Hu 2016, Mehralian et al.
2017, Zhu and Li 2017, Zeighampour et al. 2017, Xiao et
al. 2017). The effect of the in-plane magnetic field on the
wave propagation in rectangular nanoplates based on
nonlocal strain gradient theory was presented by
(Janghorban and Nami 2015). They used this theory for the
first time in order to investigate the wave propagation in
nanoplates. (Li et al. 2016a) examined the behavior of wave
propagation in viscoelastic single-walled carbon nanotubes
with surface effect under magnetic field based on nonlocal
strain gradient theory. (Ebrahimi et al. 2016) investigated
the wave propagation in  temperature-dependent
inhomogeneous nanoplates based on nonlocal strain
gradient four variable refined shear deformation plate
theory. By implementing Hamilton’s principle, the
governing differential equations was derived. It was
observed that the frequencies and phase velocities with the
increase of gradient parameter will increase, and will
decrease with the increase of nonlocal parameter. The
nonlinear free vibration of functionally graded nanobeam
by using nonlocal strain gradient theory was studied by
(Simsek 2016). A closed-form solution was obtained for the
nonlinear frequencies by the novel Hamiltonian approach.
(Li et al. 2016b) examined the free vibration analysis of
functionally graded beams based on the nonlocal strain
gradient theory. The equations of motion and boundary
conditions were deduced by employing the Hamilton
principle. The model contains a material length scale
parameter introduced to consider the significance of strain
gradient stress field and a nonlocal parameter introduced to
consider the significance of nonlocal elastic stress field.
Recently, based on the nonlocal strain gradient theory,
(Karami et al. 2017) investigated the effects of magnetic
field on the wave propagation characteristics of rectangular
FG nanoplate, (Zhu and Li 2017) studied a small-scaled rod
in tension and the governing equations and boundary
conditions for the nonlocal strain gradient rod in tension are
using the principle of virtual work, wave propagation in
fluid-conveying viscoelastic carbon nanotubes examined by
(Li and Hu 2016), and wave propagation in double-walled
carbon nanotube conveying fluid considering slip boundary
condition and shell model presented by (Zeighampour et al.
2017).

Wave propagation is an exciting field in many
engineering branches. In the field of smart structures and
structural engineering, wave propagation especially in the
area active control of vibrations and noise and structural
health monitoring based tools have found increasing
applications. Besides, tremendous development occurred in
the area of material science, wherein a new classification of
structural materials is proposed to meet the specific
application. In real life, the materials are generally
anisotropic but in some cases they can be approximated
with more simple structures. Study of these structures is
more complex in comparison with isotropic structures.
Flexural wave propagation analysis of nanoplates resting on
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Table 1 Orthotropic nanoplates in our study. For each nanoplate, the dimensions and nonlocal parameter are shown,

along with the material properties (Shen et al. 2010)

Nanoplate type h(nm) E,(GPa) E,(GPa) G,(GPa) vy p(k% 3) Ju(nm)
Armchair sheet | 0.129 2434 2473 1039 0.197 6316 0.67
Armchair sheet 11 0.143 2154 2168 923 0.202 5727 0.47
Armchair sheet 111 0.156 1949 1962 846 0.201 5295 0.27
Zigzag sheet IV 0. 145 2145 2097 938 0.223 5624 0.47
Zigzag sheet V 0.149 2067 2054 913 0.204 5482 0.32
Zigzag sheet VI 0.154 1987 1974 857 0.205 5363 0.22

elastic medium performed by Wang et al. (Wang et al.
2010a). Also, (Wang et al. 2010b) studied the size effects on
axial wave propagation of nanoplate. The wave propagation
characteristics of a piezoelectric nanoplate were studied by
(Zhang et al. 2014a). (Zhang et al. 2014b) examined wave
propagation behavior of nanoplates incorporating surface
stress effects. Also, (Zang et al. 2014) investigated the
size effects on the longitudinal wave propagation of a
piezoelectric nanoplate considering surface effects. Wave
propagation analysis of size-dependent structures based on
nonlocal elasticity and strain gradient theory proposed by
(Lim et al. 2015).

In this paper, three-dimensional elasticity theory in
conjunction with nonlocal strain gradient theory, known as
strain gradient theory with two parameters, is derived in
Cartesian coordinate with considering all elastic constants.
This comprehensive theory with no approximation in
displacements has the ability to study different models such
as size-dependent structures, hexagonal and trigonal
materials and  multi-directional  functionally graded
materials. Present theory has only two length scale
parameters which seems to be accurate and somehow
simple for various problems. Moreover, the influence of
triaxial magnetic field on the wave propagation in
anisotropic nanoplates on the basis of Maxwell’s relations is
investigated.

2. Anisotropic materials

For almost all types of elastic materials such as isotropic
and anisotropic materials, Hook's law usually represents the
material behavior and relates the unknown stresses and
strains. The general equation for Hooke's law is

oc=Ce¢ (1)

in above equation o and & denote stress and strain

components, respectively and C is the elastic constant that
is different in various structures. As a consequence, the
above stress-strain relations are governed by

Oy Cyu Cp G Cy Ci Cifl&
Oy Cu Cp Cu Cy Cyu Cyullsy
%z | _ Cy Cyp Cy Cy Cy Cyls @)
Ty Cu Cp Cpu Cu Cu Cul|?n
Ty Cs C;, Cyy Cq Cy Cogo || 7
Ty 1Cei Ce Cq Cq Cq Coo |7

One of the main topics in mechanical systems is
anisotropic  structures analysis, which has absorbed
considerable attention in classical continuum mechanics.
However, the emergence of modern technologies
considering to small-scale elements highlights the
importance of length scale effect on the miniature systems.
Although plenty of studies have been adopted for the
analysis of micro- and nano-structures with isotropic
material properties, the analysis of size effect on structures
with general anisotropy has not been studied much in the
literature so far. According to the anisotropic characters of
many nano-engineered materials, the analysis of anisotropic
nanostructures is essential. In continue, some examples of
materials with anisotropic structure are provided.

2.1 Orthotropic materials

In material science and solid mechanics, orthotropic
materials have material properties that differ along three
mutually-orthogonal twofold axes of rotational symmetry.

They are a subset of anisotropic materials, because their
properties change when measured from different directions.

A familiar example of an orthotropic material is wood.
In wood, one can define three mutually perpendicular
directions at each point in which the properties are different.

For orthotropic nanoplates, the thickness and material
properties used are tabulated in Table 1. The behaviors of
bulk waves in orthotropic rectangular nanoplates
considering different values of wave numbers, “size effect”
and triaxial magnetic field are listed in Table 3 and 8.

2.2 Hexagonal materials

In materials with hexagonal crystallinity the crystal is
conventionally described by a right rhombus prism unit cell
with two equal axes. The hexagonal crystal family consists
of the 12 point groups such that at least one of their space
groups has the hexagonal lattice as underlying lattice, and is
the union of the hexagonal crystal system and the trigonal
crystal system.

One of the materials with hexagonal system is beryllium
crystal. It has an axis of symmetry such that a rotation of

the crystal through 60° about that axis brings the space

lattice into coincidence with its original configuration
(Batra et al. 2004). The elastic constants are
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[298.2 277 11.0 0 0 0
298.2 11.0 0 0 0
3408 0 0 0
xGPa  (3)
sym. 165.5 0 0
1655 0
L 135.3 ]

and the mass density of beryllium equalsto =1850—
m
The trend of wave frequencies for hexagonal rectangular
nanoplates with considering nonlocal and gradient
parameters are listed Table 4.

2.3 Trigonal materials
The components of the rotated elastic stiffness tensor

used in the present study for a trigonal material are given in
matrix form as (Batra et al. 2004)

(86.74 6.99 11.91 -1791 0 0
86.74 1191 1791 0 0
1072 0 0 0
xGPa  (4)

sym. 57.94 0 0

57.94 -17.91

| 39.88 |

and p:2649k_93.
m

The behaviors of bulk waves in trigonal rectangular
nanoplates with different values of wave numbers and “size
effect” are listed in Table 5.

2.4 Monoclinic materials

A crystal system of monoclinic materials is described by
three vectors. Also, the crystal system is defined by vectors
of unequal lengths, as in the orthorhombic system. The
monoclinic crystal system has different names such as
Hermann—Mauguin notation, Schoenflies notation and point
groups (Prince et al. 2006).

Here the elastic constants used in present work for
monoclinic materials are as follow (Batra et al. 2004),

[86.74 6.99 1191 -1791 0 0
86.74 1191 1791 0 0
107.2 0 0 0
xGPa  (5)
sym. 57.94 0 0
57.94 -17.91
i 39.88 |
k
and set p=2649—%.
m

Computed wave frequencies in monoclinic rectangular
nanoplates for different values of wave numbers in
conjunction with small scale effects are listed in Table 6.

kg

2.5 Triclinic materials

The matrix of elastic constants of a triclinic material can
be obtained from that of a transversely isotropic material by
appropriate rotations about the x- and the rotated y-axis
(Batra et al. 2004). Generally, the triclinic materials have 21
elastic constants and three components of the propagation
vector leading. Here the elastic constants used in present
study for triclinic materials are defied (Batra et al. 2004)

[98.84 53.92 50.78 -0.10 1.05 0.03 |
99.19 50.87 -0.18 055 0.03
8723 -0.18 1.03 0.02

GPa
sym. 214 007 025 | ©)
21.10 -0.04
| 22.55 |
and p=7750k_%.
m
The variations of wave frequencies in triclinic
rectangular nanoplates with respect to length scale

parameter and wave number are also listed in Table 7.

3. Maxwell’s relations

Denoting J as current density, h as distributing vector of
the magnetic field, and e as strength vectors of the electric
field, the Maxwell relation according to (Kraus 1984,
Mahmoud et al. 2014, Mahmoud et al. 2015) is given as

J=Vxh, (7)
oh
Vxe=-n— 8
xe=-n— ®)
V-h=0 9)
oJ
e=-n| —xH 10
(D "
h:Vx(UxH) (11)
in which 77 is the magnetic field permeability. Also,
V:ii+ij+£k is the Hamilton operator,
oXx oy~ oz
U=ui+vj+wk is the displacement vector. For the

present analysis, we consider the triaxial magnetic field as a
vector H=(H,i,H i,H,k) acting on the nanoplate.

(i,j,k) are the unit vectors. We can obtain the distributing
vector of the magnetic field by Eq. (11)
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The Lorentz force induced by the triaxial magnetic field
is given as
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Therefore, the Lorentz forces along the x, y and z-
directions are
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It should be noted that in present paper, the effective
Lorentz force is a function of magnetic permeability

and (H, H, H,) .
analysis, at the best knowledge of authors, it is the first time

that triaxial magnetic field is used for investigating
graphene sheets with considering size effects.

For the present wave propagation

4. Theoretical formulation

In this section, to study the behaviors of anisotropic
structures containing magnetic field, geometry and
belongings of which is presented in Fig. 1, the governing
equations with considering the both nonlocal and gradient
parameter in Cartesian coordinate are proposed.

4.1 Governing equations

In this section, we derive the nonlocal strain gradient
three-dimensional elasticity theory. The displacements for
three-dimensional elasticity theory are given by (Sadd
2009)
u=u(x,y,z,t)
v =v(x,y,z,t) (18)
W=w (x,y,z,t)

where u, v, and w are the displacements in the x, y, and z-

directions, respectively. For elastic materials, the general
equation for strain-displacement can be defined by

1 T
=§[Vu +(vu) | (19)
According to the above displacement field, the strain-

displacement relations, based on Eqg. (8) can be obtained as

(20)

Single layer graphene sheet

Triaxial Magnetic field

Wave propagation

Fig. 1 Geometry of anisotropic structures under
triaxial magnetic field
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Equation of motion, which is an expression of Newton's
second law can be expressed as follow

V.o +F = pli (21)

where F denote body forces and , indicates the mass

density.

The stress fields must satisfy the equilibrium condition,
which yields the equilibrium equations obtained. According
to Eg. (21) and the displacement field in Eqg. (18) the
following equilibrium equations can be obtained (Sadd
2009)

T, Ty, T o

-+ ——+2+F =p—

x oy a at

Txy O—yy sz 62\/

L+ X+ T 4F =p— 22
x oy TP (22)
Ty Tyz+o'ZZ+FZ:p5?V\ZI

ox oy oz ot

4.2 The nonlocal strain gradient theory

Under consideration nonlocal strain gradient theory, the
stress field takes into consider the effects of nonlocal elastic
stress field and strain gradient stress field. Also, the stress
can be defined as (Lim et al. 2015, Ebrahimi et al. 2016)

1)
txx =0y _% (23)
dx

where the classical stress o,, and the higher-order stress

o) are related to strain &,

XX

and strain gradient &

respectively and can be stated as (Ebrahimi et al. 2016, Lim
et al. 2015),

L
= [Cay(x'x,82)Cyy 1 4] (x )’ (24)
0

L
¥ =l 2J'C o (x',x.e@)e,, (x")dx’ (25)
0

where L is the length of the plate, C;, is the fourth-

order elasticity tensor, 1 is the material length scale
parameter introduced to consider the significance of strain
gradient stress field, e,a and e,a, which are nonlocal
parameters, are introduced to consider the significance of
nonlocal elastic stress field (Nami and Janghorban 2015).
o (x',x,ea) and o (x',x,ea) are the nonlocal
functions for the classical stress tensor and the strain
gradient stress tensor, respectively (Eringen 1983). The
linear nonlocal differential operator which is written as
follows, is applied to the both sides of Eq. (23); operator
can be defined as

L, =1-(e,a)’ V2 for i =0,1 (26)

in above relation V2
defined as

is the Laplacian operator and can be

2 2 2

sza—2+a—2+8—2

x° oy° oz

Now, by applying Eg. (26) in Eqg. (23) a clearer
constitutive equation for the size-dependent can be derived

(@7)
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22 2 292 g2 (28)
=Cyq [1—(e1a) \% Jskl —Cyj {1—(e0a) % }V £q
Suppose e, =e, =e and the nonlocal functions

a,(x',x,ea) and o (x',x,ea) satisfy the conditions in
Eringen (Lim et al. 2015),
(1—(93)2 VZ)GXX :Cijkl gxx (29)

and the general constitutive for size-dependent plate can be
simplified as (Askes and Aifantis 2009),
(O- ,Ll U“ mm) c:ukl ( I 5” mm) (30)
In this step, by differentiating from above equations,
some of the terms in 3D elasticity theory with considering
the both nonlocal and gradient parameters will appear. By
considering the equilibrium equations, governing equations
for investigating anisotropic nanoplates are achieved as
follow
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Finally, according to equilibrium equations, the third frequency in anisotropic materials. In the present study,

governing equation of nonlocal strain gradient 3D elasticity ~ Wave propagation in anisotropic nanoplates is investigated

theory can be directly written in terms of displacements u, v ~ away from any boundary conditions (simply supported, free,

and w as clamped, etc.) similar to many other studies on macro and
nanostructures.
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In order to find the wave propagation behavior of
anisotropic rectangular nanoplates, the displacement fields
of the waves propagating in the Xx-y-z coordinate are
assumed with the following terms
Xk, +yky +2K, —t )

u =A1ei(
v :Azei(xkx+yky+zkz —at) (34)
W =A ei(xkX +yky+zkz—ax)

3

where A, ; A, and A, are the coefficients of wave
amplitude, k, , k, and k, are the wave numbers of

wave propagation along x, y and z- directions respectively
and « is frequency.

By substituting Eq. (34) in Egs. (31)-(33), gives
(K]-e'M]){x }=0 (35)
in above equation the
T
(XT={ALALA} .
The dispersion relations of wave propagation in the

anisotropic rectangular nanoplate can be developed by
setting the following determinant to zero

[K]-e?[M]=0 (36)

unknown parameters are

6. Numerical results

In this paper, the wave propagation of anisotropic
nanoplates under triaxial magnetic field is presented by
some numerical examples. The effects of various
parameters such as nonlocal and gradient parameter,
uniaxial, biaxial and triaxial magnetic field and wave
number on the wave propagation of anisotropic nanoplates
are investigated. It is mentioned that the thickness, material
properties and elastic constants of five different anisotropic
structures such as orthotropic, hexagonal, trigonal,
monoclinic, and triclinic used in present paper are given in
Table 2 and relations (3-6) which can be found here (Shen
et al. 2010, Batra et al. 2004). In some numerical examples,
according to the lack of elastic constant for different types
of anisotropic nanostructures, the elastic constants for
macro structures are used.

6.1 Verification

For isotropic nanoplates, following material properties
and thickness are used, E=1.06 TPa, v=0.25, p=2250
(kg/m®) and h=0.34 nm (Karami and Janghorban 2016) and
(eod) varies from 0 to 1.0 nm. Wave number is handled in
offering the results in graphical and tabular forms as below

k:afkf+ky2+kz2 (37)

In Table 2, the wave frequencies of isotropic nanoplates
based on nonlocal strain gradient three-dimensional
elasticity theory are compared with the results of
Janghorban and Nami (Janghorban and Nami 2016). One

can find great agreement between the results. For this
comparison, we derived the nonlocal strain gradient
governing equations for the second-order shear deformation
theory and solved them for wave propagation of isotropic
nanoplates.

6.2 Wave propagation of anisotropic nanoplates
excluding magnetic field

In this section, the wave propagation of anisotropic
materials is presented in Tables 3-7. For this investigations,
the effects of magnetic field are neglected. In Tables 3-7,
the effects of nonlocal and gradient parameters and various
wave numbers on the wave frequency of anisotropic
materials such as orthotropic, hexagonal, trigonal,
monoclinic and triclinic are presented.

Table 3, shows the effect of variation of wave numbers
in three directions on the wave propagation of orthotropic
nanoplates. It can be understood that inclusion of nonlocal
parameter leads to reduction in wave frequency of
orthotropic nanoplates. So, nonlocal parameter has a
stiffness-softening influence on the plate structure. Also,
nonlocal parameter has a significant influence on wave
frequency when the gradient parameter effect is included in
the model. From this table, it is obvious that the value of
wave frequency increases by an increase in the gradient
parameter. Furthermore, the effect of both length scale
parameters on wave frequency becomes more significant at
larger wave numbers. Moreover, as wave number increases,
an increase in the value of wave frequency can be seen.

From Tables 4-7, it is concluded that with the increase
of nonlocal and gradient parameter, the wave frequency of
anisotropic  materials  will increase and decrease
respectively. Moreover, it is noticed that the wave
frequencies of anisotropic materials increase as the wave
number increase. Also, the wave frequency of anisotropic
materials is not very sensitive with length scale parameters
changes at small wave numbers, but in higher wave
numbers the variations of wave frequency is more
noticeable. For all the values of the nonlocal and gradient
parameters and wave numbers, hexagonal and monoclinic
square plates have the highest and lowest wave frequencies,
respectively.

6.3 Wave propagation of anisotropic nanoplates
including triaxial magnetic field

In this section, wave propagation of anisotropic
materials under different magnetic field changes are
presented in Tables 8-11. Note, in Tables 8-11, the
frequencies extracted from the equation of motions by using
eigenvalue method and MATLAB software are sorted in
three different modes named as M1, M2, and M3. It is
mentioned that for biaxial and triaxial cases, the magnitude
of magnetic field in the y and z directions are equal to the x
direction. In Tables 8-11, the effects of triaxial magnetic
field, nonlocal and gradient parameters and wave numbers
on the wave frequency of anisotropic materials such as
orthotropic, hexagonal, trigonal, monoclinic and triclinic
are presented.
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Table 2 Comparison of solutions for isotropic wave propagation (% =q, x10"* k, =k, = o)

@
I =0.0(nm) I =0.5(nm) | =1.0(nm) | =1.5(nm)
k p(nm) a Present a Present a Present a Present
1x10° 0.0 0.2241 0.2241 0.2506 0.2506 0.3170 0.3170 0.4041 0.4041
0.5 0.2005 0.2005 0.2242 0.2242 0.2836 0.2836 0.3615 0.3615
1.0 0.1585 0.1585 0.1772 0.1772 0.2242 0.2242 0.2858 0.2858

Ref. (Janghorban and Nami 2016)

Table 3 Wave frequency (% =, xlo“) in orthotropic nanoplates for various nonlocal and gradient parameters and
wave numbers

@,
I =0.0(nm) I =1.5(nm)

p(nm)

0.0 0.75 15 0.0 0.75 15
k, =k, =k, =1x10°
Armchair sheet | 0.1780 0.1098 0.0647 0.4472 0.2728 0.1607
Armchair sheet |1 0.1771 0.1080 0.0636 0.4400 0.2684 0.1581
Armchair sheet 111 0.1753 0.1069 0.0630 0.4356 0.2657 0.1565
Zigzag sheet IV 0.2860 0.1745 0.1027 0.4362 0.2661 0.1567
Zigzag sheet V 0.2837 0.1731 0.1019 0.4393 0.2680 0.1578
Zigzag sheet VI 0.2780 0.1708 0.1006 0.4352 0.2655 0.1563
k, =k, =k, =3x10°
Armchair sheet | 0.5399 0.1342 0.0687 3.7172 0.9239 0.4730
Armchair sheet Il 0.5313 0.1321 0.0676 3.6567 0.9089 0.4653
Armchair sheet 111 0.5258 0.1307 0.0692 3.6203 0.8998 0.4607
Zigzag sheet IV 0.8580 0.2133 0.1092 3.6236 0.9006 0.4611
Zigzag sheet V 0.8512 0.2116 0.1083 3.6516 0.9076 0.4647
Zigzag sheet VI 0.8399 0.2088 0.1069 3.6165 0.8989 0.4602

Table 4 The effects of length scale parameters and wave number on the wave frequency of hexagonal square
plate (&, =aq, <10k, =k, =0)

@,
I (nm)

k u(nm) 0.0 0.25 0.75 1.25 1.75

0.0 0.1270 0.1309 0.1587 0.2032 0.2559
1x10° 0.75 0.1016 0.1047 0.1270 0.1626 0.2047

15 0.0704 0.0726 0.0880 0.1127 0.1419

0.0 0.2539 0.2839 0.4578 0.6837 0.9242
2x10° 0.75 0.1408 0.1575 0.2539 0.3792 0.5127

15 0.0803 0.0898 0.1448 0.2162 0.2923
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Table 5 The effects of length scale parameters and wave number on the wave frequency of trigonal square
plate (e, =@, x10* k, =k, =0)

&,
I (nm)
k u(nm) 0.0 0.25 0.75 1.25 1.75
0.0 0.0572 0.0590 0.0715 0.0916 0.1153
1x10° 0.75 0.0458 0.0472 0.0572 0.0733 0.0923
15 0.0317 0.0327 0.0397 0.0508 0.0640
0.0 0.1144 0.1280 0.2063 0.3082 0.4166
2x10° 0.75 0.0635 0.0710 0.1144 0.1709 0.2311
15 0.0362 0.0405 0.0652 0.0974 0.1317

Table 6 The effects of length scale parameters and wave number on the wave frequency of monoclinic square
plate(a, =@, x10“,k, =k, =0)

@,
I (nm)
k u(nm) 0.0 0.25 0.75 1.25 1.75
0.0 0.0331 0.0341 0.0414 0.0530 0.0667
1x10° 0.75 0.0265 0.0273 0.0331 0.0424 0.0534
15 0.0184 0.0189 0.0229 0.0294 0.0370
0.0 0.0662 0.0740 0.1193 0.1782 0.2409
2x10° 0.75 0.0367 0.0410 0.0662 0.0989 0.1336
15 0.0209 0.0234 0.0377 0.0564 0.0762

Table 7 The effects of length scale parameters and eave number on the wave frequency of triclinic square
plate (&, =a, x10“,k, =k, =0)

&,
[ (nm)
k u(nm) 0.0 0.25 0.75 1.25 1.75
0.0 0.0357 0.0368 0.0446 0.0572 0.0720
1x10° 0.75 0.0286 0.0295 0.0357 0.0457 0.0576
15 0.0198 0.0204 0.0248 0.0317 0.0399
0.0 0.0714 0.0799 0.1288 0.1923 0.2600
2x10° 0.75 0.0396 0.0443 0.0714 0.1067 0.1442
15 0.0226 0.0253 0.0407 0.0608 0.0822

Table 8, examines the effects of wave number, both
length scale parameters, uniaxial, biaxial, and triaxial
magnetic field on the wave propagation in orthotropic
nanoplates for H,=100, 500 and 1000. The nonlocal and
gradient parameters are taken 1nm. It can be seen that with
the increase of magnetic field, the wave frequency
increases. Besides, for higher values of wave numbers,
magnetic field shows less effect on the wave frequencies.
Also, the effect f variations of biaxial magnetic field on the
wave propagation in different types of orthotropic

nanoplates with considering wave number in x direction is
more than uniaxial and triaxial magnetic field. In realizing
the influence of triaxial magnetic field, the wave frequency
in anisotropic structures are shown in Tables 9-11. They are
tabulated for three cases including uniaxial, biaxial, and
triaxial magnetic field. Tables 9-11, demonstrates the effect
of magnetic field on changes of wave frequency for four
different anisotropic structures versus wave number at
I = =0. It is seen that the wave frequency has a notable

increasing trend versus wave number. Also, it can be
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Table 8 Wave frequency (a,, =a,,x10"*) in orthotropic nanoplates for different wave numbers under the

variations of magnetic field, (,u =1x10°,1 =1x10°k, =k, = o)

@,
k =1x10° k =2x10°
Uniaxial Biaxial Triaxial Uniaxial Biaxial Triaxial
H, =100
Armchair sheet | 1.2829 2.0027 1.2829 2.5654 4.0054 2.5654
Armchair sheet 11 1.2699 1.9806 1.2699 2.5393 3.9613 2.5393
Armchair sheet 111 1.2644 1.9590 1.2644 2.5283 3.9180 2.5283
Zigzag sheet IV 1.2918 2.0038 1.2918 2.5832 4.0077 2.5832
Zigzag sheet V 1.2909 1.9840 1.2909 2.5813 3.9679 2.5813
Zigzag sheet VI 1.2645 1.9671 1.2645 2.5285 3.9342 2.5285
H, =1000
Armchair sheet | 1.3131 2.0440 1.3094 2.5897 4.0879 2.5825
Armchair sheet Il 1.3034 2.0269 1.2989 2.5664 4.0537 2.5574
Armchair sheet 111 1.3008 2.0099 1.2955 2.5577 4.0197 2.5471
Zigzag sheet IV 1.3254 2.0504 1.3209 2.6103 4.1008 2.6013
Zigzag sheet V 1.3254 2.0324 1.3205 2.6092 4.0647 2.5995
Zigzag sheet VI 1.3005 2.0171 1.2953 2.5576 4.0340 2.5473

Table 9 Effects of uniaxial, biaxial and triaxial magnetic field on the wave frequency (M1) of anisotropic

nanostructures, (e, = a,, x10°,k, =k, =0)

le

Uniaxial Biaxial Triaxial

100 500 1000 100 500 1000 100 500 1000
k =1x10°
Hexagonal 0.0858 0.0930 0.1125 0.0858 0.0919 0.1005 0.0858 0.0920 0.0994
Trigonal 0.0336 0.0450 0.0572 0.0336 0.0418 0.0468 0.0335 0.0394 0.0419
Monoclinic 0.0337 0.0451 0.0572 0.0336 0.0410 0.0448 0.0336 0.0417 0.0467
Triclinic 0.0169 0.0244 0.0357 0.0169 0.0227 0.0262 0.0169 0.0216 0.0238
k =1x10°
Hexagonal 0.8568 0.8938 1.0008 0.8568 0.8832 0.8874 0.8568 0.8838 0.8934
Trigonal 0.3337 0.4081 0.5680 0.3336 0.3739 0.3100 0.3335 0.3541 0.2823
Monoclinic 0.3338 0.3959 0.5461 0.3337 0.3557 0.2699 0.3337 0.3632 0.3197
Triclinic 0.1688 0.2127 0.3060 0.1688 0.1918 0.1501 0.1689 0.1902 0.1544
k=2x10°
Hexagonal 1.7116 1.7417 1.8324 1.7116 1.7207 1.6069 1.7116 1.7221 1.6280
Trigonal 0.6648 0.7553 0.9254 0.6647 0.6838 0.2230 0.6644 0.6481 0.1575
Monoclinic 0.6641 0.7166 0.8603 0.6639 0.6345 0.2313 0.6640 0.6497 0.2615
Triclinic 0.3376 0.3771 0.4686 0.3376 0.3328 0.1788 0.3377 0.3334 0.1131

concluded that the wave frequency in three different modes
increased significantly for increasing all magnetic field
changes. The influences of triaxial magnetic field on the
wave frequency (M3) are more than other cases but for the
wave frequency (M1) and (M2), the effects of biaxial and
uniaxial magnetic field are more notable, respectively.
Furthermore, the review of results indicates that hexagonal
structure has the highest, and the triclinic structure, the
lowest wave frequency in all magnetic field cases (uniaxial,
biaxial, and triaxial) and modes (M1, M2, and M3). It
should be noted that these results are independent of the
wave number. Moreover, the variations of magnetic field
have no sensible effects on the wave frequency at lower
wave numbers.

7. Conclusions

In this work, for the first time, the effects of triaxial
magnetic field on the wave propagation in anisotropic
single-layered graphene sheets were presented. The
equations of motion were determined by the three-
dimensional elasticity theory in conjunction with the
nonlocal strain gradient theory. Different types of
anisotropic structures such as orthotropic, hexagonal,
trigonal, monoclinic and triclinic materials were modeled
and compared with each other. The effects of different
parameters such as nonlocality, gradient parameter and
uniaxial, biaxial and triaxial magnetic field were also
studied. Hence, the following conclusions were notable,
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Table 10 Effects of uniaxial, biaxial and triaxial magnetic field on the wave frequency (M2) of anisotropic

Nanostructures, (e, = e, x10°,k, =k, =0)

Do

Uniaxial Biaxial Triaxial

100 500 1000 100 500 1000 100 500 1000
k =1x10°
Hexagonal 0.0949 0.1015 0.1198 0.0949 0.1015 0.1198 0.0949 0.1006 0.1169
Trigonal 0.0514 0.0572 0.0695 0.0514 0.0580 0.0774 0.0514 0.0592 0.0794
Monoclinic 0.0513 0.0572 0.0695 0.0513 0.0595 0.0798 0.0513 0.0565 0.0752
Triclinic 0.0174 0.0247 0.0395 0.0174 0.0244 0.0395 0.0174 0.0246 0.0398
k =1x10°
Hexagonal 0.9487 1.0148 1.1980 0.9487 1.0148 1.1980 0.9487 1.0053 1.1445
Trigonal 0.5134 0.5722 0.5722 0.5134 0.5767 0.7740 0.5134 0.5801 0.7476
Monoclinic 0.5134 0.5722 0.5722 0.5134 0.5951 0.7983 0.5132 0.5631 0.7180
Triclinic 0.1725 0.2438 0.3570 0.1724 0.2439 0.3953 0.1724 0.2356 0.3639
k=2x10°
Hexagonal 1.8974 2.0295 2.3959 1.8974 2.0295 2.3959 1.8973 2.0104 2.2736
Trigonal 1.0263 1.1445 1.1445 1.0262 1.1502 1.5478 1.0262 1.1479 1.4530
Monoclinic 1.0267 1.1445 1.1445 1.0267 1.1902 1.5966 1.0263 1.1248 1.4093
Triclinic 0.3427 0.4879 0.7141 0.3426 0.4877 0.7906 0.3426 0.4671 0.7040

Table 11 Effects of uniaxial, biaxial and triaxial magnetic field on the wave frequency (M3) of anisotropic

NanoStructures, (@, = my, x10° .k, =k, =0)

a)M3

Uniaxial Biaxial Triaxial

100 500 1000 100 500 1000 100 500 1000
k =1x10°
Hexagonal 0.1270 0.1270 0.1270 0.1272 0.1329 0.1552 0.1274 0.1386 0.1744
Trigonal 0.0572 0.0595 0.0798 0.0576 0.0684 0.1004 0.0579 0.0753 0.1182
Monoclinic 0.0572 0.0595 0.0798 0.0576 0.0676 0.0994 0.0579 0.0762 0.1191
Triclinic 0.0357 0.0357 0.0396 0.0359 0.0412 0.0587 0.0361 0.0454 0.0697
k =1x10°
Hexagonal 1.2696 1.2696 1.2696 1.2717 1.3289 1.5383 1.2739 1.3853 1.7383
Trigonal 0.5722 0.5868 0.7829 0.5756 0.6785 0.9723 0.5789 0.7518 1.1745
Monoclinic 0.5722 0.5951 0.7983 0.5756 0.6723 0.9646 0.5790 0.7603 1.1833
Triclinic 0.3572 0.3572 0.3954 0.3590 0.4102 0.5724 0.3607 0.4529 0.6923
k =2x10°
Hexagonal 2.5392 2.5392 2.5392 2.5435 2.6572 3.0635 2.5478 2.7702 3.4714
Trigonal 1.1445 1.1660 1.5597 1.1512 1.3516 1.9140 1.1578 1.5024 2.3415
Monoclinic 1.1445 1.1902 1.5966 1.1511 1.3410 1.9009 1.1580 1.5191 2.3589
Triclinic 0.7143 0.7143 0.7975 0.7179 0.8190 1.1304 0.7215 0.9050 1.3800

. Based on a general conclusion, the three-
dimensional elasticity theory in conjunction with the
nonlocal strain gradient theory, as a single theory, can show
accuracy consequence for the wave propagation
characteristics of anisotropic structures including size
effects.

. The wave frequency of anisotropic structures can
be increased by an increase in the value of gradient
parameter or a decrease in the nonlocal parameter’s
magnitude. In other words, the presented model can
estimate both stiffness-softening and stiffhess-hardening
influences generated by nonlocal and gradient parameters,
respectively.

. The effect of nonlocal parameter and gradient
parameter on the anisotropic structures with higher wave
numbers is more significant than anisotropic structures with
lower wave numbers.

. The wave frequencies of anisotropic structures
depend on the magnitude of the magnetic field. So, with the
increase of magnetic field changes, the wave frequencies
grow significantly.
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