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1. Introduction 
 

During last two decades, the need to design the high 
performance and efficiency structures with low dimensions 
has attracted the researchers to study the nano/micro 
electromechanical systems (MEMS/NEMS) which incorpo-
rate the structural elements like beams, plates and 
membranes in micro/nano scale. Curved beams are one 
types of beam which are used in micro and nano-scale 
devices and systems such as biosensors, atomic force 
microscopes (AFM), micro/nano-electromechanical systems 
(MEMS/NEMS), civil and aerospace engineering. In order 
to better understand the behavior of these systems, the 
theoretical analysis and numerical methods play a 
significant role in capturing the size effects on the static and 
dynamic responses. Many investigations have been done by 
researchers using the size-dependent theories. For example, 
dynamic analysis of an embedded single-walled carbon 
nanotube (SWCNT) traversed by a moving nanoparticle, 
which was modeled as a moving load, was investigated by 
Şimşek (2011) based on the nonlocal Timoshenko beam 
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theory, including transverse shear deformation and rotary 
inertia. Yang et al. (2017) presented a size-dependent 
mathematical model of a FG-CNTs- reinforced microbeam 
based on the nonlocal stress and strain gradient theories. 
They studied nonlinear dynamic behavior of the microbeam 
subjected to electrostatic, piezoelectric actuation and 
thermal loading. Ebrahimi and Salari (2015) sought thermal 
buckling and free vibration analysis of the functionally 
graded (FG) nanobeams in thermal environments. They 
developed the size-dependent model of the nanobeam based 
on Timoshenko beam theory and considered the structure 
subjected to an in-plane thermal loading. Ghadiri and 
Shafiei (2016) analyzed vibration behavior of rotating FG 
microbeam based on modified couple stress theory. They 
also used Timoshenko beam theory and considered different 
temperature distributions. Ilkhani and Hosseini-Hashemi 
(2016) also applied modified couple stress theory to 
proposed size-dependent vibro-buckling analysis of a 
rotating beam. They derived the equations of motion by 
combining Euler-Bernoulli and Timoshenko beam theories 
and studied the effects of scale parameter, rotational speed, 
tangential load value and direction. In addition, Dehrouyeh-
Semnani et al. (2015) presented a size-dependent mathe-
matical formulation of a FG viscoelastically damped 
sandwich microbeam based on modified couple stress 
theory. They used Navier’s solution method to examine the 
influence of material length scale parameter, power index 
and loss factor ratios on the natural frequency. Zenkour and 
Abouelregal (2016) investigated the vibration phenomenon 
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of a nanobeam subjected to a time-dependent heat flux. The 
vibration analysis of a cantilever microbeam is applied by 
Abdollahi et al. (2016). Chen and Meguid (2015) 
investigated the effects of boundary condition, residual 
axial force, arch shape and temperature changes on the 
buckling behavior of a curved microbeam. They developed 
the governing equations using Euler-Bernoulli beam theory 
and solved them applying Galerkin decomposition 
approach. Ghayesh et al. (2017) sought the vibration 
behavior of a geometrically imperfect shear-deformable 
microbeam. They considered all the translational and 
rotational displacements and developed the mathematical 
formulation based on the modified couple stress theory 
Also, Şimşek (2015) analyzed the nonlinear vibration 
behavior of an axially functionally graded (AFG) 
microbeam by developing a size-dependent theoretical 
model based on the Euler-Bernoulli and modified couple 
stress theories. He used Galerkin approach to examine the 
effects of the length scale parameter, vibration amplitude, 
boundary conditions and material variation on the 
frequencies of the structure. Also, Wang et al. (2013) 
studied the size-dependent vibration behavior of a three-
dimensional cylindrical microbeams using modified couple 
stress. They considered only one single material length 
scale parameter. Tang et al. (2014) and Shafiei et al. (2016) 
are the other researchers which employed modified couple 
stress theory to capture the size effect on the vibrational 
behavior of the microbeams. A size-dependent model for 
the free vibration analysis of FG microbeams based on 
strain gradient theory is proposed by Ansari et al. (2011). 
They assumed the material properties to be graded along the 
thickness direction on the basis of Mori-Tanaka approach. 
Ghayesh et al. (2016) studied the viscoelastically coupled 
size-dependent dynamics of the microbeams using Kelvin-
Voigt viscoelastic model. Zamanian and Karimiyan (2015) 
presented the bending and vibration analysis of a doubled 
microbeam under electrostatic actuation. A non-classical 
beam model based on the Eringen’s nonlocal elasticity 
theory was proposed by Şimşek (2014) for nonlinear 
vibration of nanobeams with axially immovable ends. Jia et 
al. (2015) sought the size effect on the free vibration 
behavior of the FG microbeams under combined electro-
static force, temperature change and Casimir force. A 
nonlocal trigonometric shear deformation beam theory 
based on neutral surface position was developed by Ahouel 
et al. (2016) for bending, buckling, and vibration of 
functionally graded (FG) nanobeams using the nonlocal 
differential constitutive relations of Eringen. Togun and 
Bağdatli (2016) presented a nonlinear vibration analysis of 
the tensioned nanobeams with simple–simple and clamped–
clamped boundary conditions. The size dependent Euler–
Bernoulli beam model was applied to tensioned nanobeam. 

To the best of authors’ knowledge, magneto-thermo-
mechanical vibration and damping analysis of a FG-CNTs-
reinforced curved microbeam resting on viscoelastic 
medium is not reported in available literature. The structure 
is considered subjected to magnetic loads. Timoshenko 
beam and strain gradient theories are employed to develop 
the mathematical formulation which is able to capture the 
small scale effects. The equivalent mechanical properties of 
the microbeam are obtained using the extended rule of 
mixture. Also, the governing equations are derived based on 
the energy method and using Hamilton’s principle. The 
imaginary and real parts of eigenfrequency and damping 

(a) 
 

(b) 

Fig. 1 (a) A schematic of FG-CNT reinforced curved 
micro beam; (b) different distribution of CNTs 
(1) UD; (2) FGA; (3) FGO; (4) FGX 

 
 
ratio of the system are obtained using DQM and the effects 
of parameters such as structural damping, boundary 
conditions, viscoelastic medium, volume percent and 
distribution types of CNTS, magnetic field, material length 
scale parameters, temperature change and central angle of 
the curved microbeam are studied on the vibration and 
damping analysis of system. 

 
 

2. Geometry of problem 
 
A FG-CNTs-reinforced curved microbeam of length L, 

radius R and thickness h is illustrated in Fig. 1(a). 
The microbeam is surrounded by a viscoelastic medium 

which is modeled with spring, damper and shear elements. 
Different types of CNTs distribution, including UD, FGA, 
FGO and FGX are considered which are shown in Fig. 1(b). 

 
 

3. Theories and mathematical formulation 
 
3.1 Extended rule of mixture 
 
The effective material properties of the CNTs-reinforced 

composite beam are obtained by employing the extended 
rule of mixture. According to this method, the CNTs are 
assumed as short fibers which are aligned and straight. 
Hence, the effective Young’s modulus and shear modulus of 
the CNTs-reinforced composite beam can be expressed as 
(Zhang et al. 2015) 
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where Er11, Er22 and Gr12 represent Young’s and shear 
moduli of CNTs, respectively. Also, Em and Gm are the 
mechanical properties of the matrix material, and VCNT 
indicates the volume fraction of CNTs. In addition, ηi (i = 1, 
2, 3) denotes the CNT efficiency parameters. Here, CNTs 
are considered to be distributed uniformly (UD) or 
functionally graded (FG) through the thickness direction of 
the composite curved microbeam. Four different CNTs 
distribution types can be defined as below 
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in which wCNT denote the mass fraction of CNTs; ρm and 
ρCNT are the mass densities of matrix and CNTs, 
respectively. Also, the effective thermal expansion 
coefficients and mass density of the CNTs-reinforced 
composite beam can be calculated based on the extended 
rule of mixture as below 
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 (c) 1 ,CNT r CNT mV V      (10)
 

where αr11 and αr22 represent the thermal expansion 
coefficients of CNT in the longitudinal and transverse 
directions, respectively. In addition, ρm and ρr indicate the 
mass densities of matrix and CNT, respectively. It should be 
noted that the Poisson’s ratio is assumed to be constant in 
direction of the thickness. 

 

3.2 Timoshenko beam theory 
 

Based on Timoshenko beam theory, the displacement 

field at any point of the microbeam can be considered as 
follows (Liu and Reddy 2011) 
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in which u(x, t) and w(x, t) are the displacement components 
of the mid-plane along x and z directions, φ(x, t) is the total 
bending rotation of the microbeam cross section and t 
denotes time. The strain tensor components can be 
calculated using following relation 
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Substituting Eq. (11) into Eq. (12) we have 
 

,xx

u w
z

x R x

 
   

 
 (13a)

 
1

1 ,
2xz

w u z

x R R

             
 (13b)

 
3.3 Strain gradient theory 
 

The strain gradient theory is proposed by Lam (2003). 
This theory captures the size effect by considering three 
independent material length scale parameters and defines 
the potential energy as a function of the symmetric strain 
tensor, the dilatation gradient vector, the deviatoric stretch 
gradient tensor and the symmetric rotation gradient tensor. 
So, the potential strain energy of the microbeam can be 
expressed as below (Lam et al. 2003) 
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where γi, 
)1(

ijk and χij indicate the dilatation gradient vector, 
the deviatoric stretch gradient and the symmetric rotation 
gradient tensors, respectively and may be defined by the 
following relations 
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in which ui and δij denote the displacement vector and the 
knocker delta, respectively. Also, the rotation vector (θi) can 
be defined as follows 
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The total potential strain energy of the microbeam based 
on Timoshenko beam theory can be rewritten as 
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Using Eqs. (11)-(13b), the dilatation gradient vector, the 
deviatoric stretch gradient and the symmetric rotation 
gradient tensors can be simplified as 
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Also, the classical stress tensor, σij, the higher-order 
stresses, pi, 

)1(
ijk and mij can be defined as 
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where (l0, l1, l2) denote the independent material length 
scale parameters, λ and μ are the bulk and shear modulus, 
respectively. Substituting Eqs. (13a), (13b) and (18a)-(21b) 
into (22a)-(22d) we have 
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in which g represents the structural damping constant. 
 
3.4 Hamilton’s principle 
 

In this work, the governing equations of the microbeam 
are derived using Hamilton’s principle which can be defined 
as follows 
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in which ρ is the mass density of the nanocomposite 
microbeam. Also, the work done by surrounding elastic 
medium and axial magnetic field can be obtained as follows 
(Kolahchi et al. 2016b, Shen and Zhang 2011) 
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where kw and kg denote the spring constant of the Winkler 
type and the shear constant of the Pasternak type, 
respectively. Also, cd represents the damper constant of 
foundation; η is the magnetic field permeability and 
Hxdenotes the axial magnetic field. Furthermore, the 
foundation stiffness kw for the soft medium may be 
considered as (Shen and Zhang 2011) 
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in which Es, vs, Hs denote Young’s modulus, Poisson’s ratio 
and depth of the foundation, respectively. In this work, it is 
assumed that Es is temperature-dependent while vs is a 
constant. 

 

3.5 Derivation of governing equations 
 

Substituting Eqs. (17), (29) and (30) into Eq. (28), the 
motion equations of the microbeam can be obtained as 
below 
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where the stress resultants can be expressed as 
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Substituting Eq. (35a)-(39l) into Eqs. (32)-(34), the 
governing equations can be obtained as below 
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3.6 Boundary conditions 
 

Three different size-dependent boundary conditions at 
both ends of the nanocomposite curved microbeams, 
including Simply Supported-Simply Supported (SS), 
Clamped-Clamped (CC) and Clamped-Simply Supported 
(CS) are considered which can be expressed as follows 

 

For case (SS) 
At x = 0, L 
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4. Solution procedure 
 
This paper employs the DQM to solve the governing 

equations of the microbeam. According to the DQM, the 
derivative of a function with respect to a space variable at a 
given discrete point is approximated using a weighted linear 
sum of the function values at all discrete points in the 
domain. Therefore, the governing differential equations can 
be turned into a set of first order algebraic equations. The 
one-dimensional derivative of the function can be 
considered as follows (Kolahchi and Moniribidgoli 2016, 
Kolahchi et al. 2016a-b, 2017) 
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in which f(x) denotes the mentioned function, xi indicates a 
sample point of the function domain, N represent number of 
grid points, fi is the value of the function at ith sample point 
and Cij denote the weighting coefficients. So, choosing the 
grid points and weighting coefficients plays an important 
role in the accuracy of the results. The grid points are 
defined based on Chebyshev polynomials which can be 
considered as below 
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According to Eq. (48), the grid points are considered so 
that are closer together near the borders and are far away 
from each other in distant parts of the borders. 

The weighting coefficients can be determined through 
the following simple algebraic relations 
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In addition, the higher-order derivatives are defined as 
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Considering the grid points in the domain based on Eq. 
(48) and substituting Eqs. (47) into the governing Eqs. 
(40a)-(40c), the eigenvalue problem can be obtained as the 
following form 
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where [K], [C] and [M] are stiffness matrix, damp 
coefficient matrix and the mass matrix, respectively. Also, 
{db} and {dd} are the vectors contained boundary and 
domain points, respectively. To simplify the solution 
procedure, Eq. (52) can be reduced to the standard form of 
eigenvalue problem. For this purpose, Eq. (52) takes the 
following first order variable as 
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in which Z and [A] represent the state vector and state 
matrix, respectively which are defined as 
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in which [0] and [I] indicate the zero and unitary matrices, 
respectively. It should be noted that the existence of the 
damping because of the structural damping, leads to yield 
the complex frequencies from the solution of Eq. (53). 
Therefore, the results consist of two real and imaginary 
parts. The real part is related to the system damping, and the 
imaginary part indicates the system frequencies. 

 
 

5. Numerical results 
 
To study the effects of various parameters on the 

vibration behavior of the structure, a nanocomposite curved 
microbeam with central angle of θ = π/4, length to thickness 
ratio of L/h = 20 and thickness to material length scale 
parameter of h/l = 2 is considered. It should be noted that 
Lam et al. (2003) obtained the material length scale 
parameter for the homogeneous epoxy beam experimentally 
as l = 17.6 µm. However, since no experimental data are 
available for the nanocomposite curved microbeam at 
present, in order to quantitatively analyze of the structure, 
the corresponding length scale parameter is considered as l 
= l 0 = l1 = l2 = 15 µm in this work. The nanocomposite 
curved microbeam is made from Poly methyl methacrylate 
(PMMA) as the matrix material with Poisson’s ratios of vm 
= 0.34, temperature-dependent thermal coefficient of αm = 
(1 + 0.0005ΔT) × 10-6/K, and temperature-dependent Young 
moduli of Em = (3.52 ‒ 0.0034T) GPa so that T = T0 + ΔT 
and T0 = 300 K (room temperature). (10, 10) SWCNTs is 
employed as the reinforcement with the material properties 
listed in Table 1. Also, the elastic medium is made of Poly 

 
 

Table 1 Temperature-dependent material properties of (10, 10) 
SWCNT (L = 9.26 nm, R = 0.68 nm, h = 0.067 nm, 

)175.012 CNT  

VCNT

MD 
(Zhang et al. 2015)

Rule of mixture 
η2

E11 (GPa) E22 (GPa) E11 (GPa) η1 E22 (GPa)

0.11 94.8 2.2 94.57 0.149 2.2 0.934

0.14 120.2 2.3 120.09 0.150 2.3 0.942

0.17 145.6 3.5 145.08 0.149 3.5 1.381
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Table 2 Convergence and accuracy of DQM for eigenvalues of 
nanocomposite micro curved beam for different boundary 
conditions and damper constant of viscoelastic medium 

N 
SS SC CC 

CD = 0 CD = 10 CD = 0 CD = 10 CD = 0 CD = 10

7 

Im (Ω) 2.1143 0.5512 3.7718 2.2081 3.0012 2.1124

Re (Ω) 
-1.5181 -5.1231 -2.2012 -3.8812 -1.5418 -3.6617

-1.5181 -5.1231 -2.2012 -3.8812 -1.5418 -3.6617

11 

Im (Ω) 1.5981 0 2.8901 1.7123 2.5871 1.6112

Re (Ω) 
-1.0888 -4.8901 -1.8001 -3.3126 -1.0908 -3.1222

-1.0888 -1.7112 -1.8001 -3.3126 -1.0908 -3.1222

15 

Im (Ω) 1.5374 0 2.2244 1.0185 2.5253 1.5625

Re (Ω) 
-1.0216 -4.3424 -1.0283 -2.9784 -1.0315 -2.9915

-1.0216 -1.6925 -1.0283 -2.9784 -1.0315 -2.9915

17 

Im (Ω) 1.5372 0 2.2241 1.0181 2.5251 1.5621

Re (Ω) 
-1.0212 -4.3421 -1.0281 -2.9781 -1.031 -2.9912

-1.0212 -1.6923 -1.0281 -2.9781 -1.031 -2.9912

ξ 0.5533 1.0810 0.4195 0.3782 0.9721 0.9144
 

 
 

dimethylsiloxane (PDMS) with Poisson’s ratios of vs = 
0.48and Young moduli of Es = (3.22 ‒ 0.0034T) GPa 
(Zhang et al. 2015). 

 

5.1 Convergence of DQM 
 

In this section, convergence and accuracy analysis are 
carried out to determine the minimum number of grid points 
required to achieve the stable and accurate results. In Table 
2 the dimensionless )/( 111 AIL  eigenvalues of the 
nanocomposite curved microbeam are listed for different 
boundary conditions and damper constant of viscoelastic 
medium. As can be observed, the sufficient number of grid 
points which yields the accurate results for the present work 
is seventeen (N = 17) for different boundary conditions. 

 
5.2 Validation 
 

To ensure the accuracy and validation of the present 
study, the frequencies of the SS nanocomposite curved 
microbeam calculated by the DQM are compared with the 

 
 

results obtained from exact solution. A close agreement 
between the results of these two methods can be observed 
from Fig. 2 which demonstrates validation of the present 
work. 

 
5.3 The effect of different parameters 
 
In this part, the effects of parameters such as volume 

percent and distribution type of CNTs, temperature change, 
magnetic field, boundary conditions, material length scale 
parameter, central angle, viscoelastic medium and structural 
damping on the frequency of the structure are examined. 
Fig. 3 shows the effect of various boundary conditions on 
the non-dimensional eigenfrequency parameter and 
damping ratio versus different values of non-dimensional 
damper constant )./( 2

mmdD EhLcC   It can be seen 
that with increasing the damper constant, the imaginary part 
of the eigenfrequency decreases for all boundary conditions 
types. It is also observed that with increasing the damper 
constant, the imaginary part of eigenfrequency becomes 
zero for SS and CS boundary conditions which mean that 
the system is critically damped while for CC boundary 
condition this situation will be occurred at higher values of 
damper constant (see Fig. 3(a)). Furthermore, the effect of 
the damper constant on the real part of eigenfrequency is 
depicted in Fig. 3(b). It is apparent that the structure with 
SS or CS boundary condition is critically damped at the 
lower values of damper constant with respect to the 
structure with CC boundary condition. This indicates that 
CC boundary condition restricts the displacements of the 
structure and thus increases the stiffness of the system more 
than two other boundary conditions. From Fig. 3c, three 
regions, including under-damped (0 < ξ < 1), critically 
damped (ξ = 1) and over-damped (ξ > 1) can be observed. 

The effect of CNTs distribution types on the 
eigenfrequency and the damping ratio of the structure is 
plotted in Fig. 4. As can be seen, the highest frequency 
belongs to the structure with FGX distribution type of CNTs 
while the lowest one can be predicted for FGO distribution 
type. Therefore, the structure with FGX distribution type 
has higher stiffness and after that UD, FGA and FGO ones, 
respectively. Also, it can be concluded that for a constant 
value of CD (for example CD = 7.801) the structure with 
FGX is under damped while about the other distribution 

 
 

 
(a) (b) (c) 

Fig. 2 Comparison of result obtained by DQM and exact solution (a) imaginary part of eigenfrequency; (b) real part 
of eigenfrequency; (c) damping ratio 
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types, the structure is critically damped or over-damped. 

Variation of the imaginary and real parts of the eigen-
frequency as well as damping ratio versus the volume 
percent of CNTs is illustrated in Fig. 5. As expected, with 
increasing the volume percent of CNTs, the stiffness of the 
structure increases and thus, the frequency grows up. As it 
can be seen, with increasing the volume percent of CNTs, 
the over-damped system transforms to the under-damped 
one and the critically damped situation occurs at higher 
values of damper constant. 

Fig. 6 shows the effect of thickness to material length 

 
 

 
 

 
 
scale parameter ratio on the eigenfrequency of the system. It 
is obvious that with increasing the thickness to material 
length scale parameter ratio, the effect of size-scale 
becomes less significant and gets smaller. So, as this ratio 
increases, the stiffness of the structure decreases and as a 
result, system is critically damped and over damped for 
lower values of CD. 

The effect of magnetic field on the eigenfrequency and 
damping ratio of the system is probed in Fig. 7. From Fig. 
7(a), it can be found that applying the magnetic field 
increases the imaginary part of the eigenfrequency because 

 
(a) (b) (c) 

Fig. 3 Boundary condition effects on the (a) imaginary part of eigenfrequency; (b) real part of eigenfrequency; 
(c) damping ratio 

 
(a) (b) (c) 

Fig. 4 Distribution type of CNTs effects on the (a) imaginary part of eigenfrequency; (b) real part of eigenfrequency; 
(c) damping ratio 

 
(a) (b) (c) 

Fig. 5 Volume percent of CNTs effects on the (a) imaginary part of eigenfrequency; (b) real part of eigenfrequency; 
(c) damping ratio 
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the stiffness of the structure increases. In addition, it can be 
concluded from Fig. 7(b) that with increasing the magnetic 
field, the real part of the eigenfrequency curves intersect at 
the higher values of damper constant and thus the system 
will be in critically damped situation for higher values of 
damper constant. On the other hand, with applying the 
magnetic, the over-damped system transforms to the under- 
damped one as the damper constant increases (see Fig. 
7(c)). 

Variation of the eigenfrequency and damping ratio for 
different values of the central angle of the curved 

 
 

 
 

 
 
microbeam is plotted in Fig. 8. It can be seen that increasing 
the central angle decreases the frequency of the system. 
Also, with increasing the central angle of the curved 
microbeam, the critically damped situation occurs at lower 
values of damper constant. It means that with the decrement 
of the central angle, the system becomes more stable. 

Fig. 9 shows the effect of temperature change on the 
imaginary and real parts of the eigenfrequency and damping 
ratio of the curved microbeam. As expected, increasing 
temperature decreases the frequency of the structure. The 
reason is that with increasing temperature, the mechanical, 

 
(a) (b) (c) 

Fig. 6 Curved beam thickness to material length scale parameter ratio effects on the (a) imaginary part of 
eigenfrequency; (b) real part of eigenfrequency; (c) damping ratio 

 
(a) (b) (c) 

Fig. 7 Magnetic field effects on the (a) imaginary part of eigenfrequenc;. (b) real part of eigenfrequency; 
(c) damping ratio 

 
(a) (b) (c) 

Fig. 8 Central angle of the curved microbeam effects on the (a) imaginary part of eigenfrequency; (b) real part of 
eigenfrequency; (c) damping ratio 
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properties of the structure decreases and thus the stiffness of 
the system lessens. Furthermore, as temperature increases 
the critically damped situation happens at lower values of 
the damper constant. 

The effect of the elastic medium is examined by plotting 
Fig. 10. As can be seen, considering the elastic medium 
leads to an increase in the stiffness of the structure and thus 
the frequency of the system increases. Moreover, the 
structure with the Pasternak medium has the highest 
stiffness with respect to Winkler medium. In addition, 

 
 

 
 

 
 
studying the real part of the eigenfrequency and damping 
ratio shows that with considering the elastic medium, the 
critically damped situation occurs at higher values of 
damper constant. 

The variation of the eigenfrequency and damping ratio 
of the structure versus the structural damping for different 
values of damper constant is shown in Fig. 11. As can be 
seen, considering the structural damping leads to the 
increase of the frequency. Also, the non-visco-structure is 
critically damped at the higher values of the damper 

 
(a) (b) (c) 

Fig. 9 Temperature change effects on the (a) imaginary part of eigenfrequency; (b) real part of eigenfrequency; 
(c) damping ratio 

 
(a) (b) (c) 

Fig. 10 Elastic medium type effects on the (a) imaginary part of eigenfrequency; (b) real part of eigenfrequency; 
(c) damping ratio 

 
(a) (b) (c) 

Fig. 11 Structural damping effects on the (a) imaginary part of eigenfrequency; (b) real part of eigenfrequency; 
(c) damping ratio 
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constant with respect to the visco-structure. 
 

6. Conclusions 
 
In this paper, the vibration and damping behaviors of a 

FG-CNTs-reinforced composite curved microbeam were 
studied. The structure was considered to be subjected to a 
longitudinal magnetic field. Timoshenko beam theory was 
used to extend the mathematical model of the structure. In 
addition, the surrounding viscoelastic medium was 
simulated by normal springs, damper and shear elements. 
Applying strain gradient theory, the small scale effects were 
considered by three material length scale parameters. The 
extended rule of mixture was employed to obtain the 
effective material properties of the composite curved beam. 
The governing equations of the structure were derived 
based on Hamilton’s principle and the imaginary and real 
parts of the eigenfrequency of the system were obtained 
using DQM. The effects of various parameter such as 
volume percent and distribution type of CNTs, temperature 
change, magnetic field, boundary conditions, material 
length scale parameter, central angle, viscoelastic medium 
and structural damping were examined. Numerical results 
show that the structure with SS or CS boundary condition 
was critically damped at the lower values of damper 
constant with respect to the structure with CC boundary 
condition. It was deduced that for a constant value of CD the 
structure with FGX was under damped while about the 
other distribution types the structure was critically damped 
or over-damped. With increasing the volume percent of 
CNTs, the over-damped system transforms to the under-
damped one and the critically damped situation occurs at 
higher values of damper constant. It was found that 
applying the magnetic field increases the imaginary part of 
the eigenfrequency because the stiffness of the structure 
increases. In addition, with increasing the central angle of 
the curved microbeam, the critically damped situation 
occurs at lower values of damper constant. Furthermore, 
considering the elastic medium leads to an increase in the 
stiffness of the structure and thus the frequency of the 
system increases. Moreover, the non-visco-structure was 
critically damped at the higher values of the damper 
constant with respect to the visco-structure. 
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