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1. Introduction 

 
Singly and doubly curved panels of different materials 

are used as structural elements in high performance 
engineering structures, such as automobile, aerospace, 
chemical, naval, civil and many others. The tremendous 
increase in the use of composite and functionally graded 
material is due to their attractive properties, like enhanced 
corrosion resistance and the possibility to get the optimal 
design by changing the stacking sequence and fiber 
orientation. Plates and curved panels have been analyzed 
using numerical and analytical methods by many 
researchers. Utilizing Navier-type exact solution based on 
modified Sander’s theory, Reddy and Liu (1985) presented 
static analysis of cylindrical and spherical shells under 
simply supported boundary condition.  Utilizing double 
Fourier series and incorporating FSDT, Chaudhuri and Abu-
Arja (1988) presented an exact solution to the boundary 
value problem of doubly curved anti-symmetric angle ply 
shells subjected to transverse loading. Chaudhuri and Kabir 
(1989) presented an analytical solution of shear-flexible 
doubly curved orthotropic shells of rectangular plan-form 
utilizing first order shear deformation theory. Employing 
higher order shear deformation theory with finite element 
formulation, Kant and Kommineni (1992) presented linear 
and geometrically non-linear responses of panels under 
transverse loading. Utilizing four classical shallow shell 
theories, Chaudhuri and Kabir (1993, 1994) presented static 
and dynamic responses of moderately thick, symmetric and 
anti-symmetric doubly curved panels with different 
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boundary conditions. Ossadzow et al. (1995) presented 
theoretical modeling of laminated composite shells of 
arbitrary shape, accounting for continuity conditions of 
displacement and transverse shear stresses at layer interface. 
To and Liu (2001) developed a hybrid strain based lower 
order shell element for analysis of layer wise anisotropic 
shell structures undergoing large deformation. Utilizing 
higher order theory, Khare et al. (2005) presented closed 
form solution for thermo-mechanical and free vibration 
analysis of simply supported cross ply laminated composite 
and sandwich doubly curved panels on rectangular plan-
form. Chakrabarti and Sheikh (2005) presented flexural 
response of sandwich plates with stiff laminated face sheets 
incorporating a refined higher order theory. Oktem and 
Chaudhuri (2007, 2009) presented Levy type analytical 
solution using double Fourier series for general cross-ply 
thick doubly curved panel of rectangular plan-form with 
different boundary conditions. Oktem and Soares (2011a, b) 
presented static analysis of general cross-ply laminated 
composite plates and doubly curved panels of rectangular 
plan-form with different boundary conditions utilizing 
boundary-discontinuous generalized double Fourier series. 
Utilizing Carrera’s unified formulation, Carrera et al. (2011) 
presented the thickness stretching effects in the functionally 
graded plates and shells. Using higher order shear 
deformation theory, Oktem et al. (2012) presented the static 
response of functionally graded plates and doubly curved 
shells, using double Fourier series. Kiani et al. (2012) 
investigated static, dynamic and free vibration response of 
functionally graded doubly curved panels resting on 
Pasternak elastic foundation. Arefi (2014) presented general 
formulation for the thermo elastic analysis of a functionally 
graded cylindrical shell subjected to external loads, using 
shear deformation theory and energy method. Based on 
improved higher order sandwich panel theory, Fard et al. 
(2014) analyzed bending response of doubly curved 
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sandwich panel subjected to different type of loadings. 
Utilizing double Fourier series, Alankaya and Oktem (2016) 
presented an analytical solution to the static analysis of 
laminated composite and sandwich doubly curved shallow 
shells. Sahoo et al. (2016) presented experimental results 
for the static, transient and free vibration response of 
laminated composite singly and doubly curved panels and 
compared the results with finite element simulation. 

It is evident from the literature that most of the work 
related to static analysis of singly and doubly curved panels 
on rectangular plan-form is carried out using numerical 
method. It is also observed that relatively less attention is 
paid to the flexural analysis of hyperboloid and ellipsoidal 
panel. In the present study, Chebyshev series based, 
analytical approach is used for the static analysis of singly 
and doubly curved panels on rectangular plan-form, 
subjected to uniformly distributed transverse loading. 
Mathematical formulation is based on the higher order shear 
deformation theory and principle of virtual work is used to 
obtain the governing partial differential equations. Fast 
converging finite double Chebyshev series is used for 
spatial discretization of governing partial differential 
equations. The results are obtained for laminated composite, 
sandwich and functionally graded singly (cylindrical- ‘C’) 
and doubly curved (spherical-‘S’, hyperboloid-‘H’ and 
ellipsoid -‘E’) panels (Fig. 1). Some new results pertaining 
to the hyperboloid and ellipsoid are presented which can be 
used as a benchmark. 

 
 

 
 

2. Mathematical formulation 
 

The laminated composite and sandwich doubly curved 
panels, consisting of finite number of layers are shown in 
Figs. 2(a)-(b), respectively. x and y are the lines on the mid 
surface of shell, z is a straight line normal to the mid 
surface. Rx and Ry are the principal radii of curvatures of 
mid surface of the panels. In the present work, governing 
differential equations are obtained using higher order shear 
deformation theory with third order variation of in-plane 
displacement and constant transverse displacement. At a 
point in the panel, the displacement field is given as (Kant 
and Kommineni 1992) 

 

0( , , ) ( , ) ( , )xu x y z u x y z x y   
2 3

1 ( , ) ( , )xz u x y z x y   
0( , , ) ( , ) ( , )yv x y z v x y z x y 

 
2 3

1 ( , ) ( , )yz v x y z x y 
 

0( , , ) ( , )w x y z w x y  

(1)

 

where, u0, v0 are the in-plane displacements and w0 is the 
transverse displacement of a point (x, y) on the middle plane 
of the panel, respectively. The functions ψx, ψy are the 
rotations of the normal to the middle plane about y and x-
axes, respectively. u1, v1 and ϕx, ϕy are the higher order 
terms in the Taylor’s series expansion, representing higher 
order transverse cross-sectional deformation modes. 

 
 

  

(a) Cylindrical (b) Hyperboloid (c) Spherical 

Fig. 1 Geometry of singly (a) and doubly (b and c) curved panels 

 

(a) Laminated composite (b) Sandwich 

Fig. 2 Geometry of doubly curved panel 
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Strain-displacement relations 
Assuming thickness of the panel very much less than the 

radii of curvatures (h << Rx, Ry), the general strain-
displacement relations are given as 

 

, ,  
   
 x y

x y

u w v w

x R y R  

, ,       
       
     xy yz xz

y x

u v v w v u w u

y x z y R z x R

(2a)

 

Linear strains in terms of mid surface displacement can 
be obtained by substituting the displacement expressions 
from Eq. (1) into Eq. (2a), and given as 
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(2b)

 

where 
 

 

(2c)

 

Effective material properties of FGM panels are 
obtained by the rule of mixture based on the power law 
grading and these properties are assumed to vary through 
the thickness. These properties are expressed as (Kiani et al. 
2012) 

cmcm VPPPzP )()(   (3a)
 

where, Pm and Pc are the effective properties of metal and 
ceramic respectively, and Vc is the volume fraction of   
ceramic and given as 

 
n

c h

z
zV 






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2

1
)(  (3b)

 

where, ‘n’ is power law exponent and always greater than or 
equal to zero. 

For kth layer in the shell, considered as orthotropic, the 
stress-strain relationship is expressed as 

11 12 16

12 22 26

16 26 66

44 45

45 55

0 0

0 0

0 0

0 0 0

0 0 0

x x

y y

xy xy

yz yz

zx zxk k
k

Q Q Q

Q Q Q

Q Q Q

Q Q

Q Q

 
 
 
 
 

                    
    
    
        

(4)

 
where, ijQ ’s (i, j = 1, 2, 4, 5, 6) are transformed reduced 
stiffness coefficients. 

In-plane stresses and moments are expressed as 
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Transverse shear stresses are written as 
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 (5b)

 
The stiffness coefficients are expressed as: 
(a) For laminated composite panel 
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(6)

 
(b) For FGM panel 
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where 
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Governing equations of equilibrium 
Governing partial differential equations of equilibrium 

are obtained using principle of virtual work 
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( ) 0U W     (9)
 

Where, U is strain energy and W is the work done by the 
external forces. These terms can be expressed as 

 

 x x y y
x y z

U         

     
xy xy xz xz yz yz dx dy dz       

 

(10a)

 

x y
W q wdx dy      (10b)

 

Integrating through the panel thickness and substituting 
the strains and introducing the stresses and moments from 
Eqs. (5a)-(5b), Eq. (9) is transformed into the following 
form 
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(11)

 

‘q’ is the uniformly distributed transverse loading over 
the panel surface. 

Governing equation of equilibrium are obtained from 
Eq. (11) and expressed as 
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Utilizing Eqs. (4) and (5), the Eqs. (12a)-(12i) are cast in 
displacement form. Variationally consistent boundary 
condition are obtained and expressed as: 

Simply supported immovable 
 

1 1 0y yu v w u v       
 

*& 0 1x xM M at x   
 

(13a)

 

1 1 0x xu v w u v       
 

*& 0 1y yM M at y   
 

(13b)

 

Simply supported movable SS1 type 
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Non dimensional parameters used in present analysis are 
as follows 
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Governing differential equations are finally cast in non 
dimensional form using Eq. (14). 

 
 

3. Solution methodology 
 
The governing equations of equilibrium along with the 

appropriate boundary conditions are solved using fast 
converging double Chebyshev series. The ith term in a 
Chebyshev polynomial is given as (Fox and Parker 1968) 

 

 ( ) ; ; 1 1iT x Cos i Cos x x       (15)
 

The recurrence relation can be found from the above 
equation and expressed as 

 

1 1( ) ( ) 2 ( )p p pT x T x xT x    (16)
 

The general displacement functions η (x, y) and the 
loadings are approximated as 
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where, M and N are the number of terms in finite degree 
double Chebyshev series. The values δi,j for different values 
of i & j are taken from Nath and Shukla (2001) and 
expressed as 
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The spatial derivative of the function is expressed as 
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where, ‘r and s’ are the orders of derivatives with respect to 
x and y, respectively. 

Using the above described procedure, the linear partial 
differential equations are discretized in the space domain. 
Finally the equation of equilibriums are reduced to a set of 
linear simultaneous equations by collocating the zeros of 
Chebyshev polynomials and expressed as  
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Similarly, the sets of boundary condition are discretized 
and expressed in linear simultaneous equations. Finally the 
set of Eq. (20) along with the boundary conditions are 
expressed as 

 A Q  (21)
 

where A is (p × q) coefficient matrix, η is q × 1 displacement 
coefficient matrix, and Q is (p × 1) load vector. 

Total number of equations obtained from the Eq. (21) is 
more than the total number of unknowns. To get unique and 
compatible solution, the multiple regression technique 
based on least square error norms is used. The multiple 
regression analysis gives 

 

  1



 T TA A A Q BQ

 
(22)

 

The displacement at any location on the mid plane of the 
panel can be evaluated by putting the displacement vector 
in the Eq. (17). 

 
 

4. Results and discussion 
 
Static response of laminated composite, FGM and 

sandwich cylindrical (Rx = R and Ry = ∞), spherical (Rx = Ry 
= R), hyperboloid (Rx = -Ry = R) and ellipsoidal (Rx = 2R 
and Ry = R) panels are computed analytically using the fast 
conversing double Chebyshev series. The effects of the 
different parameters such as lamination scheme, span to 
thickness ratio, radius of curvature to span ratio, power 

index on non-dimensional central deflection and bending 
moments of singly and doubly curved panels are obtained. 
The accuracy and validity of the present method is 
examined by detailed convergence study. The present 
results are also compared with those available in the 
literature. 

 

Laminated composite curved panels 
Static responses of laminated composite singly 

(cylindrical-‘C’) and doubly (spherical-‘S’, hyperboloid-‘H’ 
and ellipsoid-‘E’) curved panels on the square plan-form are 
computed for SS1 type simply supported boundary 
condition. The following material properties are considered 
for the analysis 

 

E1 = 175.78 GPa, E2 = 7.0312 GPa, 

G12/E2 = G13/E2 = 0.5, G23/E2 = 0.2, v12 = 0.25 
 

The normalized quantities used in the present analysis 
are 
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where, *
0w  is non dimensional transverse central deflection, 

xM  and yM  are non dimensional central moments about y 
and x axes, respectively and w0, Mx, My are the 
corresponding dimensional quantities. In the above 
normalized quantities, ‘a’ is the panel length, ‘h’ is panel 
thickness and ‘q’ is the load applied uniformly on the 
surface of the panel. 

Fig. 3 shows the convergence of non-dimensional trans-
verse central deflection )( *

0w  and bending moment
),( yx MM  of a moderately thick (a/h = 10), symmetric 

(0/90/0) cross-ply doubly curved panel (R/a = 10) on the 
square plan-form. Deflection and moments show good 
convergence at 9-10 terms expansion of the variables. In 
further analysis, 9 terms expansion of the displacement 
variables in Chebyshev series is taken. To reduce the gap 
between xM  and ,yM  a reduced scale )6/( xM  is taken 
in place of .xM Non-dimensional transverse central 
displace-ment of symmetric (0/90/0) and anti-symmetric 
(0/90) and bending moment )( xM  of symmetric (0/90/0 
and 0/90/90 /0) cross-ply doubly curved panel on the square 
plan-form (a/b = 1) is carried out. Non-dimensional central 
displace-ment is obtained for thin (a/h = 100) and 
moderately thick (a/h = 10) doubly curved panel at various 
R/a ratio. These results are compared with those due to 
Reddy and Liu (1985) and shown in Table 1. The bending 
moment of doubly curved panel (R/a = 10) is computed for 
different a/h ratio. These results are compared with those 
due to Oktem and Chaudhuri (2009) and shown in Table 2. 
Non-dimensional central displacement and bending moment 
both are in good agreement. 

Variation of non-dimensional central deflection )( *
0w

with span to thickness ratio (a/h) for anti-symmetric (0/90) 
and symmetric (0/90/0) cross-ply laminated composite 
singly and doubly curved panel on square plan-form are 
shown in Figs. 4(a)-(b), respectively. It is observed that the 
non-dimensional transverse central deflection of the hyper-
boloid is the highest and that of spherical panel is the lowest 
for both symmetric (0/90/0) and anti-symmetric (0/90) 
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Table 1 Validation of non-dimensional central deflection )( *
0w  

of symmetric (0/90/0) and anti-symmetric (0/90) lami-
nated composite doubly curved panel for different R/a 
and a/h ratio 

Lamination a/h R/a Present Reddy and Liu (1985)

0/90 

10 

10 18.91 18.74 

50 19.26 19.15 

100 19.26 19.16 

100 

10 5.54 5.53 

50 15.72 15.71 

100 16.65 16.64 

0/90/0 

10 

10 11.05 10.75 

50 11.01 10.89 

100 11.00 10.89 

100 

10 3.64 3.64 

50 6.49 6.48 

100 6.65 6.64 
 

 
 

Table 2 Validation of non-dimensional central moment )( xM of 
symmetric (0/90/0) and (0/90/90/0) laminated composite 
doubly curved panel (R/a = 10) for different a/h ratio 

a/h 

0/90/0 0/90/90/0 

Present 
Oktem and 

Chaudhuri (2009)
Present 

Oktem and 
Chaudhuri (2009)

5 106.50 107.80 88.22 89.90 

10 120.86 121.60 106.39 107.89 

20 123.06 124.20 112.58 114.31 

30 119.15 121.40 110.09 112.38 

40 113.20 116.80 105.00 108.53 

50 106.13 111.40 98.63 104.03 
 

 
 

laminated composite panels. The non-dimensional trans-
verse central deflection of hyperboloid is almost constant 
for the thin panels (a/h > 40) whereas for the ellipsoid, 
cylindrical and spherical panels, it continuously decreases 
with increase in the span to thickness ratio (a/h). Moreover, 
for the thick panels (a/h < 10) the non-dimensional central 
deflection is almost constant for ellipsoid, hyperboloid, 
cylindrical and spherical panels. Variation of non-
dimensional central deflection of anti-symmetric (0/90) and 
symmetric (0/90/0) cross-ply laminated composite singly 
and doubly curved panels on square plan-form with R/a 
ratio are shown in Figs. 5(a)-(b), respectively. It is observed 
that R/a ratio has pronounced effect on non-dimensional 
central deflection of cylindrical and spherical deep panels 
(R/a < 20) and this effect is insignificant on shallow panels 
(R/a > 40). Hyperboloid has almost constant non-dimen-
sional central deflection for all radii of curvature. It is also 
observed that R/a ratio is effective on anti-symmetric (0/90) 
panels than that on symmetric (0/90/0) curved panels. 

Variation of non-dimensional central bending moments 
)( xM  and )( yM  with span to thickness ratio (a/h) of 

symmetric (0/90/0) cross-ply laminated composite singly 
and doubly (R/a = 10) curved panels is shown in Fig. 6(a)-
(b), respectively. It is observed that non-dimensional central 
moments ),( yx MM  of the hyperboloid is the highest and 
that of spherical panel is the lowest. The effect of a/h ratio 
on non-dimensional central bending moment of hyperboloid 
in thinner regime (a/h > 20) is negligible. It is clearly 
visible that the magnitude of non-dimensional central 
bending moment xM  is higher than that of .yM  

 
Functionally graded curved panels 
Numerical results of functionally graded curved panels 

on square plan form are presented for simply supported 
boundary condition under uniformly distributed transverse 
load. The following material properties are considered for 
the analysis (Oktem et al. 2012) 

 

Fig. 3 Convergence of non-dimensional central deflection and moment of moderately thick (a/h = 10) symmetric, 
(0/90/0) laminated composite doubly curved panel (R/a = 10) 
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(a) Anti-symmetric (0/90) (b) Symmetric (0/90/0) 

Fig. 4 Variation of non-dimensional central deflection )( *
0w  of cross-ply laminated composite singly and doubly 

curved panels (R/a = 10) with a/h ratio 

(a) Anti-symmetric (0/90) (b) Symmetric (0/90/0) 

Fig. 5 Variation of non-dimensional central deflection )( *
0w  of thin (a/h = 50) anti-symmetric (0/90) and 

symmetric (0/90/0) cross-ply laminated composite curved panels with R/a ratio 

Table 3 Convergence of non-dimensional central deflection of moderately thick (a/h = 10) and moderately deep 
(R/a = 10) functionally graded curved panels 

M, N 
n = 1 n = 2 

Singly curved panel Doubly curved panel Singly curved panel Doubly curved panel 

6 4.0927E-03 3.8266E-03 4.1206E-03 3.8516E-03 

7 4.0925E-03 3.8261E-03 4.1205E-03 3.8514E-03 

8 4.0934E-03 3.8269E-03 4.1204E-03 3.8507E-03 

9 4.0947E-03 3.8283E-03 4.1215E-03 3.8518E-03 

10 4.0931E-03 3.8268E-03 4.1205E-03 3.8512E-03 

11 4.0934E-03 3.8272E-03 4.1209E-03 3.8515E-03 
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Ec = 151 GPa, Em = 70 GPa, vc = vm = 0.3 
 

The following normalized quantities are used for the 
present analysis 
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In order to assess the accuracy of the present solution 
methodology convergence of non-dimensional transverse 
central deflection of a functionally graded singly and 
doubly curved panels (R/a = 10) on the square plan-form 
(a/b = 1) for different power index (n = 1, 2) are carried out 
and presented in Table 3. Central deflection shows good 
convergence at 9-10 terms expansion of the variables. 

Variation of non-dimensional transverse central 
displace-ment of doubly curved panel for different a/h ratio 
and different power index (n = 0 to 2) is obtained and 
shown in Table 4. These results are compared with those 
due to Oktem et al. (2012) and found in good agreement. 

An attempt has been made to study the influence of 
power index on non-dimensional central displacement and 
bending moment responses of functionally graded singly 
(cylindrical-‘C’) and doubly (spherical-‘S’, hyperboloid-‘H’ 
and ellipsoid-‘E’) curved panel. Variation of non-dimen- 

 
 

 
 
sional central displacement )( *

0w and bending moment )( xM  

of moderately deep (R/a = 10) and shallow (R/a=50) 
functionally graded singly and doubly curved panels is 
obtained for different power index (n) and presented in 
Tables 5-6, respectively. This analysis is carried out for 
thick and thin panels (a/h = 5 to 50). It is observed that non-
dimensional transverse central displacement )( *

0w  and 
bending moment )( xM  decreases with increase in the a/h 
ratio. It is also observed that lager power index of 
functionally graded singly and doubly curved panel tends to 
lower down the bending moment. 

 
Laminated composite sandwich panels 
Numerical results for static analysis of laminated 

composite sandwich singly and doubly curved panels 
subjected to uniformly distributed load on the top face sheet 
with SS1 type simply supported boundary conditions are 
presented. Core thickness is considered to be 0.8h. Top and 
bottom face sheets are assumed to have the same thickness. 
The properties considered for the composite face sheet and 
the core are (Chakrabarti and Sheikh 2005) 

 
Face – E1/E2 = 25, G12 = G13 = 0.5 E2, 

G23 = 0.2 E2, ν12 = 0.25 

(a) Bending moment at centre )( xM  (b) Bending moment at centre )( yM  

Fig. 6 Variation of non-dimensional central bending moments ),( yx MM  of symmetric (0/90/0) cross-ply laminated 
composite singly and doubly curved panels (R/a = 10) with a/h ratio 

Table 4 Validation of non-dimensional central deflection of functionally graded doubly curved panels (R/a = 10) 

n 
a/h = 10 a/h = 20 a/h = 50 

Present Oktem (2012) Present Oktem (2012) Present Oktem (2012)

0 4.002E-3 3.998E-3 3.261E-3 3.255E-3 1.537E-3 1.527E-3 

0.5 3.849E-3 3.972E-3 3.042E-3 3.165E-3 1.407E-3 1.442E-3 

1.0 3.828E-3 4.026E-3 3.002E-3 3.188E-3 1.394E-3 1.449E-3 

2.0 3.851E-3 4.082E-3 3.021E-3 3.237E-3 1.426E-3 1.494E-3 

Metal 4.002E-3 3.998E-3 3.261E-3 3.255E-3 1.537E-3 1.527E-3 
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Core – E1C = E2C = 0.04 E2, 

G12C = 0.016 E2, G23C = G13C = 0 .06 E2, ν12C = 0.25 
 

The normalized quantities used in the present analysis 
are 
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Convergence of non-dimensional transverse central 
deflection )( *

0w  and moments ),( yx MM  of a moderately 
thick (a/h = 10) and moderately deep (R/a = 10) laminated 
composite (0/90/C/90/0) singly and doubly curved sandwich 
panels is shown in Table 7 and validation of non-dimen- 

 
 
sional transverse central deflection of flat sandwich panel is 
shown in the Table 8. Deflection and moment shows good 
convergence at 9-10 terms expansion of the variables. 
Present non-dimensional transverse central deflection )( *

0w  

of flat panel is in good agreement with those due to Pagano 
(1970) and Chakrabarti and Sheikh (2005). Table 9 shows 
the variation of non-dimensional transverse central 
deflection and moments with span to thickness ratio (a/h) of 
laminated composite (0/90/C/90/0) curved sandwich panels 
(H- hyperboloid, C- cylindrical, S- spherical) on square plan 
form for different R/a ratio. From the results it is observed 
that non-dimensional transverse central deflection )( *

0w  

and bending moment )( xM  for spherical panel is the 

Table 5 Variation of non-dimensional transverse central deflection )( *
0w and central moment )( xM of moderately 

deep (R/a = 10) functionally graded singly and doubly curved panel 

 n Panel 
a/h 

5 10 20 30 40 50 

*
0w  

0 

H 0.004850 0.004112 0.003570 0.003044 0.002533 0.002082 

C 0.004868 0.004163 0.003730 0.003318 0.002887 0.002476 

E 0.004849 0.004107 0.003558 0.003025 0.002509 0.002058 

S 0.004812 0.004003 0.003261 0.002574 0.001990 0.001538 

0.5 

H 0.004853 0.004132 0.003584 0.003046 0.002526 0.002069 

C 0.004813 0.004090 0.003596 0.003149 0.002711 0.002311 

E 0.004765 0.003991 0.003367 0.002811 0.002308 0.001886 

S 0.004701 0.003849 0.003043 0.002363 0.001818 0.001407 

1 

H 0.004968 0.004173 0.003623 0.003087 0.002566 0.002107 

C 0.004852 0.004095 0.003576 0.003122 0.002686 0.002290 

E 0.004795 0.003982 0.003332 0.002772 0.002276 0.001863 

S 0.004722 0.003828 0.003002 0.002329 0.001795 0.001394 

2 

H 0.005005 0.004213 0.003665 0.003140 0.002627 0.002170 

C 0.004935 0.004122 0.003592 0.003143 0.002714 0.002324 

E 0.004875 0.004006 0.003347 0.002794 0.002305 0.001895 

S 0.004799 0.003852 0.003021 0.002356 0.001828 0.001427 

xM  

0 

H 0.009363 0.009101 0.008160 0.006944 0.005720 0.004633 

C 0.009399 0.009225 0.008565 0.007650 0.006649 0.005681 

E 0.009360 0.009091 0.008127 0.006890 0.005653 0.004562 

S 0.009286 0.008852 0.007431 0.005830 0.004440 0.003357 

0.5 

H 0.007497 0.007291 0.006536 0.005557 0.004573 0.003701 

C 0.007424 0.007206 0.006559 0.005769 0.004961 0.004214 

E 0.007341 0.007008 0.006084 0.005054 0.004097 0.003288 

S 0.007234 0.006750 0.005481 0.004225 0.003197 0.002417 

1 

H 0.006541 0.006664 0.005978 0.005090 0.004195 0.003401 

C 0.006749 0.006521 0.005883 0.005141 0.004403 0.003730 

E 0.006658 0.006316 0.005423 0.004474 0.003614 0.002895 

S 0.006547 0.006061 0.004863 0.003724 0.002808 0.002120 

2 

H 0.006351 0.006183 0.005564 0.004762 0.003948 0.003218 

C 0.006245 0.006029 0.005430 0.004746 0.004070 0.003455 

E 0.006158 0.005835 0.005006 0.004136 0.003350 0.002692 

S 0.006052 0.005598 0.004492 0.003449 0.002609 0.001974 
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Table 6 Variation of non-dimensional transverse central deflection )( *
0w and central moment )( xM of shallow 

(R/a = 50) functionally graded singly and doubly curved panel 

 n Panel 
a/h 

5 10 20 30 40 50 

*
0w  

0 

H 0.004903 0.004268 0.004091 0.004031 0.003980 0.003923 

C 0.004904 0.004270 0.004099 0.004049 0.004010 0.003969 

E 0.004862 0.004147 0.003679 0.003229 0.002770 0.002342 

S 0.004902 0.004263 0.004073 0.003993 0.003914 0.003824 

0.5 

H 0.004907 0.004293 0.004122 0.004063 0.004010 0.003952 

C 0.004896 0.004275 0.004092 0.004024 0.003968 0.003910 

E 0.004796 0.004056 0.003520 0.003036 0.002575 0.002165 

S 0.004882 0.004248 0.004028 0.003915 0.003804 0.003687 

1 

H 0.004969 0.004332 0.004155 0.004095 0.004042 0.003984 

C 0.004953 0.004306 0.004110 0.004035 0.003972 0.003908 

E 0.004832 0.004055 0.003492 0.003002 0.002544 0.002141 

S 0.004934 0.004272 0.004033 0.003907 0.003786 0.003660 

2 

H 0.005058 0.004366 0.004175 0.004113 0.004062 0.004006 

C 0.005041 0.004338 0.004125 0.004046 0.003981 0.003917 

E 0.004914 0.004080 0.003507 0.003022 0.002571 0.002173 

S 0.004984 0.004301 0.004045 0.003914 0.003792 0.003666 

xM  

0 

H 0.009470 0.009463 0.009413 0.009335 0.009232 0.009105 

C 0.009471 0.009468 0.009433 0.009380 0.009310 0.009224 

E 0.009387 0.009180 0.008412 0.007371 0.006263 0.005223 

S 0.009467 0.009452 0.009371 0.009244 0.009075 0.008868 

0.5 

H 0.007583 0.007579 0.007545 0.007487 0.007407 0.007306 

C 0.007563 0.007544 0.007484 0.007410 0.007322 0.007223 

E 0.007392 0.007127 0.006366 0.005471 0.004587 0.003795 

S 0.007538 0.007491 0.007359 0.007193 0.007000 0.006782 

1 

H 0.006928 0.006922 0.006883 0.006826 0.006752 0.006659 

C 0.006903 0.006876 0.006799 0.006713 0.006618 0.006514 

E 0.006714 0.006439 0.005697 0.004866 0.004066 0.003359 

S 0.006873 0.006814 0.006660 0.006481 0.006282 0.006066 

2 

H 0.006421 0.006412 0.006368 0.006313 0.006244 0.006160 

C 0.006395 0.006365 0.006282 0.006194 0.006100 0.006001 

E 0.006212 0.005951 0.005261 0.004499 0.003770 0.003124 

S 0.006557 0.006305 0.006148 0.005972 0.005782 0.005579 
 

Table 7 Convergence of non-dimensional transverse central deflection )( *
0w and moment ),( yx MM of moderately 

thick (a/h = 10) singly and doubly curved (R/a=10) sandwich (0/90/C/90/0) panels 

M, N 
Singly curved panel Doubly curved panel 

*
0w  xM  yM  *

0w  xM  yM  

6 2.5690 73.9894 65.1759 2.6427 76.2879 61.8826 

7 2.5749 73.7996 64.7325 2.6494 76.1380 61.2936 

8 2.6031 74.3983 65.4548 2.6832 76.8184 62.1383 

9 2.6021 74.8071 65.7812 2.6821 77.2302 62.4850 

10 2.5887 74.3455 65.4155 2.6668 76.7431 62.1035 

11 2.5896 74.3775 65.3357 2.6678 76.7779 62.0146 
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Table 8 Validation non-dimensional transverse central deflection
)( *

0w of a moderately thick (a/h = 10) laminated composite

(0/90/C/90/0) flat sandwich panel 

Simply 
supported 

Pagano (1970) 2.63 

Chakrabarti and Sheikh (2005) 2.62 

Present 2.55 

Clamped 
Chakrabarti and Sheikh (2005) 1.48 

Present 1.63 
 

 
 
 

highest and that of hyperboloid is the lowest for thick to 
moderately thick (a/h < 20) curved sandwich panel. 
However, for thin (a/h > 20) sandwich panels, non-
dimensional transverse central deflection )( *

0w  and 
bending moment )( xM  of hyperboloid is the highest and 
that of spherical panel is the lowest. 

 
 
 

5. Conclusions 
 

Chebyshev series based analytical solution to the static 
analysis of laminated composites, functionally graded and 
sandwich singly and doubly curved panels on the 
rectangular plan-form, subjected to uniformly distributed 
transverse load is presented. The effect of span to thickness 
ratio, radii of curvature to span ratio, stacking sequence and 
power index on the deflection and moments are investi-
gated. Following observations are made: 

 

 In laminated composite curved panels, radius of 
curvature to span ratio (R/a) has significant effect on 
the flexural response of cylindrical and spherical 
panels and it is more pronounced for R/a < 40. 

 Span to thickness ratio (a/h) has pronounced effect 
on the non-dimensional central deflection and 
bending moment both and it is more pronounced for 
thick shells (a/h < 20). 

 
 
 

Table 9 Variation of non-dimensional transverse central deflection )( *
0w and central moments ),( yx MM of 

laminated composite (0/90/C/90/0) singly and doubly curved sandwich panels 

 R/a Panel
a/h 

5 10 20 30 40 50 100 

*
0w  

10 

H 5.954 2.553 1.694 1.534 1.478 1.452 1.417 

C 6.184 2.602 1.698 1.524 1.457 1.418 1.295 

S 6.547 2.682 1.699 1.494 1.398 1.329 1.029 

20 

H 5.939 2.543 1.689 1.531 1.475 1.449 1.415 

C 6.064 2.572 1.694 1.530 1.471 1.441 1.382 

S 6.220 2.608 1.698 1.524 1.456 1.418 1.294 

50 

H 5.948 2.544 1.688 1.530 1.474 1.449 1.414 

C 6.001 2.556 1.691 1.531 1.474 1.448 1.409 

S 6.058 2.570 1.694 1.531 1.472 1.444 1.393 

xM  

10 

H 69.284 73.313 76.917 78.046 78.499 78.717 79.003 

C 72.159 74.807 77.090 77.518 77.316 76.801 71.805 

S 76.709 77.230 77.100 75.917 74.075 71.748 56.456 

20 

H 71.964 74.839 77.437 78.257 78.583 78.735 78.895 

C 73.588 75.731 77.672 78.219 78.340 78.285 76.988 

S 75.616 76.847 77.863 77.899 77.540 76.949 71.859 

50 

H 73.620 75.790 77.776 78.460 78.661 78.775 78.873 

C 74.320 76.185 77.908 78.450 78.649 78.720 78.567 

S 75.083 76.616 78.032 78.445 78.547 78.520 77.671 

yM  

10 

H 70.331 67.672 65.427 64.741 64.455 64.307 64.086 

C 67.122 65.781 64.484 63.829 63.250 62.623 58.277 

S 61.936 62.485 62.466 61.505 59.992 58.079 45.542 

20 

H 67.458 65.998 64.770 64.391 64.225 64.131 63.943 

C 65.717 64.989 64.340 64.072 63.873 63.676 62.392 

S 63.502 63.643 63.645 63.391 62.971 62.419 58.136 

50 

H 65.715 64.992 64.388 64.198 64.107 64.049 63.897 

C 64.979 64.569 64.224 64.102 64.027 63.962 63.642 

S 64.168 64.092 64.017 63.949 63.857 63.742 62.894 
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 In FGM curved panels, both non-dimensional central 
deflection and bending moment are highest for the 
hyperboloid and lowest for the spherical panels. 

 Non-dimensional central deflection and bending 
moment both decreases with increase in the a/h ratio. 

 In the case of laminated composite sandwich curved 
panels, non-dimensional transverse central deflection 
and bending moment both are highest for spherical 
panel and lowest for hyperboloid panels, for thick to 
moderately thick (a/h < 20) curved sandwich panel. 
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