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1. Introduction 

 
Functionally graded materials (FGMs) are generally 

metal-matrix composites (MMCs) that have a continuous 
variation of material properties from one surface to another. 
The ceramic constituent provides high-temperature resis-
tance due to its low thermal conductivity. The ductile metal 
constituent on the other hand, prevents fracture caused by 
stresses due to high temperature gradient in a very short 
span of time. The concepts of FGMs were introduced by the 
Japanese Yamanouchi et al. (1990) and Koizumi (1993), 
and are used as thermal barrier materials for wide 
engineering applications such as space planes, space 
structures and nuclear reactors. The progress of FGM use in 
various engineering industries requires accurate models to 
predict their behaviours (Zidi et al. 2014, Kar and Panda 
2015, Khelifa et al. 2015, Hadji et al. 2015, Arefi 2015a, b, 
Arefi and Allam 2015, Atmane et al. 2015, Al-Basyouni et 
al. 2015, Meradjah et al. 2015, Saidi et al. 2016, Bousahla 
et al. 2016, El-Hassar et al. 2016, Ebrahimi and Shafiei 
2016, Hadji et al. 2016c). A critical review of more recent 
studies on the bending, dynamic and buckling investigation 
of functionally graded (FG) plates can be found in the work 
of Jha et al. (2013). Due to the transverse shear deformation 
effects that are more significant in thick plates or plates 
made of advanced composites like FGMs, shear 
deformation models that consider for shear deforma-tion 
effects are often employed to investigate the behaviours of 
FG plates. The first-order shear deformation theory 
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(Mindlin 1951, Reissner 1945, Meksi et al. 2015, Bellifa et 
al. 2016, Hadji et al. 2016a, b, d, Bouderba et al. 2016) 
takes into consideration the shear deformation effects, but 
do not satisfy the equilibrium conditions at the top and 
bottom surfaces of the plate. A shear correction factor is 
therefore needed. To avoid the use of this parameter, many 
higher-order shear deformation theories (HSDTs) were 
proposed based on the assumption of quadratic, cubic or 
higher order distribution of in-plane displacements within 
the plate thickness, notable among them are Reddy (2000), 
Matsunaga (2008), Pradyumna and Bandyopadhyay (2008), 
Atmane et al. (2010), Benachour et al. (2011), Shahrjerdi et 
al. (2011), Fekrar et al. (2012), Bouderba et al. (2013), 
Meziane et al. (2014), Sallai et al. (2015), Akavci et al. 
(2015), Ait Yahia et al. (2015), Hassaine Daouadji and 
Hadji (2015), Mahi et al. (2015), Attia et al. (2015), 
Belkorissat et al. (2015), Laoufi et al. (2016), Benferhat et 
al. (2016), Bourada et al. (2016), Hadji et al. (2016e), 
Beldjelili et al. (2016), Boukhari et al. (2016), Eltaher et al. 
(2016), Bounouara et al. (2016), Houari et al. (2016), Chikh 
et al. (2016), Fahsi et al. (2017), Meksi et al. (2017) and 
Chikh et al. (2017). Most of these theories neglect the 
thickness stretching effect (i.e., εz = 0) due to considering a 
constant transverse displacement within the thickness 
direction. This assumption is suitable for thin or moderately 
thick FG plates, but is inadequate for thick FG plates (Qian 
et al. 2004). The interesting feature of the thickness 
stretching effect in FG plates has been proved in the study 
of Carrera et al. (2011). This effect has an important role in 
moderately thick and thick FG plates and should be taken 
into account (Hebali et al. 2014, Fekrar et al. 2014, 
Bousahla et al. 2014, Belabed et al. 2014, Hamidi et al. 
2015, Larbi Chaht et al. 2015, Bourada et al. 2015, Draiche 
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et al. 2016, Bennoun et al. 2016, Ait Atmane et al. 2017, 
Benahmed et al. 2017, Bouafia et al. 2017). 

Quasi-3D models are HSDTs in which the transverse 
displacement is expressed as a higher-order variation within 
the thickness of the plate, and consequently, thickness 
stretching effect is included. Swaminathan and 
Naveenkumar (2014) presented higher order refined 
computational models for the stability analysis of FG plates. 
There are many quasi-3D theories used in the scientific 
literature. Reddy (2011) developed quasi-3D models based 
on a cubic variation of axial displacements and a quadratic 
variation of transverse displacement. Recently, Neves et al. 
(2012) provided a hyperbolic shear deformation theory 
including the thickness stretching effect (εz ≠ 0) for the 
buckling response of FG plates. It should be outlined that 
the abovementioned quasi-3D models are too cumbersome 
and computationally expensive since they use many 
variables (e.g., theories by Reddy (2011) with eleven 
parameters, and Neves et al. (2012) with nine parameters). 
Although some well-known quasi-3D models constructed 
by Zenkour (2007) and recently by Mantari and Guedes 
Soares (2012) have six unknowns, they are still more 
complicated than the FSDT. Thus, constructing a simple 
and easy quasi-3D theory is necessary. 

This investigation aims to construct a simple quasi-3D 
hyperbolic shear deformation theory and extremely easy to 
implement for the buckling analysis of sandwich plates with 
functionally graded skins. Contrary to the well-known four-
variable refined theories elaborated in (Benachour et al. 
2011, Fekrar et al. 2012, Bouderba et al. 2013), where the 
stretching effect is neglected, in the present work, the 
proposed theory is enhanced via this so-called ‘‘stretching 
effect’’. By modeling the transverse displacement as a sum 
of three components namely: the bending, shear and 
thickness stretching parts, the number of variables of the 
present theory is reduced, and thus saving computational 
time.Governing equations obtained from the principle of 
minimum total potential energy are analytically solved for 
buckling problem of a simply supported sandwich plate. 
Numerical examples are presented to demonstrate and 
highlight the accuracy of the present theory. 

 
 

2. Problem formulation 
 
In this work, a rectangular sandwich plate of length a, 

width b and thickness h is considered. The coordinate 
system is chosen such that the x-y plane coincides with the 
mid-plane of the plate 

 

]).2/,2/[( hhz   

 
 

Fig. 1 Sandwich with isotropic core and FGM skins 

 

Fig. 2 Rectangular plate subjected to in-plane forces 
 
 

The core of the sandwich plate is made of a ceramic 
material and skins are consisting of FGM within the 
thickness direction. In the lower skin, a mixture of ceramics 
and metals is changing from pure metal (z = h0 = ‒h/2) to 
pure ceramic while the top skin face changes continuously 
from pure ceramic surface to pure metal surface (z = h3 = 
h/2) as shown in Fig. 1. A simple power law in terms of the 
volume fraction of the ceramic phase is considered 
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where V(n), (n = 1, 2, 3) represents the volume fraction 
function of layer n; k is the volume fraction index (0 ≤ k ≤ 
+∞), which control the material distribution in the thickness 
direction. 

The effective material properties, like Young’s modulus 
E, and Poisson’s ratio v, can be mathematically expressed 
by the rule of mixture (Bessaim et al. 2013, Tounsi et al. 
2013, 2016, Taibi et al. 2015, Abdelhak et al. 2016) as 

 

  )(
212

)(  )( nn VPPPzP   (2)
 

where P(n) is the effective material property of FGM of 
layer n. P1 and P2 are the properties of the top and bottom 
faces of layer 1, respectively, and vice versa for layer 3 
depending on the volume fraction V(n), (n = 1, 2, 3). 

The sandwich plate loaded by a compressive in-plane 
forces acting on the mid-plane of the plate. 0

xN  and 
0
yN

indicate the in-plane loads perpendicular to the edges x = 0 
and y = 0 respectively, and 0

xyN  indicate the distributed 
shear force parallel to the edges x = 0 and y = 0 respectively 
(see Fig. 2). 

 
 

3. A quasi-3D hyperbolic shear deformation 
theory plate theory 

 

This section aims to derive the governing equations of 
the present hyperbolic shear deformation plate theory 
leading to the eigenvalue problem for the investigation of 
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buckling plates. 
 

3.1 Kinematics 
 

The displacement field of the present theory is 
formulated based on the following hypotheses: (1) The 
transverse deflection is superposed into three parts namely: 
bending, shear and stretching components; (2) the in-plane 
displacements are superposed also into three parts namely: 
extension ,bending and shear components; (3) the bending 
components of the in-plane displacements are identical to 
those used in the classical plate theory (CPT); and (4) the 
shear parts of the in-plane displacements lead to the 
hyperbolic variations of shear strains as well as the shear 
stresses across the thickness of the plate in such a way that 
the shear stresses becomes zero on the top and bottom 
surfaces of the plate. Based on these assumptions, the 
following displacement field relations can be obtained 
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where u0 and v0 denote the displacements along the x and y 
coordinate directions of a point on the mid-plane of the 
plate; wb and ws are the bending and shear components of 
the transverse deflection, respectively; and the additional 
displacement φ accounts for the effect of normal stress 
(stretching effect). The shape functions f(z) and g(z) are 
given as follows 
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And 
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3.2 Strains 
 

For the displacement field in Eq. (3), the strain compo-
nents become 
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3.3 Elastic stress-strain relations 
 
In the case of isotropic FG materials, the 3D constitutive 

equations can be written as 
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where (σx, σy, σz, τyz, τxz, τxy) and (εx, εy, εz, γyz, γxz, γxy) are the 
stress and strain components, respectively. 

The calculation of the elastic constants Cij depends on 
which assumption of εz we consider. If εz = 0, then Cij are 
the plane stress reduced elastic constants, defined as: 
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If εz ≠ 0 (thickness stretching), then Cij are the three-

dimensional elastic constants, given by: 
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Lamé’s coefficients. The moduli E, G and the elastic 
coefficients Cij vary through the thickness according to Eq. 
(2). 
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3.4 Governing equations 
 

The governing equations appropriate for the displace-
ment field Eq. (3) and constitutive Eq. (9) are derived from 
the principle of minimum total potential energy. It states 
that 

0   VU   (12)
 
Where δU is the variation of strain energy; δV is the 

variation of work done by applied forces. 
The variation of strain energy of the plate is expressed 

by 
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where A is the top surface and the stress resultants N, M, 
and S are defined by 
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The external virtual work due to external loads applied 

to the plate is given as: 
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being 

0
xN  and 

0
yN  the in-plane loads perpendicular to the 

edges x = 0 and y = 0, respectively, and 
0
xyN  and 

0
yxN  the 

distributed shear forces parallel to the edges x = 0 and y = 0, 
respectively. 

Substituting the expressions for δU and δV from 
Eqs.(13)and (15) into Eq. (12) and integrating by parts, and 
collecting the coefficients of δu0, δv0, δwb, δws and δφ, the 
following governing equations are obtained 
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By substituting Eq. (6) into Eq. (9) and the subsequent 

results into Eq. (14), the stress resultants are obtained as 
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Here the stiffness coefficients Aij and Bij,… etc., are 
defined as 

 

 
1

11 11 11 11 11 11

12 12 12 12 12 12

66 66 66 66 66 66

3
2 2

1

( ) 1, , , ( ),  ( ), ( )

1

                     1

1 2 

2 

n

n

s s s

s s s

s s s

h

n h

A B D B D H

A B D B D H

A B D B D H

z z z f z z f z f z

dz












 
   
 
 

 
 
 
 
  
 

 
 

(20a)

 

and 
 

 
 

22 22 22 22 22 22

11 11 11 11 11 11

, , , , ,

                   , , , , ,

s s s

s s s

A B D B D H

A B D B D H



, 

(20b)

 

  ,)()(
3

1

2
5544

1

 
 


n

h

h

ss
n

n

dzzgzAA   (20c)

 
3.4 Governing equations in terms of displacements 
 
Introducing Eq. (18) into Eq. (16), the governing 

equations can be expressed in terms of displacements (δu0, 
δv0, δwb, δws, δφ) and the appropriate equations take the 
form 
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where dij, dijl and dijlm are the following differential 
operators 
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4. Analytical solutions 
 
The Navier solution procedure is employed to obtain the 

analytical solutions for a simply supported sandwich plate. 
The solution is assumed to be of the form 
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where Umn, Vmn, Wbmn, Wsmn and Φmn are arbitrary coeffi-
cients to be determined, and λ = mπ / a and μ = nπ / b. 

By substituting Eq. (23) into Eqs. (21) we obtain some 
results that concern the buckling of FG sandwich plates 
subjected to a system of uniform in-plane compressive 
loads 
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in which 
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The critical buckling loads (Ncr) can be obtained from 

the stability problem |K| = 0. 
 
 

5. Numerical results and discussions 
 
In this section, various numerical examples solved are 

described and discussed for establishing the efficiency and 
the accuracy of the present theory for the buckling analysis 
of FGM sandwich plates. For all the problems a simply 
supported (diaphragm supported) plate is considered for the 
analysis. The core material of the present sandwich plate is 
fully ceramic. The bottom skin varies from a metal-rich 
surface to a ceramic-rich surface while the top skin face 
varies from a ceramic-rich surface to a metal-rich surface. 
The material properties are Em = 70E0 (aluminum) and Ec = 
380E0 (alumina) being E0 = 1 GPa. Poisson’s ratio is vm = vc 
= v = 0.3 for both aluminum and alumina. The non-
dimensional parameter used is 
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The following four layer configurations are used for 
multi-layered FGM plates 

 
(i) 1-2-1 configuration in which thickness of the 

core is twice the thickness of face sheets. 
(ii) 1-1-1 configuration in which thickness of the 

core is same as the thickness of face sheets. 
(iii) 2-1-2 configuration in which thickness of the 

core is half the thickness of face sheets. 
(iv) 1-0-1 configuration in which is made of two 

layers of equal thickness without a core. 
 
Tables 1 and 2 respectively list the non dimensionalized 

values of uniaxial and biaxial critical buckling loads in an 
FGM sandwich plate for various values of power law 
parameter and thickness of the core with respect to face 
sheets. The obtained results are compared with the quasi-3D 
hyperbolic sine shear deformation theory (Neves et al. 
2012). In addition, the results of a third-order shear 
deformation plate theory (TSDPT) (Zenkour 2005) and a 
sinusoidal shear deformation plate theory (SSDPT) 
(Zenkour 2005) are also provided to show the importance of 
including the thickness-stretching effect. The TSDPT 
solution (Zenkour 2005) and the SSDPT solution (Zenkour 
2005) are computed based on a cubic and sinusoidal 
variation of in-plane displacements, respectively, and a 
constant transverse displacement across the thickness (i.e., 
thickness-stretching effect is omitted, εz = 0). It can be 
observed that the obtained results are in good agreement 
with quasi-3D hyperbolic sine shear deformation theory 
(Neves et al. 2012). However, the TSDPT (Zenkour 2005) 
and the SSDPT (Zenkour 2005), which omit the thickness-
stretching effect, slightly over estimate the critical buckling 
loads. It is worth noting that the developed theory consists 
of five unknowns, while the number of unknowns in the 
TSDPT (Reddy 2000), SSDPT (Zenkour 2005) and quasi- 
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Fig. 3 Nondimensional critical buckling load )( crN as 
a function of side-to-thickness ratio (b/h) of (1-2-1) 
FGM sandwich plates for various values of k; 
(a) Plate subjected to uniaxial compressive load 
(γ = 0) and (b) Plate subjected to biaxial compres-
sive load (γ = 1) 
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Table 1 Comparison of nondimensional critical buckling load of square FG sandwich plates 
subjected to uniaxial compressive load (a/h = 10) 

k Theory 
crN  

1-0-1 2-1-2 1-1-1 1-2-1 

0 

TSDPT(a) 6.50248 6.50248 6.50248 6.50248 

SSDPT(a) 6.50303 6.50303 6.50303 6.50303 

Ref(b) (εzz ≠ 0) 6.47652 6.47652 6.47652 6.47652 

Present (εzz ≠ 0) 6.49215 6.49215 6.49215 6.49215 

0.5 

TSDPT(a) 3.68219 3.97042 4.21823 4.60841 

SSDPT(a) 3.68284 3.97097 4.21856 4.60835 

Ref(b) (εzz ≠ 0) 3.58096 3.85809 4.09641 4.47110 

Present (εzz ≠ 0) 3.67770 3.96573 4.21340 4.60320 

1 

TSDPT(a) 2.58357 2.92003 3.23237 3.75328 

SSDPT(a) 2.58423 2.92060 3.23270 3.75314 

Ref(b) (εzz ≠ 0) 2.53062 2.85563 3.15750 3.66013 

Present (εzz ≠ 0) 2.58096 2.91732 3.22956 3.74998 

5 

TSDPT(a) 1.32910 1.52129 1.78978 2.36734 

SSDPT(a) 1.33003 1.52203 1.79032 2.36744 

Ref(b) (εzz ≠ 0) 1.31829 1.50409 1.76507 2.32354 

Present (εzz ≠ 0) 1.32699 1.52012 1.78936 2.36702 

10 

TSDPT(a) 1.24363 1.37316 1.59736 2.13995 

SSDPT(a) 1.24475 1.37422 1.59728 2.19087 

Ref(b) (εzz ≠ 0) 1.23599 1.36044 1.57893 2.10275 

Present (εzz ≠ 0) 1.24109 1.37150 1.59680 2.14001 
 

Table 2 Comparison of nondimensional critical buckling load of square FG sandwich plates 
subjected to biaxial compressive load (ᵧ = 1, h/b = 0.1) 

k Theory 
crN  

1-0-1 2-1-2 1-1-1 1-2-1 

0 

TSDPT(a) 13.00495 13.00495 13.00495 13.00495 

SSDPT(a) 13.00606 13.00606 13.00606 13.00606 

Ref(b) (εzz ≠ 0) 12.95304 12.95304 12.95304 12.95304 

Present (εzz ≠ 0) 12.98429 12.98429 12.98429 12.98429 

0.5 

TSDPT(a) 7.36437 7.94084 8.43645 9.21681 

SSDPT(a) 7.36568 7.94195 8.43712 9.21670 

Ref(b) (εzz ≠ 0) 7.16191 7.71617 8.19283 8.94221 

Present (εzz ≠ 0) 7.35541 7.93147 8.42681 9.20640 

1 

TSDPT(a) 5.16713 5.84006 6.46474 7.50656 

SSDPT(a) 5.16846 5.84119 6.46539 7.50629 

Ref(b) (εzz ≠ 0) 5.06123 5.71125 6.31501 7.32025 

Present (εzz ≠ 0) 5.16191 5.83465 6.45911 7.49996 

5 

TSDPT(a) 2.65821 3.04257 3.57956 4.73469 

SSDPT(a) 2.66006 3.04406 3.58063 4.73488 

Ref(b) (εzz ≠ 0) 2.63658 3.00819 3.53014 4.64707 

Present (εzz ≠ 0) 2.65398 3.04023 3.57873 4.73404 

10 

TSDPT(a) 2.48727 2.74632 3.19471 4.27991 

SSDPT(a) 2.48928 2.74844 3.19456 4.38175 

Ref(b) (εzz ≠ 0) 2.47199 2.72089 3.15785 4.20550 

Present (εzz ≠ 0) 2.48217 2.74301 3.19359 4.28002 
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Fig. 4 Nondimensional critical buckling load )( crN as 
a function of side-to-thickness ratio (b/h) of (1-0-1) 
FGM sandwich plates for various values of k; 
(a) Plate subjected to uniaxial compressive load 
(γ = 0) and (b) Plate subjected to biaxial compres-
sive load (γ = 1) 

 
 

3D theory (Neves et al. 2012) is five and six, respectively. 
Consequently, it may be concluded that the present quasi-
3D theory is not only more accurate than the higher order 
shear deformation theory (TSDPT and SSDPT) having the 
same five unknowns, but also comparable with the quasi-
3D theory having more number of unknowns. 

Figs. 3 and 4 show the variation of the critical buckling 
loads of the (1-2-1) and (1-0-1) types of square FG 
sandwich plates versus side-to-thickness ratio using the 
present new simple quasi-3D hyperbolic shear deformation 
theory. It can be seen that the critical buckling loads 
become maximum for the ceramic plates and minimum for 
the metal plates. It is seen that the results increase smoothly 
as the amount of ceramic in the sandwich plate increases. 
Also, the buckling load of plate under uniaxial compression 
is almost the twice of that of the case of the plate under 
biaxial compression. 

 
 

6. Conclusions 
 
A new, simple and accurate hyperbolic plate theory with 

stretching effect for the buckling analysis of functionally 
graded sandwich plates is presented in this work.The 
developed model contains five unknowns, but considers 
both shear deformation and thickness-stretching effects 
without requiring any shear correction factor. The 

governing equations are deduced via the principle of 
minimum total potential energy. Results indicate that the 
present approach is able to provide very accurate results 
compared with the other HSDTs with higher number of 
unknowns and so deserve particular attention and offer 
potential for future research. 
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