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1. Introduction 

 
The application of sandwich structures with composite 

faces is increasing in many industries. Due to excellent 
mechanical properties, sandwich structures with composite 
faces are used in light weight structures especially in civil 
engineering, automotive and aerospace industries. These 
mechanical properties mainly include excellent flexural 
stiffness and strength to mass ratio. Although sandwich 
structures have many advantages, delamination of core-face 
interface, especially near the free edges is one of the main 
problems in application of sandwich structure. Delamina-
tion occurs because of the out of plane normal and shear 
stresses which arise in core-face interface and interface of 
layers in vicinity of the edges which is called boundary-
layer. Out of plane stresses usually increases due to 
mismatch between the material properties of face and core 
and geometric discontinuity near the free edge of the 
sandwich structures. Accurate determination of three-
dimensional stress state in the boundary-layer regions of 
sandwich and laminated plates and shells is therefore 
crucial in order to correctly describe the structure behavior 
and to prevent their early failure. Generally, 3D exact 
elasticity solution must be used to obtain the 3D stress state 
accurately near the edges, but for general case this solution 
is not found yet and usually approximate and technical 
methods are used to predict the out-of plane stresses in 
sandwich and laminated plates. A brief literature survey of 
the previous research on the prediction of the 3D stress in 
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the sandwich and composite plates is given here. 

Pipe and Pagano (1970) employed a finite-difference 
solution technique to obtain interlaminar stresses in 
composite laminates under uniform axial extension. Wang 
and Crossman (1977) examined the stress field of a finite-
width, symmetrical laminate when subjected to a uniform 
temperature change. A finite-element formulation of equa- 
tions governing layered anisotropic composite subjected to 
thermal and mechanical loadings provided by Reddy and 
Hsu (1980). They examined effects of shear deformation 
and anisotropy on thermal bending of layered composite 
plates. 

Stein 1986 developed a 2D theory wherein in addition to 
the usual algebraic terms, the trigonometric through-the-
thickness displacement terms are added to give more 
accurate results. Murthy and Chamis (1989) obtained 
interlaminar stresses in composite laminates under various 
loadings such as in-plane and out-of-plane sheary bending 
using a three-dimensional finite element method. Lu and 
Liu (1991) developed an Interlaminar Shear Stress 
Continuity Theory (ISSCT) to determine the interlaminar 
shear stress directly from the constitutive equations. Due to 
neglecting the deformation in the thickness direction, this 
theory could not calculate the interlaminar normal stress 
directly from the constitutive equations. Wu and Kuo 
(1992) used a local higher order lamination theory and 
predicted interlaminar stresses in composite laminates under 
cylindrical bending. Rohwer (1992) studied and compared 
various higher-order shear deformation theories for the 
bending analysis of composite plates and highlighted the 
advantages and disadvantages of the various theories. 

Robbins and Reddy (1993) developed a layerwise finite 
element model of laminated composite plates and showed 
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that their model is capable of computing interlaminar 
stresses and other localized effects with the same level of 
accuracy as a conventional three-dimensional finite element 
model. They analyzed bending of simply supported square 
laminated plates and free edge effects in symmetric angle-
ply laminates subjected to axial displacements on the ends. 
Kim and Atluri (1994) examined interlaminar stresses near 
straight free edges of beam-type composite laminates under 
out of-plane sheary bending. They used an approximate 
method based on equilibrated stress representations and the 
use of the principle of minimum complementary energy and 
found that interlaminar stresses under the sheary bending 
might exhibit substantially different characteristics than 
under uniaxial loading or under pure bending. Yin 1994 
used Lekhnitskii’s stress functions in each layer and 
employed the variational principle of complimentary virtual 
work and presented an approximate analytical method to 
study the free-edge stresses due to thermal and mechanical 
loads. Basar and Ding (1995) utilized the theoretical 
fundamentals for a 2D layer-wise shell theory including 
transverse shear and transverse normal strains and analyzed 
interlaminar stresses in composites. Robbins and Reddy 
(1996) presented a displacement-based variable kinematic 
global–local finite element method. Their displacement 
field hierarchy contains both a conventional plate expansion 
(2-D) and a full layerwise (3-D) expansion. 

Unlike the single layer theories, the LWTs assume 
separate displacement field expansions within each layer 
and thereby provide a more kinematically correct 
representation of the strain field in each discrete layer of the 
laminate and also allow accurate ply-level stresses to be 
determined. Lee and Chen (1996) employed a layerwise 
interlaminar shear stress continuity theory with layer 
reduction technique to predict interlaminar shear stresses. 
They considered no thickness stretching in their analysis 
and obtained only shear transverse stresses. 

Shu and Soldatos (2000) determined stress distributions 
in angle-ply laminated plates subjected to the cylindrical 
bending with different sets of edge boundary conditions. In 
an effort to determine the interlaminar stresses, an iterative 
technique in conjunction with the extended Kantorovich 
method is presented by Cho and Kim (2000) for thermal 
and mechanical loads. Başar et al. (2000) developed a 
multi-layer shell elements approach to analyze the 
interlaminar stresses in the composite laminates. Rohwer et 
al. (2001) investigated the transverse shear and normal 
stresses in composite laminates subjected to thermal loading 
by using the extended two-dimensional method and the 
first-order shear deformation plate theory (FSDT). Huang et 
al. (2002) used a partially hybrid stress element with 
interlaminar continuity and analyzed bending of composite 
laminated plates. Matsunaga (2002) obtained stress and 
displacement distributions of simply supported cross-ply 
laminated composite and sandwich plates subjected to 
lateral pressure using a global higher-order plate theory. 
Tahani and Nosier (2003) used Reddy’s LWT to analyze 
interlaminar stresses in general symmetric and unsymmetric 
cross-ply laminates with finite dimensions subjected to 
uniform axial extension. Matsunaga (2004) compared 2-D 
single-layer and 3-D layerwise theories for computing out-

of-plane stresses of cross-ply laminated composite and 
sandwich plates subjected to thermal loadings. Hosseini 
Kordkheili and Naghdabadi (2005) introduced a finite 
element formulation for analysis of FG plates and shells. 
Zhu et al. (2007) studied the dynamic interlaminar stress in 
laminated plates in free vibration and thermal load based on 
thermo-elasto-dynamic differential equations. 

Nosier and Bahrami (2007) used the layerwise theory 
and investigated the interlaminar stresses in Angle-ply 
composite laminates. Mittelstedt and Becker (2008) utilized 
Reddy’s layerwise laminate plate theory to obtain the 
closed-form analysis of free-edge effects in layered plates 
of arbitrary non-orthotropic layups. The approach consists 
of the subdivision of the physical laminate layers into an 
arbitrary number of mathematical layers through the plate 
thickness. Jin (2008) used a finite element model based on 
the layerwise theory (LWT) and the Von-Karman type 
nonlinear strains are used to analyze damage in laminated 
composite beams. In the formulation, the Heaviside step 
function is employed to express the discontinuous 
interlaminar displacement field at the delaminated 
interfaces. 

Kim et al. (2012) analyzed interlaminar stresses near 
free edges in composite laminates by considering interface 
modeling. This interface modeling provided not only non-
singular stresses but also concentrated finite interlaminar 
stresses using the principle of complementary virtual work. 
Cetkovic and Vuksanovic (2011) used the displacement 
layerwise method and studied the large deflection of the 
composite plate using small strain large displacement 
relation. Xiaohui et al. (2011) proposed a higher-order zig-
zag theory for laminated composite and sandwich 
structures. Their proposed theory satisfies the interlaminar 
continuity conditions and free surface conditions of 
transverse shear stresses. They compared the transverse 
shear stress of their theory by the results of exact solution. 
Yasin and Kapuria (2013) extended a previously developed 
four-node quadrilateral element for laminated plates based 
on an efficient layerwise theory which is called the zig-zag 
theory (ZIGT) to laminated shallow shells. A three-
dimensional multi-term extended Kantrovich method is 
utilized by Tahani and Andakhsideh (2012) to analyze the 
inter-laminar stresses, which are resulted from bending of 
thick rectangular laminated plates. Their obtained results 
were compared with those stated in the literature, which 
showed an excellent agreement. 

Huang and Kim (2014) proposed a stress function-based 
approach and the principle of complementary virtual work 
to analyze the free-edge interlaminar stresses of 
piezobonded symmetric laminates. The proposed method 
satisfies the traction free boundary conditions, as well as 
surface free conditions. Hamidi et al. (2015) presented a 5-
parameter sinusoidal plate theory for the thermomechanical 
bending analysis of functionally graded sandwich plates. 
Murugesan and Rajamohan (2015) studied the combined 
effects of thermal and mechanical loadings on the 
interlaminar shear stresses of composite laminated beams 
using the commercially available Finite element software 
package. 

Ahmadi (2016) studied the interlaminar stresses in the 
cross-ply thick composite panel which is subjected to pure 
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extension force using the layerwise formulation employing 
the principle of minimum total potential energy. Kim et al. 
(2016) established systematically relationship between two 
independent displacement and stress fields through the 
mixed variational theorem (MVT) and studied the 
interlaminar stresses in composite and sandwich beam using 
a conventional higher order shear deformation theory 
(HSDT). Ahmadi and Najafi (2016) studied the three-
dimensional stresses in thin laminated composite cylindrical 
shell subjected to the rotational body force using the 
principle of minimum total potential energy. 

In this study a layerwise formulation based on the 
Galerkin weak formulation method is developed to study 
the 3D stress state in the sandwich plate which is subjected 
to axial tension and bending moment. For this purpose, the 
displacement field for a sandwich plate which is subjected 
to bending, twisting and tension is discretized through the 
plate thickness. The governing equations of the plate in the 
discrete form are obtained based on the weak formulation 
employing the Galerkin method and layerwise discretization 
approach. The discretized governing equations include a set 
of ordinary differential equations which are named the local 
equilibrium equations associated to numerical layers. The 
local equilibrium equations and global equilibrium 
equations are solved analytically for a plate with free edge 
conditions. A 3D finite element modeling is used for 
verification of the results of the present study. In the 
numerical results the out of plane and in-plane stresses in 
sandwich plate which is subjected to tension, bending and 
torsion are investigated. The out of plane stresses satisfy the 
traction-free conditions at the top and bottom surfaces of 
the plate. 

 
 

2. Modelling 
 
Consider a long sandwich plate with laminated 

composite faces with orthotropic layers. The length of the 
plate is 2L, the thickness is h and the width is 2b. The 
coordinate system xyz is assigned to the plate at its center as 
shown in Fig. 1. It is supposed that the plate is long and 
subjected to pure bending moment Mx and extension force 
Fx at its ends at x = L and x = -L. 

For the long plate which is subjected to this kind of 
loading conditions, it can be supposed that far from the 
loading edges at x = ±L, the strain and stress field is 
uniform in the length of the plate and do not depend on the 
x-coordinate. For the plate for which the stresses (and 
strains) are uniformly distributed in the x direction, the 
equilibrium equations can be written as 
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in which the derivations with respect to the x coordinate are 
ignored. In this study a displacement based layerwise theory 
is used to discretize the governing equations of the plate. 

 

Fig. 1 Sandwich plate subjected to pure bending moment 
and extension force 

 
 
2.1 Layerwise discretization approach 
 
In the equivalent single layer (ESL) theories such as the 

classical and first order shear deformation theories, it is 
assumed that the laminated or sandwich plates and shells 
deform as a single layer structure. These theories consider a 
kind of lumping in the deformation field of the laminate in 
the thickness. The assumed deformation field in the 
classical theory and first order shear deformation theory 
(FSDT) leads to ignoring or considering uniform out of 
plane strains through the thickness of the laminate. 
Although these theories can predict the overall response of 
the plates and shells and the in-plane stresses, they can not 
accurately evaluate (characterize) the local phenomena in 
the laminates such as the out of plane stresses and boundary 
layer phenomena. 

Unlike the equivalent single layer (ESL) theories, the 
layerwise theories (LWT) are developed in order to give 
more flexibility to the plies of the laminate to deform 
approximately the same as the deformation of an elastic 
material. So, the displacement based layer-wise theories can 
predict the displacement field in the laminate more 
accurately and are able to predict the out of plane stresses 
through the thickness of the laminates and model the local 
phenomena such as the 3D stress state in the vicinity of the 
edges. 

In the LWT which is used in this study, each actual layer 
in the laminate is subdivided into arbitrary number of layers 
through the plate thickness which are called numerical 
layers. For a laminate that is subdivided into N numerical 
layers, including the bottom and top surfaces of the 
laminate, N + 1 numerical surfaces can be considered in the 
laminate which are numbered from bottom to the top 
surface of the laminate and the kth numerical surface are 
located at z = zk. In the displacement based layerwise theory 
the value of displacement inside the numerical layers are 
interpolated from its values on the numerical surfaces. For 
example the value of unknown displacement such as u(x, y, 
z) can be discretized in the z direction as 

 
1

1

( , , ) ( ) ( , )
N

k k
k

u x y z z U x y




   (2)

 
in which Φk(z) is known as linear Lagrangian interpolation 
function and Uk(x, y) is the value of the displacement u 
(x,y,z) on the kth numerical surface. Eq. (2) in the matrix 
form can be written as 

 
( , , ) { ( )}{ ( , )}u x y z z x y Φ U  (3)
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{Φ(z)} is the matrix of interpolation function and {U(x, 
y)} is the matrix which include displacement of numerical 
surface and are defined as 

 

1 2 1

1 2 1

{ } { ( ), ( ),..., ( )}

{ } { ( , ), ( , ),..., ( , )}
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T
N

z z z

U x y U x y U x y
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U
 (4)

 
The linear Lagrangian interpolation function in the 

thickness of the plate, Φk(z), can be represented as 
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where tk is the thickness of the kth numerical layer and zk is 
the thickness coordinate of the kth numerical surface. 

 
2.2 Galerkin formulation 
 
The weak formulation based on the Galerkin method is 

used to obtain the governing equations of the plate in the 
layerwise discretization approach. In order to obtain the 
Galerkin formulation, the equilibrium equations in Eq. (1) 
are multiplied by the Lagrangian interpolation functions 
{Φ(z)}T and are integrated in the thickness direction to 
obtain the following equations. 
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where the integration by part is applied in the above 
equation. The prime on {Φz)} i.e., {Φz)}′ represents 
ordinary differentiation with respect to z. According to the 
appeared integrals in Eq. (6), the stress resultants are 
defined as 
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in which for example {My} and other stress resultants which 
are defined in Eq. (7) are column matrixes with (N + 1) 
component. The third terms in Eq. (6) impose the applied 
loads on the top and bottom surfaces of the plate to 
theformulation. In this study the top and bottom surfaces of 
the plate are traction free and so the third terms in Eq. (6) 
vanish. By substituting the stress resultants from Eq. (7) 
into Eq. (6) and assuming the traction free surfaces, the 
governing equations of the plate in the weak form are 
obtained as 

,

,

,

{ } { } {0}

{ } { } {0}

{ } { } {0}

xy y x

y y y

y y x
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It is clear that Eq. (8) includes 3(N + 1) ordinary differ-
ential equations which are written in the matrix form. On 
the other hand, the weak form of the free edge boundary 
conditions for the plate at y = ±b can be obtained by 
multiplying the traction free conditions i.e., σxy = 0, σy = 0 
and σyz = 0, by {Φ}T and integrating over the thickness of 
the plate as 

   

{ } {0}

{ } {0}

{ } {0}

xy

y

y

at y b


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

M

M

R
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Imposing the boundary conditions in y = ±b includes 
satisfaction of 3(N + 1) equations. 

 
2.3 Navier equations 
 
The displacements of a material point in the length, 

width and thickness direction of the plate are shown by 
u1(x, y, z), u2(x, y, z) and u3(x, y, z), respectively. For the 
long plate, the strain field does not depend on the length 
coordinate x, the reduced displacement field can be 
obtained by integrating the strain-displacement relation of 
the plate and considering in the mind that the strain 
components do not depend on the x-coordinate. By 
integrating the strain components and ignoring the rigid 
body motion and rigid body rotation from the displacement 
field, the general form of the displacement field of the plate 
can be obtained as (Lekhnitskii 1981) 

 

1 5 6

2 3

2
3 5 3

( , , ) ( , )

( , , ) ( , )

1
( , , ) ( , )

2

u x y z C xz C x u y z

u x y z C xz v y z

u x y z C x C xz w y z
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  

   

 
(10)

 

in which u(y, z), v(y, z) and w(y, z) are unknown displace-
ment functions of y and z co-ordinate and C5, C6 and C3 are 
constants. From the displacement field in Eq. (10) it can be 
concluded that C6 is the constant normal strain of the mid 
plane (z = 0) in the x direction, C5x is the rotation angle of 
the yz sections of the plate about the y axis, and C3x is the 
rotation angle of the yz sections of the plate about the x axis 
in the negative direction. It can be concluded that C3, C5 
and C6 are the global response of the plate which show 
twisting, bending and extension of plane and u(y, z), v(y, z) 
and w(y, z) are displacements which indicate the local 
response of the plate to the external loading. To employ the 
LWT, the value of the unknown displacement u(y, z), v(y, z) 
and w(y, z) (see Eq. (10)) on the ith numerical surface are 
shown by Ui(y), Vi(y), and Wi(y) which are unknown 
functions of y-coordinate and must be obtained in problem 
solution. The displacement function u(y, z), v(y, z) and w(y, 
z) can be interpolated within numerical layers Ui(y), Vi(y), 
and Wi(y) and the interpolation functions. According to the 
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displacement field in Eq. (10), and LW discretization 
approach Eq. (3), the displacement field of the plate in the 
LWT can be written in the discretized form as 
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2 3

2
3 5 3

{ }{ }
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where {Φ(z)} is the matrix of interpolation functions in the 
z direction and defined in Eq. (4), and {U(y)}, {V(y)} and 
{W(y)} are column (N + 1) matrix and are defined as 
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By substituting the displacement field Eq. (12) into the 
strain-displacement relations, the strain components in the 
plate can be obtained as 
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in which the prime on {U}, {V} and {W} represents 
ordinary differentiation with respect to y and the prime on 
{Φ} represents ordinary differentiation with respect to z. 
Eq. (7) shows the strain field in the plate which is discreted 
in z direction. 

The stresses in the kth orthotropic numerical layer in the 
plate can be obtained by using the constitutive law of the 
stress-strain relation as 

 

( ) ( ) ( ){ } [ ] { }k k kσ C ε  (14)
 

in which 
)(][ kC is the stiffness matrix of orthotropic layers 

and are shown in the Appendix A in Eq. (A1) and {σ} and 
{ε} are defined as 
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The stresses and strains are substituted from the stress-
strain relation Eq. (14) and strains from Eq. (7) into Eq. (10) 
and the subsequent results are substituted into Eq. (11) and 
the 3(N + 1) local equilibrium equations of the plate Eq. (11) 
are obtained in terms of the displacement components as 
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in which the coefficient matrices [Apq], [Bpq], [Dpq] are (N + 

1) × (N + 1) square matrices and {Apq}, {Bpq} and }
~

{ pqB  are 
(N + 1) × 1 column matrix and are so-called the rigidity 
matrices in the LWT and are defined as 
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The terms of the rigidity matrices are calculated and can 

be seen in Appendix A. 
 
2.4 Loading conditions 
 
It is obvious that the global equilibrium equations of the 

plate which is subjected to global extension force Fx and 
bending moment Mx at x = ±L can be written as 
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 (18)

 
The global equilibrium equations of the plate Eq. (18) 

can be written in terms of the displacement as 
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where in Eq. (19), the global rigidities of the plate are 
defined as 

 

( ) 2

1

( , , ) (1, , )
i

N z i
pq pq pq pqz

i

A A A C z z dz


   (20)

 
2.5 Solution of equations 
 
The governing equations of the plate include 3(N + 1) 

differential equations which are seen in Eq. (16) and 3 
global equilibrium equation which is presented in Eq. (19). 
To solve them, the set of differential equations in Eq. (16) is 
written in the matrix form. To this aim the state matrix{X} 
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which is a column matrix is defined as 
 

 { } { } ,{ } ,{ } ,{ } ,{ } ,{ }
TT T T T T T  X U U V V W W  (21)

 

By using the matrix {X}, the local equilibrium equations 
of plate in Eq. (16) can be written in the matrix form as 

 

31 3 32 3 5 5 6 6{ } [ ]{ } { } { } { } { }C C y C C     X C X F F F F (22)
 

where the coefficient matrices which are seen in Eq. (21) 
are defined in Appendix B. Using the eigen-value and 
eigen-vectors of [C], the solution of Eq. (22) is obtained as 

 

1
3 3 32 3 5 5 6 6

{ } [ ]exp([ ] ){ }

[ ] ({ } { } { } { } )

y

C C y C C

 

  

X U Λ K

C F F F F
 (23)

 

in which [U] is the matrix of eigen-vectors and [Λ] is the 
matrix of eigen-values of [C] which are defines as 

 

1 2 1

[ ][ ] [ ][ ]

[ ] diag( , ,..., )N   





C U U Λ

Λ
 (24)

 

where λ1, λ2,… and λN+1 are the eigen-values of [C] and 
{F3} is defined as 

 
1

3 31 32{ } { } [ ] { } F F A F  (25)
 

and {K} is a column matrix contains 6(N + 1) unknown 
constants of integration. The unknowns must be obtained by 
imposing the boundary conditions of the plate at the edges y 
= ±b and considering the global loading conditions of the 
plate in Eq. (19). 

 
2.6 Imposing boundary and loading conditions 
 
As seen in Eq. (9), the free edge conditions for the plate 

include imposing {My} = {0}, {Ry} = {0} and {Mxy} = {0} 
at y = ±b. The boundary conditions can be written in terms 
of the displacements as 
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B
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 (26)

 

It is obvious that imposing Eq. (26) both at y = b and y = 
-b, includes satisfaction of 6(N + 1) equations. Considering 
the state matrix {X} which is defined in Eq. (21), the 
boundary conditions Eq. (26) can be written as 

 

1 12 6 12 5 26 3

2 45 3

3 16 6 16 5 66 3

[ ]{ ( )} { } { } { } {0}

[ ]{ ( )} { }( ) {0}

[ ]{ ( )} { } { } { } {0}

b C C C

b b C

b C C C

    

   

    

P X B B B

P X B
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 

 

 (27)

in which [P1], [P2] and [P3] are defined as 
 

 
 
 

1 26 22 23

2 45 44 44

3 66 26 36
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





P D D B

P B B D

P D D B

 (28)

 
By employing {X}, the global equilibrium equations for 

extension and bending of the plate can be written as follow. 
 
/2

1 11 6 11 5 16 3/2

/2

2 11 6 11 5 16 3/2

{ }{ } 2 2 2

{ }{ } 2 2 2

h

xh

h

xh

dy bA C bA C bA C F

dy bA C bA C bA C M





   

   





M X

M X
(29)

 
in which according to Eqs. (19) and (21), {M1}, {M2} are 
defined as 

 

1 16 12 13

2 16 12 13

{ } {{0} { } {0} { } { } {0} }

{ } {{0} { } {0} { } { } {0} }

T T T T T T T

TT T T T T T





M B B A

M B B A 
(30)

 
The displacement field which is obtained in Eq. (23) has 

unknown constants include {K} and the unknown displace-
ment constants C3, C5 and C6. These unknown constants in 
the displacement field depend on boundary and loading 
conditions and must be obtained by imposing the loading 
and boundary conditions of the plate. For this purpose, the 
displacement field in Eq. (23) is substituted into boundary 
and loading conditions in Eqs. (27) and (29) and a set of 
algebraic equations is obtain. The set of algebraic equation 
is solved simultaneously to obtain the unknown constants 
{K} and unknown displacement constants C3 to C6. By 
obtaining the unknown constants, the stresses are obtained 
by the procedure which is explained in the next section. 

 
2.7 Out of plane stresses 
 
The stress components can be obtained by the stress-

strain relations. The in-plane stresses are obtained by stress-
strain relation, but in an alternative method, the out of plane 
stresses can be obtained by integrating the equilibrium 
equations of elasticity. The out of plane stresses which are 
predicted by integrating the equilibrium equations are 
continuous at the thickness of the plate and are more 
accurate. In integrating method, the in-plane stresses are 
substituted from the stress-strain relations into the 
equilibrium equations and the out of plane stresses are 
obtained by integrating the equations in z direction. For 
instance σxz at the nth numerical surface (z = zn) can be 
obtained as 
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where 
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1

( , ) ( , )
nzk k

pq pq pq k pq kz
A B C C dz k n     (32)

 

In this study, the interlaminar stresses in the plate are 
obtained by the stress-strain relation and by integrating the 
equilibrium equations and the obtained results are 
compared. 

 
 

3. Numerical results and discussions 
 

The 3D stress state in sandwich plate which is subjected to 
tension, bending and twisting loading is studied. The faces 
of sandwich plate are made of laminated composite and can 
have arbitrary layer stacking and the core is made of foam. 
The face thickness is hf, the core thickness is hc, and the 
total thickness of the sandwich plate is h = hc + 2hf. The 
mechanical properties of the lamina and foam are tabulated 
in Table 1. The subscript c refers to core material. 

 
3.1 Verification of the results 
 
In order to verify the LW formulation and the accuracy 

of the solution which is presented in this study, the 
prediction of the present method is compared with the 
predictions of the FE modeling with Ansys. To this aim, a 
symmetric [0°/90°/core/90°/0°] sandwich plate which is 
subjected to extension force Fx is modeled in the FE code 
Ansys using solid46 element. The sequence of the layers is 
written in the bracket from the bottom to the top of the 
plate, respectively. In order to obtain accurate results for out 
of plane stresses in the finite element modeling, the 
thickness and width of the plate are divided into 60 
elements and 200 elements, respectively, and the length of 
the plate is divided into 8 elements. This FE model contains 
about 110000 nodes, and each node has 3 DOF, and the FE 

 
 

Table 1 Elastic properties of Carbon/Epoxy lamina and foam 
(core) (Barbero 2013) 

E1 
(GPa) 

E2 = E3 
(GPa) 

G12 = G13 
(GPa) 

G23 
(GPa)

v12 = v13 v23 
Ec 

(GPa)
vc

138 8.5 4.5 3.2 0.29 0.36 3 0.4
 

 
 

Fig. 2 Distribution of the out of plane stress σz and σyz 
along z = hc/2 of the plate ([0°/90°/core/90°/0°], 
hf = 0.3h, hc = 0.4h, b = 1.5h) 

model totally has about 330000 DOF. The same problem is 
solved using the presented LW formulation, in which the 
thickness of the plate is divided into 60 numerical layers. 
Each numerical surface has 3 DOF, so totally 3 × (61) = 183 
DOF are used in the LW method. The predictions of the 
LWT and FE solutions are compared in Figs. 2 to 5 in order 
to verify the accuracy of the method. Computationally, the 
FE modeling is very expensive than the presented LW 
solution. 

The distribution of the interlaminar normal stress σz and 
shear stress σyz along the width of the plate at z = 0.5hc 
(core-face interface) and at z = 0.5(hc + hf) (90/0 interface) 
is presented in Figs. 2 and 3. The prediction of the LWT by 
constitutive law, by integration method, and the prediction 
of FEM are depicted in Figs. 2 and 3. For the plate which is 
subjected to axial extension force Fx, the dimensionless 
stress is defined as the ratio of the stress to the average axial 
stress as σ*

 = 2bh2σ/Fx. Both the constitutive law and 
integration of equilibrium equations are used to predict the 
out of plane stresses in the LW solution, and the predicted 
results of both methods are presented in Figs. 2 and 3. A 
look at this figure makes it clear that there is very good 
agreement between the predictions of FEM and LWT, 
except at the vicinity of the edge. 

Exactly at the free edge, σz which is predicted by the 
 
 

Fig. 3 Distribution of the out of plane stresses σz and σyz 
along z = (hc + hf)/2 of the plate ([0°/90°/core/90°/ 
0°], hf = 0.3h, hc = 0.4h, b = 1.5h) 

 
 

Fig. 4 Distribution of the out of plane stress σz through 
the thickness of the plate at edge y = b, ([0°/90°/ 
core/90°/0°], hf = 0.3h, hc = 0.4h, b = 1.5h) 
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Fig. 5 Distribution of the in-plane normal stress σy 
through the thickness of the plate at y = 0 and 
y = 0.94b, ([0°/90°/core/90°/0°], hf = 0.3h, 
hc = 0.4h, b = 1.5h) 

 
 

Fig. 6 Distribution of the in-plane normal stress 
σx through the thickness of the plate at y = 0 
and y = 0.94b, ([0°/90°/core/90°/0°], hf = 0.3h, 
hc = 0.4h, b = 1.5h) 

 
 
LWT using the integration method is between the prediction 
of FEM and prediction of LWT using Hooke’s law. It is 
seen that there is a difference between the LWT and FEM in 
prediction of shear stress σyz at the vicinity of edge. 

In order to study more on prediction of the LWT and 
FEM, the distribution of the interlaminar normal stress σz 
 
 

through the thickness of the plate at free edge (y = b) is 
presented in Fig. 4. This figure compares the predictions of 
the LWT (using Hooke’s law and using integration method) 
and the predictions of the FEM. At the free edge, σz is 
increased sharply around the interfaces. From Figs. 2 to 4, it 
can be concluded that the prediction of LWT and FEM for 
out of plane stresses is in very good agreement except in the 
vicinity of the free edge near the interfaces. Exactly at the 
free edge, a difference is seen between the predictions of the 
LWT and FEM. The prediction of LWT for σz in the edge is 
bigger than the prediction of FEM. It must be noted that in 
the LWT the governing equations are discretized only in the 
thickness direction by Lagrangian interpolation functions 
and the equations are not discretized in y direction and the 
obtained set of ordinary differential equation is analytically 
solved. So it seems that the predictions of LWT for out of 
plane stresses are more accurate than the predictions of 
FEM. 

To compare the predictions of FEM and LWT for in-
plane stresses, the distribution of in-plane normal stress σy 

and σx through the thickness of the plate at y = 0 and y = 
0.94b in the [0°/90°/core/90°/0°] sandwich plate which is 
subjected to extension load is shown in Figs. 5 and 6, 
respectively. There is very good agreement between the 
prediction of the FEM and LWT in prediction of the in-
plane stresses. Considering Figs. 2 to 6, it is concluded that 
prediction of LWT is in good agreement with the prediction 
of the FEM, except in prediction of out of plane stresses 
near the free edge. 

 

3.2 Convergence study 
 

The convergence of the predictions of LWT with 
increasing the number of numerical layers is studied in 
Table 2. 

Some researchers reported singularity of the out-of 
plane stresses in the free edge of plates and shells at the 
interfaces of physical layers with different elastic 
properties. The convergence of stresses with increasing the 
number of numerical layers in the [30°/-30°/core/-30°/30°] 
sandwich plate (hc = 0.4h, hf = 2×0.15h, b = 1.5h) which is 
subjected to bending moment M is studied in Table 2. The 
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Table 2 Convergence of the predictions of LWT, [30/-30/core/-30/30] sandwich plate, (hc = 0.4h, hf = 2×0.15h, b = 1.5h) 

p 
σ*

z 
z = hc/2, y = b 

σ*
z 

z = (hc + hf)/2, y = b 
σ*

xz 
z = hc/2, y = b

σ*
xz 

z = (hc + hf)/2, y = b
σ*

xz 
z = 0, y = b 

σ*
x 

z = h/2, y = 0 
σ*

y 
z = 0, y = 0

1 -0.0543 -0.2064 0.2854 -1.0838 0.3566 5.1550 0.0704 

2 0.0304 -0.2931 0.3769 -1.5490 0.2702 5.2093 0.0760 

3 0.0479 -0.3797 0.3745 -1.8350 0.2873 5.2216 0.0779 

4 -0.0276 -0.4406 0.3980 -2.0577 0.2802 5.2266 0.0789 

5 -0.0429 -0.4885 0.4062 -2.2296 0.2824 5.2291 0.0795 

6 -0.0439 -0.5272 0.4165 -2.3717 0.2818 5.2306 0.0798 

7 -0.0484 -0.5597 0.4240 -2.4922 0.2821 5.2315 0.0801 

8 -0.0510 -0.5878 0.4310 -2.5970 0.2821 5.2322 0.0803 

9 -0.0535 -0.6126 0.4370 -2.6897 0.2821 5.2327 0.0805 

10 -0.0557 -0.6347 0.4424 -2.7729 0.2821 5.2330 0.0806 

11 -0.0576 -0.6547 0.4473 -2.8483 0.2821 5.2333 0.0807 
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sequence of the layers is written from the bottom surface to 
the top of the plate. For the plate that is subjected to 
bending moment, the dimensionless stress is defined as σ* = 
2bh2σ/M. Each physical layer in the face is divided into p 
numerical layers and core is divided into 2p numerical 
layers and so the plate is divided into N = 6p numerical 
layers. In this sandwich plate, z = 0.5hc indicates the core-
face interface and z = 0.5(hf + hc) shows the -30°/30° 
interface at the top face. Table 3 shows the convergence of 
stresses by increasing the number of numerical layers. It is 
observed in Table 3 that at the free edge of plate in core-
face interface (z = 0.5hc, y = b) and in -30/30 interface (z = 
0.5(hc + hf), y = b), the out-of plane stresses σz and σxz do 
not converge and increase by increasing the number of 
numerical layers in the LW solution. At the point (z = 0, y = 
b) which is not the interface of physical layers, σxz 
converged for p > 6 to σxz = 0.2821. Also as seen in Table 2, 
the in-plane stresses σy and σx converge by increasing the 
number of numerical layers. It can be concluded that for 
obtaining accurate results in the LWT, the number of 
numerical layers in each physical layer of the laminate must 
be p ≥ 8. In this study in order to obtain accurate results p is 
taken as 11. 

 
3.3 Plate subjected to bending moment 
 
The sandwich plate which is subjected to pure bending 

moment is studied in this section and the global response 
deformation of plate i.e., C3, C5 and C6 and also the in-plane 
and out of plane stresses are studied. 

 
3.3.1 Global response of the plate 
As noted before, C6, C5 and C3 which are clearly seen in 

Eq. (10) show the global deformation of the plate due to the 
loading. Table 3 shows the global deformation of sandwich 
plate with symmetric [/-/core/-/] and asymmetric [/-
/core//-] and [//core/-/-] layer stacking which is 
subjected to bending moment as M = 1 Nmm for various 
fiber orientations . The effect of the lamination sequence 
and fiber orientation on the global deformation response of 
the plate is obviously seen in this Table. 

It is seen that bending moment Mx causes twisting in 
symmetric plate and extension in asymmetric plates. It must 
be noted that the global response of the plate to the bending 
moment can be interpreted by the A, B, and D matrix which 
are defined in the classical and first order shear deformation 

 
 
theory (FSDT) of plates. It should be noted that in the 
FSDT, the extension-bending matrix B vanishes for the 
symmetric laminations such as [/-/core/-/], and so there 
is no bending-extension coupling in symmetric plates. 
Therefore as it is expected, in the prediction of LWT in 
Table 3, C6 vanishes in pure bending of symmetric plate. 
For symmetric [/-/core/-/] plate, the term D16 and D26 
which is bending-twisting coupling in the FSDT do not 
vanish, and so there is bending-twisting coupling for [/-
/core/-/] plate, and as seen in Table 3, C3 is not vanished 
in bending of [/-/core/-/] plate in the prediction of 
LWT. For [/-/core//-] and [//core/-/-] plates, B11 = 
B22 = B12 = D16 = D26 = 0, so extension-bending and bending-
twisting coupling are vanished for this laminations and as 
seen in Table 3, both C6 and C3 are vanished in pure 
bending of these plates. 

 
3.3.2 Stress distribution 
The distribution of out-of plane and in-plane stresses in 

the sandwich plate due to applied bending moment is 
studied. The [30°/-30°/core/-30°/30°] plate with hc = 0.4h 
and hf = 0.15h and 2b = 3h is studied and the dimensionless 
stress is defined as σ* = 2bh2σ/M. 

The out of plane stresses arise near the edges because of 
mismatch in the mechanical properties of the layers. So the 
figures are focused on presentation of the distribution of out 
of plane normal and shear stresses along the interface and 
also through the thickness distribution of the stresses in the 
vicinity of the edges. 

 
 

Fig. 7 Distribution of σz along the interfaces at [30°/-30°/ 
core/-30°/30°] plate subjected to bending moment M
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Table 3 Global deformation responses of the sandwich plates subjected to bending moment M = 1 Nmm (h = 1 mm, hc = 0.4h, 2b = 3h) 

 [θ/-θ/core/-θ/θ] [θ/-θ/core/θ/-θ] [θ/θ/core/-θ/-θ] 

　 C6×106 C5×106 C3×106 C6×106 C5×106 C3×106 C6×106 C5×106 C3×106 

0° 8.007×10-9 30.9208 0 8.007×109 30.9208 0 8.0076×10-9 30.9208 0 

15° -3.763×10-7 44.3292 26.5717 -3.620×10-7 41.1557 1.839×10-6 2.554×10-6 76.9926 -2.110×10-5

30° 3.848×10-7 106.4730 29.9941 -7.442×10-7 100.5105 -1.047×10-5 4.594×10-6 191.8378 -4.271×10-5

45° 1.020×10-5 273.8634 25.3157 9.299×10-6 269.3253 3.624×10-7 -5.158×10-5 339.1102 -1.861×10-5

60° -3.765×10-6 431.6471 12.7281 -6.781×10-6 430.6543 1.199×10-5 -6.750×10-6 444.8586 -4.720×10-5

75° 1.322×10-4 482.2884 4.5749 1.340×10-4 482.2090 -2.686×10-5 -1.966×10-4 482.9006 1.319×10-4

90° -4.722×10-5 489.0269 0 -4.723×10-5 489.0269 0 -4.723×10-5 489.0269 0 
 

531



 
Isa Ahmadi 

 

Fig. 8 Distribution of σyz along the interfaces at [30°/-30°/ 
core/-30°/30°] plate subjected to bending moment M

 
 

Fig. 9 Distribution of σxz along the interfaces at [30°/-30°/ 
core/-30°/30°] plate subjected to bending moment M

 
 
The distributions of out-of plane stresses along the 

width of the plate at z = ±0.5hc, z = ±0.5(hc + hf) and at the 
mid plane of the plate (z = 0) are shown in Figs. 7 to 9. The 
out of plane normal stress σz along the interfaces is shown 
in Fig. 7. As seen in the figure, σz vanishes far from the 
edges, and arises near the edges and the maximum of σz 
occurs at the interface of 30/-30 layers exactly at the free 
edge. Due to the symmetry of the lamination in this plate, as 
Fig. 7 indicates, σz vanishes at mid plane of the plate and 
asymmetric distribution through the thickness of the plate is 
seen for σz. 

 
 

Fig. 10 Distribution of the out of plane normal stress 
σz through the thickness of [30°/-30°/ core/-30°/ 
30°] plate 

 

Fig. 11 Distribution of the out of plane shear stress 
σxz through the thickness of [30°/-30°/ core/ 
-30°/30°] plate 

 
 

Fig. 12 Distribution of the out of plane shear stress 
σyz through the thickness of [30°/-30°/ core/ 
-30°/30°] plate 

 
 
The distributions of the out-of plane shear stresses σyz 

and σxz along the interface of the plate are shown in Figs. 8 
and 9. As seen in Figs. 8 and 9, σyz gets its maximum in the 
vicinity of the free edges and σxz is maximum at the free 
edge y = ±b at the interface of the -30 ̊/30 ̊layers. The normal 
stress σz has symmetric distribution and shear stress σxz and 
σyz have asymmetric distributions with respect to y = 0. 

The distributions of the out of plane and in-plane 
stresses through the thickness of the plate in different 
sections at y = b, 0.99b, 0.98b, .94b, 0.5b and y = 0 are 
shown in Figs. 10 to 14. The distributions of σz, σxz and σyz 
are presented in Figs. 10 to 12, respectively. Because of 
sharp mismatch in the mechanical properties of 30̊ and -30̊ 
layers, the out of plane stresses increased rapidly near the 
30°/-30° interface. The maximum of σz and σxz are seen at 
the free edge at -30°/30° interfaces. The stresses decreased 
by increasing the distance to the free edge. σz has 
asymmetric distribution and σyz and σxz have symmetric 
distribution through the thickness of plate. σyz has a sharp 
variation at -30°/30° interfaces from the positive value to 
negative. 

The distribution of the in-plane shear stress σxy and in-
plane normal stress σy through the thickness of the sandwich 
plate is shown in Figs. 13 and 14. In-plane stresses σxy and 
σy have asymmetric distribution through the thickness of the 
plate. These stresses vanish at the free edge y = b, except in 
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Fig. 13 Distribution of the in-plane shear stress σxy 
through the thickness of [30°/-30°/ core/-30°/ 
30°] plate 

 
 

Fig. 14 Distribution of the in-plane normal stress σy 
through the thickness of [30°/-30°/ core/-30°/ 
30°] plate 

 
 

Fig. 15 Effect of fiber direction, θ on the distribution of σz 
at the free edge of [θ/-θ/core/-θ/θ] plate 

 
 

the -30°/30° interfaces which the stresses do not converge at 
this point. 

The amount of out of plane stresses depends on the 
mismatch between the mechanical properties of layers. So, 
the out of plane stresses depend on the orientation of fibers 
in the adjacent layers. The effect of fiber orientation θ in the 
[θ/-θ/core/-θ/θ] plate on the distribution of σz and σxz at the 
free edge y = b is presented in Figs. 15 and 16. It is 

Fig. 16 Effect of fiber direction, θ on the distribution of σxz 
at the free edge of [θ/-θ/core/-θ/θ] plate 

 
 

Fig. 17 Through the thickness distribution of σz at the free 
edge, y = b, of the plate for various layers stacking

 
 

Fig. 18 Through the thickness distribution of σxz at free 
edge, y = b, of the plate for various layers stacking

 
 

observed in these Figures that in this plate σz is maximum 
for θ = 45° and σxz is maximum for θ = 30°. 

In order to study the effect of lamination sequence on 
the distribution of σz and σxz at the free edge, the distribution 
of stresses through the thickness of plate at y = b in the 
plates with symmetric and un-symmetric lamination as 
[45°/-45°/core/-45°/45°], [45°/45°/core/-45°/-45°] and [45°/ 
-45°/core/45°/-45°] is depicted in Figs. 17 and 18. As seen 
in this figures, the lamination sequence effected the 
distribution of the out of plane stresses. 
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4. Conclusions 
 
A layerwise formulation based on the Galerkin method 

is presented for discterization of the governing equations of 
long sandwich plate which is subjected to tension force and 
pure bending moment. The out of plane and in-plane 
stresses in the sandwich plate with laminated faces are 
studied. The appropriate displacement field is considered 
for the plate which includes the global response and local 
response of the plate and the governing equations are 
obtained based on the displacement components. An 
analytical method is used to solve the governing equations 
of the plate. The 3D stress state especially the out of plane 
stresses in the vicinity of the free edges of sandwich plate 
subjected to extension and pure bending is obtained. A 3D 
finite element model is used for verification of the accuracy 
of the predictions of present LW solution. The numerical 
results are presented and discussed for distribution of the 
out of plane and in-plane stresses in the plate due to 
bending moment and extension force. The effects of fiber 
direction and layer stacking on the global and local 
response and stress distribution of the sandwich plate are 
studied. 
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Appendix A 
 
The stiffness matrix of each ply of the laminate which is 

used in Eq. (14) is considered as orthotropic material and 
can be written as 
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Appendix B 
 
The matrix [C] in Eq. (22) are defines as 
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in which [B] and [A] are defined as 
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where [0] and [I] mean zero and unity (N + 1) × (N + 1) 
matrix, respectively, and 
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Also the column matrices {F31}, {F32}, {F5}, {F6} in 

Eq. (22) are defined as 
 

1
31 31

1
32 32

1
5 5

1
6 6

{ } [ ] { },

{ } [ ] { },

{ } [ ] { }

{ } [ ] { }

















F B F

F B F

F B F

F B F

 (B4)

 

where 
 

 
 
 
 

31 36 45

31 36 45

32 55 45

5 13

6

{ } {0} , {0} , {0} , {0} , {0} , { } { }

{ } {0} , {0} , {0} , {0} , {0} , { } { }

{ } {0} , { } , {0} , { } , {0} , {0}

{ } {0} , {0} , {0} , {0} , {0} , { }

{ } {0} , {0} , {0} , {0} , {0} , {

T T T T T T T

T T T T T T T

T T T T T T

T T T T T T

T T T T T

  

  







F A B

F A B

F A A

F A

F A







 13}T

(B5)

 
and [B] is defined in Eq. (B2). 
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