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1. Introduction 

 
Tubular structures are commonly used in practical 

engineering due to many attractive advantages such as light 
weight, high strength, beautiful appearance and low drag 
coefficient etc. A typical tubular structure is consisted of 
different hollow section tubes. The tube members are 
generally connected together by welding to form a series of 
joints. In a tubular joint, one or several small tubes (braces) 
are connected to a big one (chord). The braces are welded 
directly onto the outer surface of the chord to form a welded 
tubular joint. In such a tubular joint, the chord member at 
the connection has to sustain the loading transferred from 
the braces in its radial direction, which causes the chord 
wall to be subjected to flexural action. Due to the hollow 
section of a steel tube, the thin-walled chord has low 
bending rigidity. In case of no stiffening measures inside the 
chord wall at the joint location, the chord surface near the 
brace/chord connection has a significant deformation which 
can not be ignored in the performance analysis of a tubular 
structure. API (2000) indicates that the local stiffness 
around the joint connection has a clear effect on both the 
displacement and the fatigue life of a tubular structure. For 
convenience in design stage, the static behavior of a tubular 
structure is generally simulated initially by spatial 
frameworks with either rigid joints or completely flexible 
joints, and the local joint flexibility around the brace/chord 
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connection is not considered. Obviously, the internal forces 
(including axial force, shear force and bending moment) in 
each tube member is underestimated if a rigid brace/chord 
connection is used in the simulation, and this will cause an 
unsafe design for predicting the loading carrying capacity 
and serviceability. However, the displacement and the 
internal forces of each tube member are overestimated if a 
completely flexible joint connection is used in the 
simulation, which results in an uneconomical design. Based 
on these considerations, the local joint stiffness or 
flexibility is necessary to be taken into account in the design 
of an unstiffened tubular structure to provide more accurate 
prediction on the static behavior of welded tubular 
structures for design purpose. 

In the literature, the effect of local connection flexibility 
on the performance of different structures has been widely 
investigated. Liu et al. (2015) studied the effect of joint 
rigidity on dome structures. Effect of joint rigidity of beam-
column connection on steel frame structures in building 
engineering was presented by some researchers, and 
corresponding design and analysis methods were also 
presented (Sagiroglu and Aydin 2015, Nguyen and Kim 
2016). Gou et al. (2015) proposed a concept of nominal 
rigidity for long-span V-shaped rigid frame composite arch 
bridge, and used this concept to evaluate the rigidity of the 
arch-to-beam connection.  

For tubular structures, Bouwkamp (1966) firstly began 
to investigate the local joint flexibility (LJF). Later, many 
researchers studied the LJF effect on the overall 
performance of tubular structures (Mirtaheri et al. 2009, 
Wang and Chen 2005, Yang et al. 1990). It is found from 
the above investigations that LJF has a significant effect on 
the static and fatigue behavior of tubular structures. To 
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consider the effect of LJF, it is necessary to know how to 
calculate the LJF in a tubular structure. Fessler et al. (1986) 
and Ueda et al. (1990) presented some parametric equations 
for predicting the LJFs of simple tubular joints such as T- 
and Y-joints. These parametric equations are obtained from 
curve fitting technique, and they are consisted of material’s 
elastic modulus and some geometrical parameters (chord 
diameter D, radius-to-thickness ratio of chord , brace-to-
chord diameter ratio β, and brace-to-chord intersecting 
angle α). As the LJF reflects the capacity of the chord 
surface around the brace/chord intersection to resist radial 
deformation, such capacity is related to the material’s 
stiffness (elastic modulus), the geometrical stiffness 
(determined by  and β), and the load component in radial 
direction (influenced by α). Similar research studies have 
been conducted by other researchers (Asgarian et al. 2014, 
Gao et al. 2013, 2014, Jia and Chen 2014, Qiu and Zhao 
2009, Qiu et al. 2011) , and parametric equations were also 
presented for predicting the LJFs of other types of tubular 
joints. 

The above presented parametric equations for predicting 
the LJFs of different tubular joints are necessary to be 
introduced into the analyses of the entire tubular structures. 
Some researchers presented simplified empirical models to 
analyze the performance of offshore platforms considering 
the effect of LJFs (Chen et al. 1990, Chen and Zhang 1996, 
Hu et al. 1993). In these models, all the tubular members 
were simplified into beam elements, and the LJFs at both 
ends of a beam element with an expression of material’s 
elastic modulus and geometrical parameters were 
incorporated in the stiffness matrix. When different types of 
tubular joints are analyzed, the stiffness matrix of the beam 
element has to be modified. Alanjari et al. (2011) conducted 
some research work on presenting nonlinear joint flexibility 
element for modelling a tubular structure, and a fictious 
equivalent element was used to simulate the LJF. The 
difficulty of this method is to determine the reasonable 
dimension of such equivalent element. The accuracy of this 
method is not verified through comparison with experi-
mental result. 

As the LJF in a tubular structure represents a semi-rigid 
joint at the brace/chord intersection, the analysis of the 
entire tubular structure can be carried out by introducing the 
LJF into the equilibrium equation in finite element method. 
This study then aims to develop an analytical method for 
analyzing the static behavior of a tubular structure with 

 
 

consideration for the LJFs. The presented method is 
implemented based on the premise that the LJFs of different 
tubular joints in a tubular structure can be calculated easily 
from the reported parametric equations as mentioned above. 
The entire tubular structure is then simplified into a frame 
structure consisted of beam elements. For the beam 
elements representing the brace members, LJFs are 
simulated at the brace/chord connections. Using this 
method, a tubular structure is then simplified into a simple 
frame structure, and the detailed solving process is 
introduced. Finally, the accuracy of the presented method is 
verified through the comparison with 3-D FEA on two 
typical tubular structures. 

 
 

2. Analytical method for welded tubular 
structures considering LJF 
 
2.1 Definition on LJF of a tubular structure 
 
In a welded tubular structure, the chord surface around 

the weld toe yields local deformation when the brace is 
subjected to axial loading or bending moment, as shown in 
Figs. 1(a) and (b). Such deformation causes the brace/chord 
connection to be not rigid, and it may produce significant 
effect on the static behavior of the structure. The local joint 
flexibility (LJF) is then proposed to describe this phenome-
non. 

As shown in Figs. 1(a) and (b), C1 and C2 are located at 
the crown, and S1 and S2 are the saddles. In case of an axial 
loading at the brace end, as shown in Fig. 1(a), the joint has 
a local deformation in the brace axial direction, which 
produces an axial LJF. It is assumed that the displacements 
at the four critical positions in the brace axial direction are 
denoted by uc1, uc2, us1 and us2. The axial displacement of 
the brace at the intersection ub is then defined as the average 
value of the displacements at such four points as follow 

 

4
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Two locations which are located at two sides of the 

chord and coincide with the intersecting point of two axes 
of the brace and the chord in the direction perpendicular to 
the joint plane (namely a1 and a2), as shown in Fig. 1, are 
selected to define the displacement of the chord uc as follow 

 
 

(a) Axial loading (b) Bending moment 

Fig. 1 Local deformation at brace/chord intersection of a tubular joint 
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The axial deformation uR at the joint due to LJF is 
calculated from the following equation 

 

cbR uuu   (3)
 

If an axial load N is applied at the brace end, the axial 
LJF, namely LJFn, is defined by the following equation 

 

N

u
LJF R

n   (4)

 

Accordingly, the local axial stiffness at the joint, namely 
kn, is calculated directly from LJFn as follow 
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Eqs. (1)-(5) provide the method for calculating the local 
axial flexibility and stiffness at the joint. For a tubular joint 
under in-plane bending moment M, as shown in Fig. 1(b), 
the rotating angle θR at the intersection is calculated from 
the following equation 
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where α is the intersecting angle between the brace and the 
chord as shown in Fig. 1, and db is the diameter of the 
brace. 

The local rotating flexibility and stiffness at the joint 
due to bending moment, denoted by LJFm and km 
respectively, are calculated from the following two 
equations 

M

θ
LJF R

m   (7)
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2.2 Simplified analytical model for LJF of 

a tubular joint 
 

As the LJF of a tubular structure is mainly focused on 
 
 

the brace/chord connection, the most accurate simulating 
method is to carry out 3-D finite element analysis because 
such method can consider the complicated geometry at the 
joint position. In a 3-D finite element analysis, the mostly 
common scheme for discretizing the tubular joint is using 
brick elements or shell elements to generate the structural 
mesh. However, a big problem may occur when a tubular 
structure is consisted of many tube members because a huge 
number of elements are necessary to complete the finite 
element mesh of the entire structure. To obtain an accurate 
and convergent result, more than several thousands of 
elements may be required in even a simple tubular T- or Y-
joint, and the computing efficiency is a big problem in case 
that so many nodes in the mesh of the structure are 
necessary. To solve this problem, a simplified analytical 
model for analyzing a tubular joint with LJF is presented. 
This simplified analytical model aims to improve the 
computing efficiency through reducing the number of 
elements in the mesh. A simple alternative is to replace the 
3-D brick elements with beam elements since a single beam 
element can be used to model an entire tube member. At the 
connection between a brace and a chord, in which position 
LJF exists, some special measures are taken into account. 
The simplified analytical model is referred to component 
based method, and it can be illustrated in Fig. 2 which 
shows a simple tubular joint consisted of a chord and a 
brace. In the component based method, the chord and the 
brace are both simplified as beam elements. The chord is 
divided into two beam elements which are connected at the 
joint position. The two beam elements are rigidly connected 
and there is no local flexibility at the connection between 
them. The beam element used to model the brace member, 
however, has local flexibility at the connection to the chord, 
and the end of the brace connecting to the chord may 
deviate from the chord axis and rotate about the brace/chord 
connection. To simulate such LJFs, two equivalent springs 
can be used as shown in Fig. 2. An axial spring can simulate 
the local axial deformation, and the torsional spring is used 
to simulate the rotating deformation. In theory, the stiffness 
of the axial spring and the stiffness of the torsional spring 
denoted with kn and km respectively are calculated from Eqs. 
(5) and (8) respectively. 

Using the simplified analytical model in Fig. 2, a tubular 
structure is then equivalent to a frame consisted of beam 
elements and special joints. It is noted here that the 
connection between two chord members can be also 
simulated with the above two springs only by considering a 

 
 

 

Fig. 2 Simplified analytical model for a tubular joint 
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very large value of km and kn. It is clear that each tube in a 
tubular structure can be modelled by only one beam 
element in the simplified analytical model and no 3-D 
simulation is necessary. Such treatment can shorten the 
computing time greatly and provides a quick calculation. 
However, the simplified analytical model needs a reliable 
estimation for the LJF at any joint. Fortunately, many 
parametric equations have been presented in the literature 
for calculating the LJFs of different types of tubular joints 
such tubular T-, Y- and K-joints (Alanjari et al. 2011, 
Fessler et al. 1986, Ueda et al. 1990), tubular X-joints (Qiu 
and Zhao 2009, Qiu et al. 2011), and completely overlapped 
tubular joints (Gao et al. 2013, 2014). All these parametric 
equations are expressed with material’s elastic modulus and 
some key geometrical parameters (i.e., D, , , α and so on). 
Detailed expression of these parametric equations can be 
found in the listed corresponding references. In addition, the 
LJF of a tubular joint can be also obtained from finite 
element analysis or experimental test directly. Once the 
values of the LJFs are determined, a tubular structure can be 
analyzed from finite element method based on a 
combination of the conventional beam elements and the 
introduced LJF. 

 
2.3 Axial LJF in a tubular joint 
 
As each tube member in a tubular structure has two 

ends, two local flexibility coefficients are considered in the 
simplified beam element. Considering a typical tubular 
structure in Fig. 3, the length of the brace member is 
assumed to be l, and the distance between two chord axes is 
l′. A′ and B′ are two points located on the axes of the two 
chord members, and A and B are two ends of the brace. It is 
clear from Fig. 3 that the relationship between the above 
two quantities is easily expressed as follow 

 

cdll   (9)
 

where dc is the chord diameter. 
In this study, it is assumed that the chord diameter is 

much smaller than the brace length. It means the following 
two relationships are satisfied: (1) l >> dc; and (2) l ≈ l′. 
When l is not much bigger than dc, l is replaced by l′ to 
represent the length of the brace. 
 
 

Fig. 3 A typical tubular structure including two joints 

If there is no LJF at the brace/chord connection, the 
tubular structure shown in Fig. 3 is simplified into a 
conventional rigid frame structure. The displacements of 
points A′ and A are identical. Considering LJF in axial 
direction of the brace/chord connection, for example, the 
left joint in Fig. 3, the displacements of the brace end and 
the chord axis (uA and uA′) are not same (as seen from Fig. 
4). There is a relatively displacement uRA, and uRA represents 
the axial LJF. The relationship between the displacements 
and the axial forces at both ends of the brace is easily 
obtained as follow based on previous studies 
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where E and A are the elastic modulus of the materials and 
the area of the cross section for the brace; NA and NB are the 
axial forces at two ends of the brace. knA and knB are local 
joint stiffness at two ends of the brace in axial direction; 
LJFnA and LJFnB are corresponding local joint flexibility at 
two ends. γnA and γnB in Eq. (11) are the ratios of the axial 
stiffness of the brace per unit length to the local axial 

stiffness at the brace/chord connection, i.e., 
nA

nA k

lEA
γ   

and .
k

lEA
γ

nB
nB   In case of a rigid connection between any 

two members, kn → +∞ and γn → 0. 
 
2.4 Bending LJF in a tubular joint 
 
In case that the brace member in Fig. 3 is subjected to 

bending moment at two ends, rotating LJF is necessary to 
be considered because a rotation between the brace and the 
chord may occur easily when the LJF at the brace/chord 
connection is big and the bending moments at the 
brace/chord connections exist. The bending moment at the 
brace/chord connection initiates due to two conditions when 
the brace member is not subjected to any lateral external 
loading along its length: (1) the chord has a rotating 

 
 

Fig. 4 Displacement at joint 
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Fig. 5 Rotating deformation at joints 
 
 

deformation; (2) the two ends of the brace have a relative 
lateral displacement. In case of a rotating deformation of the 
chords in the first condition, as the simplified analytical 
model shown in Fig. 5, the brace rotates about an angle of 
θA′ or θB′ at either connection when the chord has a rotating 
angle of θA or θB at the same connection. Due to the LJF at 
the connection, it is clear that θA′ < θA′ < θA and θB′ < θB. The 
rotating angle between the brace and the chord due to LJF is 
θRA at the left brace/chord connection and θRB at the right 
brace/chord connection. Clearly, the following relationship 
can be obtained 
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As θRA and θRB are caused by the bending moment, they 
can be calculated based on the definition of the LJFm as 
follow 
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where θ
AM  and θ

BM  are the bending moments at two 
connections due to chord rotation; kmA and kmB are local 
joint bending stiffnesses; and LJFmA and LJFmB are local 
joint bending flexibilities. 

According to the fundamentals of structural mechanics, 
the bending moments at the two connections are determined 
by the actual rotating angles between the chord and the 
brace as follow 
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Substitute Eq. (12) into Eq. (14), the bending moments 
 
 
 

Fig. 6 Relative lateral displacement between two joints 
 
 

at the connections are determined by the rotating angles 
from the following equations 
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Another mechanism to produce bending moment at the 
brace/chord connection is a relative lateral displacement 
between the two connections, as shown in Fig. 6. 
Considering the LJF, there is a rotating angle at the 
brace/chord connection (θRA at the left end and θRB at the 
right end). Therefore, the simplified model in Fig. 6 is 
equivalent to a superposition of two deforming mechanisms 
as shown in Figs. 7(a) and 7(b). 

Similarly, the bending moments at the two connections 
in Fig. 6, Δ

AM  and ,Δ
BM  can be easily obtained from the 

superposition method as follow 
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where wA and wB are lateral displacements at the two 
connections. 

Obviously, the final bending moments at the two 
brace/chord connections, MA and MB, are the superposition 
of the corresponding bending moments calculated from Eqs. 
(15) and (16), and they can be expressed as follow 
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Substitute Eq. (13) into Eq. (17), the following equation 
can be obtained after some simplifications 
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Fig. 7 Two deforming mechanisms 
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Based on Eq. (18), the shear forces at the two 
connections can be easily obtained from the following 
equation 
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Combining Eqs. (18) and (19), the final following 

equation is given 
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In Eq. (20), SYM denotes symmetrical, and this 
equation provides the method for solving a tubular structure 
considering LJF due to bending moment at brace/chord 
connections. 

 

2.5 Analytical model of a tubular joint 
considering LJFs 

 

If both axial and flexural LJFs are considered, the 
governing equation is derived from a combination of Eq. 
(11) and Eq. (20), and it is expressed as follow 

 

     eee FaK   (21)
 

where [K]e denotes the stiffness matrix of a simplified 
analytical beam element and it is a symmetrical matrix, i.e., 
kij = kji; [a]e is the displacement matrix at two ends of a 

simplified beam element; [F]e is external loading matrix at 
two ends of a simplified beam element. The detailed 
expression of each matrix is given as follows 
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Eq. (21) provides the detailed format of the stiffness 
matrix of each tube member considering the LJFs. 
However, such stiffness is obtained based on the 
assumption that coordinate system is placed along the axis 
of the simplified beam element. In a tubular structure 
including many tube members, the axial directions of some 
tube members are definitely different. In this case, global 
and local coordinate systems are defined separately as 
shown in Fig. 8. x′oy′ in Fig. 8 is a local coordinate system 
in which the axis of the simplified beam element is placed 
in the same direction as the x′-axis, and xoy is a global 
coordinate system. It is assumed that the local coordinate 
system is coincided with the global coordinate system if the 
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later one is rotating with an angle of  in anti-clockwise 
direction. 

The relationship of the stiffness matrix between the 
global and the local coordinate systems is easily obtained as 
follow 

       λKλK eTe
g   (22)

 
where  egK  is the stiffness matrix of the simplified beam 
element in global coordinate system. 

In Eq. (22), [λ], which is a transfer matrix between 
global and local coordinate systems, is expressed as follow 
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[λ]T in Eq. (22) is the transposed matrix of [λ]. 
In a welded tubular structure, the stiffness matrix of 

each simplified beam element in global coordinate system 
can be calculated from Eq. (22). The stiffness matrix of the 
entire structure is then obtained by superposing the  egK  
of all tube members, and the final equation for analyzing 
the entire structure is formed as follow 

 
    FaK   (24)

 
where [K] is the stiffness matrix of the entire structure, [a] 
is the displacement matrix of all the nodes, [F] is the 
external loadings applied at the nodes. 

After introducing the boundary conditions at some 
nodes with constraints, Eq. (24) can be solved from 
fundamental methods such as Gauss elimination. In this 
study, a computer-aided program for solving tubular struc-
tures considering the LJF is coded by using Fortran based 
on the presented analytical model, and this program is used 
to analyze the linear and elastic behavior of tubular 
structures. 

 
 
 

3. Evaluation on presented analytical model 
 
To verify the accuracy and reliability of the above 

presented method in this study, two cantilevered welded 
tubular structures as shown in Figs. 9(a) and (b) are studied. 
In Fig. 9(a), the cantilevered tubular structure is consisted 
of two chords and three vertical braces. The top and the 
bottom chords have a diameter of 219 mm and a thickness 
of 6 mm. For the three braces, the diameter and the 
thickness are 119 mm and 6 mm respectively. The length of 
the chords and the braces are also given in Fig. 9(a). The 
chords and the braces are made of same steel materials with 
an elastic modulus of E = 206103 N/mm2 and a Poisson’s 
ratio of 0.3 respectively. At the right end, a steel plate is 
welded to the top and to the bottom chords. This steel plate 
is assumed to be rigid by setting a very big value of elastic 
modulus E = 206106 N/mm2 and a thickness of 60 mm 
which can ensure an enough large flexural stiffness 
compared to the tube members. A concentrated force of 10 
kN is applied at the steel plate in downward direction. 
Clearly, the tubular structure in Fig. 9(a) is only consisted of 
tubular T-joints in which a brace member is perpendicularly 
welded to the chord member. The tubular structure in Fig. 
9(b) includes two chords and four inclined braces. The 
chord and the brace members are same as those in Fig. 9(a) 
both in geometry and in material properties. A same steel 
plate is also connected to the top and the bottom chords, and 
a same concentrated force of 10 kN is applied at the plate. 
However, the tubular structure in Fig. 9(b) is consisted of 
tubular Y-joints with an inclined angle of 75° at the 
brace/chord connections. 

 
3.1 Calculation for LJFs of tubular T- and Y-joints 
 
As mentioned previously, the LJF values in a tubular 

structure are necessary known before using the presented 
simplified analytical model to carry out analysis. To 
calculate the LJFs at a tubular joint, three different methods 
can be used: (1) experimental test; (2) 3-D finite element 
analysis by using brick elements to discretizing the entire 
structure; and (3) parametric equations. The first method is 
generally expensive and time consuming although it can 
provide most accurate and convincing results. The second 

 
 

 

Fig. 8 Global and local coordinate systems 
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method is more efficient and it is an effective alternative 
compared to the experimental testing method once its 
reliability is validated through benchmark verification. The 
third method, although its accuracy may be the most 
inaccurate, is a favourite method for design purpose in 
practical engineering because it can provide a very fast 
estimation. The parametric equation in the third method is 
based on the results of experimental tests or finite element 
analyses for a lot of different tubular joint models. It is 
generally obtained from curve fitting technique and 
expressed in the format of some geometrical parameters and 
material constants. For example, Fessler et al. (1986) 
presented the parametric equations for calculating the LJFs 
of a tubular T/Y-joint under brace axial load (LJFn) and in-
plane bending moment (LJFm) as follows 
 

 
ED

αβγ.
LJF

...

n

19231152 sin1951 
  (25)

 

3
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ED

αeγ
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.β..

m



  (26)

 

Ueda et al. (1990) also provided parametric equation for 
estimating the LJFs of a tubular T/Y-joint from the 
following equations 
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22132 sin3130 

  (27)
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m


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In Eqs. (25)-(28), γ, β and α are normalized geometrical 
parameters of a tubular T/Y joint. D is the chord diameter, 
and E is the elastic modulus of the steel materials. For the 
normalized geometrical parameters, γ is a ratio of the chord 
radius to the chord thickness. β is a ratio of the brace 
diameter to the chord diameter. α is the intersecting angle 
between the brace and the chord. 

For a comparison and evaluation purpose, the T-joint 
and the Y-joint of the tubular structures in Figs. 9(a) and (b) 
are selected for discussion. Both finite element analyses and 
prediction from parametric equations in Eqs. (25)-(28) are 
carried out. As the finite element technique for analyzing a 
tubular joint in the literature is quite mature, the details of 
the finite element model of a tubular T/Y joint are not 
introduced in this study. In the finite element analyses, the 
T/Y-joint is fixed at two ends of the chord, and an axial load 
or an in-plane bending moment is applied at the brace end. 
Solid element (hexahedral) is used to discretize the entire 
structure. Finite element software ABAQUS is used to 
conduct the numerical analyses. The applied axial load or 
the in-plane bending moment has an appropriate value to 
ensure that the tubular joint is in linear and elastic stage. 
Figs. 10(a) and (b) show the mesh of the joints used in the 
finite element analyses. 

The calculated results of the local joint stiffness (inverse 
of the LJF) both from finite element analyses and from 

 
 

 
(a) Vertical braces 

 

 
(b) Inclined braces 

Fig. 9 Cantilever tubular structures 
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parametric equations are tabulated in Table 1. AX and IPB 
denote axial load and in-plane bending moment 
respectively. kFE, kFl and kUd are the LJSs calculated from 
finite element analyses, Fessler’s equation (Eqs. (25)-(26)), 
and Ueda’s equation (Eqs. (27)-(28)) respectively. For 
comparison, all the predicted results from parametric 
equations are evaluated from a ratio of the predicted value 
to the finite element result. The finite element result is 
assumed to be accurate because such modelling technique 
has been proved to be reliable in many published research 
papers. From the tabulated results in Table 1, it is found that 
Fessler’s equation generally overestimates the local joint 
stiffness. Accordingly, Ueda’s equation provides a 
conservative yet safe estimation for the local joint stiffness 
of the T/Y-joint because the predicted LJFs from this 
equation are smaller than the finite element results. In the 
following study, both finite element results and predicted 
results from Fessler’s equations and Ueda’s equations of the 
LJFs are used in the analyses through the presented 
simplified analytical model in the following sessions. 
 

3.2 Deformation analysis 
 
Considering the tubular structures in Figs. 9(a) and (b), 

four different methods are used in the linear and elastic 
static analyses as illustrated in Figs. 11-12. Figs. 11(a) and 
12(a) show 3-D models by discretizing the entire structure 
with hexahedral elements. These models can simulate the 
details of both the tube members and the connections. Figs. 

 
 

 
 

11(b) and 12(b) show simplified frame models in which the 
connections between any two members are rigid and there 
is no rotation between any two members. In Figs. 11(c) and 
12(c), the vertical and the inclined brace tubes are 
simplified to be hinged to the top and the bottom chord 
tubes. The simplified brace members between the top and 
the bottom members are connected to the two chords with 
LJF as shown in Figs. 11(d) and 12(d). Among the four 
models, the 3-D finite element model can certainly provide 
most accurate result in analyzing the static performance of 
the tubular structures because it considers any geometrical 
detail. However, a large amount of elements are necessary 
to generate the mesh in the finite element analysis, which 
brings difficulty both in computing efficiency and in mesh 
quality due to the complex geometry around the brace/chord 
intersection. The simplified models in Figs. 11(b)-(d) and 
12(b)-(d) are used to analyze the actual tubular structure in 
a quite simple way because each tube is replaced by only a 
beam element or a truss element (brace tubes in Figs. 11(c) 
and 12(c)). The tubular structure shown in Fig. 9(a) is 
simplified into a frame model with 12 beam elements in 
Figs. 11(b) and (d). Accordingly, the tubular structure in 
Fig. 9(b) is simplified into a frame model with 15 beam 
elements as shown in Figs. 12(b) and (d). In Figs. 11(c) and 
12(c), the tubular structure is simplified into a structure 
consisted of beam elements (top and bottom tubes and end 
plate) and truss elements (brace tubes between the top and 
the bottom chord tubes). It is noted here that the simplified 
rigid frame models in Figs. 11(b) and 12(b) are usually used  
 
 

 
 

 

(a) T-joint (b) T-joint 

Fig. 10 Finite element meshes of T- and Y-joints 

Table 1 Local joint stiffness of T- and Y-joints 

Joint type Loading type Finite Element (FE) result Fessler’s Equation Ueda’s Equation 

T-joint 

AX 

LJS kFE 
(N/mm) 

LJS ratio 
kFE/kFE 

LJS kFl

(N/mm)
LJS ratio kFl/kFE

LJS kUd 
(N/mm) 

LJS ratio kUd/kFE

93874 1.0 124491 1.33 87093 0.93 

IPB 

LJS kFE 
(Nmm) 

LJS ratio 
kFE/kFE 

LJS kFl

(Nmm)
LJS ratio kFl/kFE

LJS kUd 
(Nmm) 

LJS ratio kUd/kFE

10.2108 1.0 12.4108 1.22 9.62108 0.94 

Y-joint 

Loading type Finite Element (FE) result Fessler’s Equation Ueda’s Equation 

AX 

LJS kFE 
(N/mm) 

LJS ratio 
kFE/kFE 

LJS kFl

(N/mm)
LJS ratio kFl/kFE

LJS kUd 
(N/mm) 

LJS ratio kUd/kFE

122604 1.0 134314 1.10 93348 0.76 

IPB 

LJS kFE 
(Nmm) 

LJS ratio 
kFE/kFE 

LJS kFl

(Nmm)
LJS ratio kFl/kFE

LJS kUd 
(Nmm) 

LJS ratio kUd/kFE

12.7108 1.0 12.9108 1.02 9.95108 0.78 
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in the design of practical engineering. However, the 
reliability of this simplification has to be assessed with 
cautions before its accuracy has been verified. The 
simplified models in Figs. 11(d) and 12(d) are then used to 
evaluate such reliability. 
 
 

Using the above four models, the static behavior of the 
tubular structures as shown in Figs. 9(a) and (b) is analyzed. 
The 3-D finite element analyses are conducted by using the 
commercial software ABAQUS. For the simplified models, 
the analyses are completed by using the programs developed 

 
 

 

 
(a) 3-D finite element model 

(b) Simplified frame model with rigid joint connection 

(c) Simplified frame model with hinged joint connection 

(d) Presented model 

Fig. 11 Different models of tubular structures with vertical braces 

1 2 3 4 5

109876

1 2 3 4

9 10 11 12

5 6 7 8

10kN

3

3

10kN

8765

1211109

4321

6 7 8 9 10

54321

10kN

8765

1211109

4321

6 7 8 9 10

54321

3

axial spring

torsion spring

434



 
Static behavior of steel tubular structures considering local joint flexibility 

 
 
by the authors based on the presented methods in this study. 

The deformation of the tubular structures is described 
through the displacements at all the nodes. For brevity, 
displacements at 5 nodes (nodes 6-10 in Figs. 11(b)-(d)) for 
the tubular structure in Fig. 9(a) are provided. Accordingly, 

 
 
displacements at 6 nodes (nodes 7-12 in Figs. 12(b)-(d)) for 
the tubular structure with inclined braces as shown in Fig. 
9(b) are used to analyze the deformation. Using the four 
different models, the displacements at the given points in 
downward direction (deflection) are plotted in Figs. 13(a) 

 
(a) 3-D finite element model 

(b) Simplified frame model with rigid joint connection 

(c) Simplified frame model with hinged joint connection 

(d) Presented model 

Fig. 12 Different models of tubular structures with inclined braces 
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and (b), in which 3-D FE model represents the results 
obtained from a 3-D finite element analysis by using the 
model in Figs. 11(a) and 12(a), Present model (Ueda) 
represents the results obtained from the presented simplified 
analytical model in this study by using Ueda’s equation to 
calculate the LJFs at the connections, Present model 
(Fessler) represents the results obtained from the presented 
simplified analytical model in this study by using Fessler’s 
equation to calculate the LJFs at the connections, Present 
model (FE) represents the results obtained from the 
presented simplified analytical model in this study by using 
3-D finite element analyses to calculate the LJFs at the 
connections, Rigid Frame model represents the results 

 
 

 
 

 
 
obtained from the simplified rigid frame model as shown in 
Figs. 11(b) and 12(b), and Hinged model represents the 
results obtained from the simplified frame model with 
hinged connection between the tube braces and the 
top/bottom tubes as shown in Figs. 11(c) and 12(c). 

From the different calculated results in Fig. 13, the 
following conclusions can be given: (1) The rigid frame 
model overestimates the stiffness of the entire structure, and 
it provides a lower prediction on the overall deformation of 
the tubular structures. (2) When the brace tubes are 
simplified to be hinged at their ends to the top/bottom chord 
tubes, the stiffness of the overall structure is under-
estimated, and the deformation is much bigger than the 

(a) Vertical braces (b) Inclined braces 

Fig. 13 Comparison of deflections obtained from different models 

(a) 3-D finite element model (b) Rigid frame model and presented model 

Fig. 14 Deformations of tubular structure with vertical braces 

(a) 3-D finite element model (b) Rigid frame model and presented model 

Fig. 15 Deformations of tubular structure with inclined braces 
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actual result. (3) The presented simplified analytical model 
can provide reasonably accurate estimation for the 
deflection of both tubular structures. (4) Although Ueda’s 
equation and Fessler’s equation can only provide an 
approximate prediction on the LJFs of tubular T/Y-joints, 
the presented simplified analytical model by using the LJF 
results calculated from such equations can still produce 
good prediction on the deformation of the tubular 
structures. The above conclusions also support the 
reliability of the presented simplified analytical model. 

Based on the calculated results from different methods, 
the deformations of the two tubular structures are plotted in 
Figs. 14 and 15. An amplification scale factor of 50 for the 
displacement is used in all the figures to provide a much 
clear view on the overall deformation of the structures. The 
3-D finite element simulations are shown in Figs. 14(a) and 
15(a). Figs. 14(b) and 15(b) compare the deformation of the 
simplified rigid frame model, hinged model and the 
presented analytical model considering the LJF (for 
accuracy, the LJF is obtained through finite element 
analysis). Clearly, Due to the limitation to the rotation at the 
connection, the deformation of the rigid frame model is 
much smaller, while the deformation of the hinged model is 
larger because of no rotation restriction at the connection 
between chords and braces. The simplified analytical model 

 
 

presented in this study, however, can produce a similar 
overall deformation as the 3-D finite element model. 

 
3.3 Internal forces analysis 
 
As the LJF has been proved to have significant effect on 

the overall deformation, its influence on the internal forces 
in the simplified frame models is also necessary to be 
investigated. Figs. 16(a)-(c) and Figs. 17(a)-(c) provide the 
detailed comparison of the internal forces between the 
simplified rigid frame model and the presented model (the 
LJF is also obtained from finite element analysis) in this 
study which considers the LJF at the connections. It is note 
here that the bending moments in Figs. 16(c) and 17(c) in 
each element have two values at its two connections. L 
means one connection with a small node number and R 
denotes the other connection with a big node number. 

From the results illustrated in Figs. 16 and 17, it is 
found that the moment values of the simplified beam 
elements (elements 5-7 in Fig. 16 and elements 6-9 in Fig. 
17) in the presented model are much smaller compared to 
the corresponding moment values of beam elements in the 
rigid frame model. As seen from Figs. 11(b)-(c) and Figs. 
12(b)-(c), these beam elements are the brace members 
which have LJFs at the two connections to the top and the 

 
 

(a) Axial forces (b) Shear forces 
 

 
  Bending moments of left side 

 
 

(c) Bending moments of right side 

Fig. 16 Internal forces in tubular structure with vertical braces 
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bottom chord members. Due to such LJF, the rotation of the 
braces at two connections cannot be limited completely, and 
a portion of bending moments at the connections are 
released. Such moment releasing definitely reduces the 
moment values at the connections. Accordingly, the rotating 
constraints provided by the braces to the chords are weaker 
because the LJFs at the brace/chord connections causes the 
rotation between the brace and the chord to occur easily. 
Such weaker constraints results in the maximum bending 
moment of each chord member in the presented model to be 
bigger than that in the simplified rigid frame model. The 
beam element 8 in Figs. 11(b)-(c) and the beam element 10 
in Figs. 12(b)-(c) in the presented model, which are rigid 
steel plates, have no LJFs at their two ends due to a rigid 
assumption at the connection, and thus they have larger 
values of bending moment compared to the corresponding 
beam elements in the rigid frame model. For shear forces, 
the brace members in the presented model have much lower 
values because of the releasing of the bending moments at 
the connections. For the chord members, it seems that the 
shear forces do not vary greatly. 

 
 

4. Conclusions 
 
This study presented a simplified analytical model for 

analyzing the static behaivor of tubular structures with LJF 

 
 

at the brace/chord connection, and the presented model has 
been assessed through comparing with the 3-D finite 
element results. From the studies in this paper, the 
following conclusions can be made: 

 
 The presented model in this study has both high 

efficiency and good accuracy in analyzing tubular 
structures with LJF. 

 Simplifying a tubular structure into a rigid frame 
model is not suitable for design purpose because 
such model overestimates the stiffness of the 
structure and provides much smaller prediction on 
the deformation of the entire structure. For the two 
tubular structures analyzed in this study, the 
underestimation on the deflection is about and 
respectively. 

 Compared to the presented model, rigid frame model 
to simulate the two tubular structures underestimates 
the bending moment of the chord while 
overestimates the bending moment of the braces 
since it requires the ends of the braces (tubular 
joints) to resist more bending moment due to its rigid 
connection. 

 The effect of LJF on the static performance of a 
tubular structure is controlled by the values of geo-
metrical parameters, such as  and . It is easily 

(a) Axial forces (b) Shear forces 
 

  Bending moments of left side 
 

 

(c) Bending moments of right side 

Fig. 17 Internal forces in tubular structure with inclined braces 
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Static behavior of steel tubular structures considering local joint flexibility 

understood from Fessler’s equation that the LJF 
becomes much smaller when  is very small and  is 
very big. However, the presented method is still 
efficient to simulate such case by providing a high 
joint’s stiffness to the stiffness matrix. 
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