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1. Introduction 

 
For safety, economy, insurance and similar concerns it is 

very essential to evaluate the performance and reliability of 
structures. However, the lack of practical and feasible 
modern probabilistic methods limits the solutions to 
deterministic methods. Another major obstacle is the lack of 
probabilistic data, namely probability density functions 
(PDF) of loads, materials, workmanship quality, and 
environmental effects. The probabilistic evaluation for 
existing structures or for design of newly built structures is 
a new concept and it has been broadly investigated for two 
decades. An integrated view of the techniques and theory 
for reliability of structures and related basic probabilistic 
concepts are presented by Melchers (1999/2002) and Ang 
and Tang (2007). Also, many clarifying uncomplicated 
examples to improve understanding the problem are 
presented by Ghali et al. (2009) and Schneider (2006). 
Additionally, Ellingwood and Kanda (2005) have 
introduced a monograph which addresses major issues 
pertinent to meeting the performance goals of tall buildings 
related to safety and serviceability. Kanda et al. (1997) 
proposed a probabilistic second-moment seismic safety 
measure for existing buildings. They analyzed eleven 
buildings using lumped-mass models and utilized an 
available probability-based seismic map to estimate the site-
specific hazards. Low and Hao (2000) incorporated the 
probabilistic properties of the material geometry and the 
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loading into the analysis of reinforced concrete slabs under 
blast loading to obtain a realistic estimation of the structural 
response. The authors represented the structural system by a 
single degree of freedom (SDOF) system and they used 
performance criteria which are based on maximum strain 
limit. 

Structural reliability techniques have been utilized in a 
wide range of civil and mechanical engineering problems. 
Tandjiria et al. (2000) employed response surface methods 
for the reliability analysis of laterally loaded piles. The 
authors used the pile head displacement and the maximum 
bending moment in the pile as the performance criteria of 
the pile. Basha and Babu (2014, 2009) studied stability of 
reinforced soil walls. The authors utilized a FORM to 
determine appropriate ranges for the values of the load and 
resistance factors. They investigated the effects and 
interrelations of coefficients of variation of soil parameters 
in detail. 

A probabilistic seismic analysis of a reinforced concrete 
building was performed by Faggella et al. (2013). The 
authors modeled that building in 3-D and they used the 
performance based earthquake engineering methods. That 
study involved a probabilistic seismic hazard analysis and 
probabilistic structural analysis. They investigated the inter-
story drift ratios and they also have observed that the 
maximum inter-story drift ratios occur at the mid stories, 
similar to this study. The obtained deformation shapes are 
typical drift profiles of the framed structures under that kind 
of horizontal loadings; the mid-story drifts are relatively 
larger compared to the higher and lower stories. Mahsuli 
and Haukaas (2013) proposed a regional damage model for 
risk analysis by employing a collection of interacting 
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probabilistic models. For analysis they employed two 
approaches one of which was a straightforward scenario 
sampling and the other an algorithm for first and second 
order reliability methods. They implemented that model to 
assess the seismic risk of Vancouver region in Canada. 

The degradation of structural members due to immediate 
or time dependent effects is an important phenomenon 
which can cause misleading about reliability of the 
structure. Bigaud and Ali (2014) investigated the flexural 
reliability change in the externally bonded reinforced 
concrete members and they reported the effect of CFRP 
strengthening. Muscolino et al. (2015) modelled the 
excitation as a Gaussian random process and presented a 
procedure for the analytical derivation of interval reliability 
sensitivity. And also, they analyzed a wind-excited truss 
structure to show the effectiveness of that procedure. Lately, 
Kozak and Liel (2015) inspected the reliability of open web 
steel joists under snow loads through Monte Carlo 
simulations. The authors modeled the problem in a typical 
load-resistance (S-R) form for safety and serviceability 
limit states. In that study lognormal, logistic, log-logistic 
and type III distributions were assumed for snow loads of 
different sites. Resistance was assumed to have normal and 
lognormal distributions and accordingly, reliability indices 
were obtained for various cases. 

Component level reliability of structures has been 
broadly investigated; however system level reliability 
studies are quite limited. Choe et al. (2008) performed a 
probabilistic capacity model for RC columns. Quan and 
Gengwei (2002) investigated reliability index of RC beams 
for serviceability limit state and Neves et al. (2006) 
performed a reliability analysis of RC beam grids. 
Additionally, Petryna et al. (2002) and Sudret (2008) 
focused on reliability analysis of degrading RC elements. 

Recently, earthquake performance of buckling restrained 
braced frames was studied by Asgarian et al. (2016). The 
authors evaluated the mean annual frequency of exceeding 
immediate occupancy and collapse prevention limit states. 
Kia and Banazadeh (2016) implemented a fragility analysis 
for evaluating the vulnerability of steel moment resisting 
frames. The authors employed the model for two buildings 
and compared the results to the ones obtained by an 

 
 

incremental dynamic analysis. Additionally, O’Reilly and 
Sullivan (2016) developed a set of fragility functions for 
eccentrically braced steel frame structures. In that article it 
is considered that the damage is directly linked to the inter-
story drift demand at each story. 

The collapse of steel frame structures under infrequent 
loadings may lead to unexpected human losses and repair 
costs. This study attempts to quantify the structural 
vulnerabilities by employing reliability methods. For the 
reliability analysis an algorithm has been developed for 
determination of limit state functions and iterations of the 
FORM procedure. By the method presented herein the 
multivariable analysis of a complicated reliability problem 
is reduced to an S-R problem. The problem is approached in 
a global structural system level. In order to achieve this, in 
the limit state function system level parameters (herein 
inter-story drift ratios) are utilized instead of component 
level parameters such as stresses, strains, or crack width 
which are commonly employed in component level 
analyses. The procedure for iterations has been tested by a 
known problem for the purpose of avoiding convergence 
problems. A four-story moment resisting frame is analyzed 
under characteristic conditions as a typical example. 

 
 

2. Fundamental variables and equations 
 
For engineering structures it is difficult to estimate the 

failure probability precisely. This difficulty arises from 
several sources such as realistic sampling, mathematical 
modeling, performance criteria definition, and evaluation 
techniques. 

The collected information constitutes the sample spaces 
which are usually described by probability density 
functions. In the classical approach the statistical 
parameters of the random variables are assumed to be 
unknown, but the parameters obtained by sampling are 
assumed to be constant estimators of those parameters. In 
order to identify a risk concept for structures, generally a 
reliability index (or safety index), , is employed for 
quantification of the reliability. In this study, this index is 
calculated via a first-order estimate. Firstly, the perform- 

 
 

(a) PDFs of R and S (b) PDF of a function of R and S 

Fig. 1 The PDFs of the random variables 
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ance of the structure needs to be explained in terms of 
structural random variables in a limit state equation form 

 

1 2( , ,..., ) nY g X X X  (1)
 
This equation signifies that the performance Y is a 

function of the random variables 1 2, ,..., nX X X  which may 
represent loads, materials, and any variable that can affect 
the performance. However, in many cases the exact relation 
between the performance and the random variables is not 
known. Therefore, it is much practical to reduce the system 
to a load-resistance system whenever it is possible. 

In Fig. 1(a) the load (S) and resistance (R) are separately 
shown on a probability density space. A new function R-S 
can be represented by a new PDF as shown in Fig. 1(b). 

Traditional deterministic design approaches attain 
structural safety by shifting the positions of the curves. In 
that case the safety (the distance between the curves) is 
obtained in terms of the number of the standard deviations 
of fS and fR which are PDFs of load and resistance, 
respectively. The load curve is shifted to the right at an 
amount of kSσS and the resistance curve is shifted to the left 
at an amount of kRσR, where σS and σR are the standard 
deviations and kS and kR are the safety coefficients of the 
standard deviations of load and resistance, respectively. 
However, by the deterministic safety approach the failure 
probability is not quantified. A more rational approach 
would be to compute the risk and select the design variables 
such that an acceptable risk of failure is achieved. Herein, 
this is attained through an S-R model. 

In an S-R model a new random variable Z (Fig. 1(b)) 
can be defined as 

 

Z R S  (2)
 
Negative values of Z simply show that the resistance of 

the system is less than the load, so these cases indicate the 
failure of the system. Thus, the failure probability, pf, of the 
system can be identified as 

 

( 0)fp P Z   (3)
 

and assuming that R and S are normal variables and Φ is the 
cumulative distribution function of the standard normal 
variable, pf can be calculated as 

 

2 2
1 R S

f

R S

p
 

 

   
  

 (4)

 
where μR and μS are the means of resistance and load, 
respectively. By using the inverse function of Φ it can be 
obtained that 

 

1

2 2
(1 )R S

f

R S

p
 

 


  


 (5)

 
Both sides of the above equation are defined as the 

reliability index, . 

Apart from the above mentioned procedure, for design 
of new structures, there is also a reverse procedure in which 
the reliability index is formerly decided. In that kind of 
approaches, as the target reliability is decided, the aim is to 
determine the load factor γ and capacity reduction factor ϕ 
to satisfy the necessary condition 

 

N NR S   (6)
 

where RN and SN are nominal values of resistance and load, 
respectively. 

In this study the problem is approached in the way that 
directly searches for the evaluation of reliability index of a 
structure and the details are presented in the succeeding 
sections. 

 
 

3. Load-resistance relations and 
the statistical parameters 
 
In a typical structural design various combinations of 

load types are used in order to prevent a possible failure 
case. It is extremely unlikely that all possible loads act 
together; therefore, they are fractioned as load combinations 
to avoid uneconomic design. That fractioning is quite 
understandable, but if the failure probabilities of the 
combinations were checked it would be seen that all of the 
combinations result in different failure probabilities. Even 
the same combination will result in different failure 
probabilities when it is checked for different structures. This 
inconvenience clearly results from the lack of probabilistic 
concerns during the design process. 

In terms of deterministic design, there is a huge canon of 
both ASD and LRFD methods for design of steel structures 
(Englekirk 1994, Geschwindner 2008, ENV1993-1-1 1993). 
There exists a large variety of load combinations and safety 
factors, depending on the type, region, function, and vitality 
of the structure. The nominal loads for a wide variety of 
structures and cases are presented in ASCE/SEI 7-10 
(2010). 

In the framework of performance estimation by 
probabilistic methods, the statistical characteristics of load 
and resistance values, in addition to the nominal values, are 
very essential. There is a wide variety of distribution types 
and distribution parameters reported in the open literature 
(Ellingwood et al. 1980, Romao et al. 2011) and a summary 
is presented in Table 1. It should be underlined that the 
presented loads are code and site dependent, and in different 
studies they have been reported differently in terms of both 
intensities and statistical characteristics. Therefore, this set 
is just a selection from a huge set of conceivable values. 

Similar to the load characteristics, the resistance 
characteristics should also be determined in terms of 
statistical parameters in order to be able to perform a 
reliability analysis. For resistance parameters a demon-
trative data set from Ellingwood et al. (1980) is presented in 
Table 2. The values presented in Table 2 are component-
level data and there is no particular data for a system of 
moment resisting frames. As the limit functions of the 
analyses performed for this study depend on lateral 
deflection of the frames, it is reasonable to use the data 
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reported for steel columns. 

 
 

Table 2 Typical resistance statistics for steel structures 
[Data from Ellingwood et al. (1980)] 

Resisting system /R R VR

Tension members (limit state: yielding) 1.05 0.11

Tension members (limit state: tensile strength) 1.10 0.11

Compact beam (uniform moment) 1.07 0.13

Axially loaded column 1.08 0.14
 

* R  is the mean value of the resistance and VR is the coefficient of
variation of the resistance) 

 
 

4. The limit state functions 
 
In reality, it is very difficult to predict what kind of a 

behavior a building will exhibit under a certain level of 
forces. This is because there are many factors that may 
affect the behavior and response of a building such as the 
stiffness of structural elements, the strength of building 
components, and even the quality of construction that 
cannot be precisely defined. Furthermore, the analysis 
procedures used to predict building response are not totally 
perfect. Under these conditions, it is not appropriate to 
indicate that the performance can be predicted in an 
absolute sense. Thus, the reliability-based probabilistic 
approach presented herein for performance evaluation, 
explicitly recognizes these inherent uncertainties. 

Theoretically the reliability of a structure is calculated 
through already-known performance functions. However, 
for real structures the response is computed through a 
numerical modelling, mostly by a finite element method. 
Therefore, for realistic cases there is no available 
performance function g(X) in a closed-form function as a 
function of input random variables. 

One of the most initial steps of evaluating the reliability 
or probability of failure of a structure is to decide on the 
specific performance criteria and the relevant load and 
resistance parameters. The basic variables, Xi, and the 
functional relationships among them corresponding to each 
performance criterion form the performance function as 
expressed in Eq. (1) in a generalized form and expressed in 
Eq. (2) in a specified form. Respectively, the failure surface 
(or the limit state) can be defined as 

 
0Z   (7)

 
For a conventional resistance-load problem the failure 

surface, Z = g(S, R) = 0, can be represented by a typical S-R 

 
 

Fig. 2 The limit state function for a conventional S-R 
problem 

 
 

curve as in Fig. 2. The space divided by the g(S, R) = 0 
curve has two separate regions which represent safe and 
unsafe regions and the economically safe engineering 
design point lies on that curve. 

 
 

5. Structural performance criteria 
as a limit for the performance function 
 
For structures a set of plausible ultimate limit states 

must be identified in order to have a basis for reliability 
measurements. However, it is difficult to identify exactly at 
which mechanical state a structure or a structural member 
can be assumed as failed. Fortunately, in literature there are 
available, although limited, studies for various cases. Kanda 
et al. (1997) presented limit states for steel, reinforced 
concrete, and steel – reinforced concrete structures in terms 
of shear strain, interstory deflection angle, and cumulative 
plastic deformation ratio as follows: 

 
• Reinforced concrete wall: Shear strain = 5.0  10-3 
• Reinforced concrete moment resisting frame: 

Interstory deflection angle = 1/50 
• Steel – reinforced concrete moment resisting frame: 

Interstory deflection angle = 1/30 
• Steel moment resisting frame: Cumulative plastic 

deformation ratio = 14 
 
The above mentioned limitations consider the ultimate 

state as the state that the structure loses its structural 
integrity. This approach is the widest one used for 
deterministic design purposes. But, considering the variety 

Table 1 Typical load statistics 

Load parameter Nominal value (S) /S S  VS Distribution type 

Dead (D), (pressure) 3 kN/m2 1.05 0.07 normal 

Live (L), (pressure) 2 kN/m2 0.24 0.80 normal 

Snow (S), (pressure) 0.75 kN/m2 0.82 0.26 normal 

Wind (W), (pressure) 0.5 kN/m2 (see Appendix) 0.33 0.59 lognormal 

Earthquake (E), (acceleration, g) 2.5 g (see Appendix) 0.64 1.38 lognormal 
 

* S  is the mean value of the load and VS is the coefficient of variation of the load) 
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of the service levels, it is also a quite deficient one. As the 
performance based design methods have been widespread, 
the classification of limit states (performance level) has also 
been varied (Grecea et al. 2004, Ghobarah 2001, ATC 1997, 
FEMA-350 2000). Generally, the performance of MR steel 
frames is evaluated according to three limit states; 
serviceability limit state (SL), damageability limit state 
(DL), and ultimate limit state (UL). 

The serviceability limit state is associated with light 
damage in structural and non-structural elements. In this 
level of damage the continuity of building service is 
essential. After slight restorations the building is expected 
to be ready to function normally. This level of performance 
is assumed to be achieved as long as the drift ratio does not 
exceed 0.6%. In damageability limit state the damage to the 
structure is considerably high, but the structure is 
repairable. The structure can be conserved after performing 
strengthening facilities. A drift ratio of 1% is a commonly 
accepted estimator for this level of damage. The ultimate 
limit state is defined as the state that the structure cannot be 
repaired and demolition is unavoidable, but life safety is 
still guaranteed. A drift ratio of 3% is accepted as an 
estimator for this level of damage. 

The design objectives in current building codes are 
commonly associated with the abovementioned 
performance criteria. However, there are differing view-
points on the meaning of performance limit, and 
additionally, the actual reliability of the design is not known 
(Grecea et al. 2004, Ghobarah 2001). The safety factors of 
the design codes are roughly considered as measures of 
reliability. Yet, a particular mechanical limit of a 
performance criterion can be used as an ultimate limit for 
forming a performance function. In this study, the drift ratio 
limitations are converted to case-specific limit drifts and are 
used as limit states for performance functions. The details 
of using the limit drifts in a performance function are 
presented under the heading 8. The performance functions. 

The reliability of a structure can be investigated at two 
different levels: individual performance and overall system 
performance which are also referred to as component-level 
reliability and system-level reliability, respectively. The 
measures given in Table 3 are for system-level reliability. 
Initially they are given in a drift ratio form which is an 
indicator of overall structural performance. Multiplying 
those values by the story height the case-specific drifts are 
obtained for the frame and these drifts are used as 
performance limits. 

 
 

6. The structural model 
 
For the analyses a typical frame with three bays and four 

stories is considered. The bay width is 5000 mm and the 
 
 

Table 3 The inter-story drift limits for corresponding performance 
levels 

SL DL UL 

Limit drift ratio (%) 0.006 0.01 0.03 

Limit drift Δ (mm) 18 30 90 
 

 

Fig. 3 The geometry of the analyzed frame (unit: mm) 
 
 

Table 4 Cross-sectional properties of the column and beam 
members (unit: mm) 

W16X36 W12X30 

Total depth 403.9 312.4 

Top flange width 177.5 165.6 

Top flange thickness 10.9 11.2 

Web thickness 7.5 6.6 

Bottom flange width 177.5 165.6 

Bottom flange thickness 10.9 11.2 

 
 

presented in Fig. 3. This frame is selected with a purpose 
such that the reliability analyses give distinctive results for 
different performance levels. If it were very safe the 
reliability for all performance levels would be very high and 
similar. 

Wide flange steel sections are used as beam and column 
elements. The cross-section of the column elements is 
W16X36 and of the beam elements is W12X30. The cross-
sectional properties of the columns and beams are presented 
in Table 4. The modulus of elasticity of the considered steel 
material, E, is 200 GPa and the Poisson’s ratio, , is 0.3. 
Also, the minimum yield stress, Fy, is 344 MPa, and the 
minimum tensile strength, Fu, is 448 MPa. 

 
 

7. Methodology: FOSM and AFOSM 
(Hasofer-Lind) methods 
 
First order methods are basically extensions of mean 

value methods which are FOSM (first order second 
moment) MVFOSM (mean value first order second 
moment). Assuming that R and S are normally distributed 
independent variables, the variable Z(R, S) is also normally 
distributed. As the failure event is defined by R < S or Z < 0, 
the reliability index  can be calculated by 

 

2 2

R SZ

Z R S

 
  


 


 

(8)

 

and accordingly the probability of failure can be determined 
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by 
( ) 1 ( )fp        (9)

 

A similar procedure may also be utilized for lognormal 
random variables. In that case the performance function can 
be expressed by a new random variable Y 

 

R
Y

S
  (10)

 

and the performance function can be constructed as 
 

ln ln lnZ Y R S    (11)
 

The probability of failure for lognormal variables is 
defined as 

2 2
1 R S

f

R S

p
 

 

   
  

 (12)

 

where 
 

2ln 0.5     (13)
 

and 
 

 2 2ln 1    (14)

 

Using Eqs. (13) and (14), Eq. (12) can be rewritten as 
follows 

  

2

2

2 2

1
ln

1
1

ln 1 1

SR

S R

f

R S

p


 

 

               
     

 

 
(15)

 

For practical engineering purposes, assuming that δR and 
δS are small, Eq. (15) can be simplified as 

 

2 2

ln

1

R

S
f

R S

p




 

  
  

      
  

 (16)

 

and accordingly the reliability index  is defined as 
 

2 2

ln R

S

R S





 

 
 
 


 (17)

 

This procedure can be generalized for multiple random 
variable cases. The performance function can be denoted by 
a vector X 

 

1 2 3( ) ( , , ,..., )nZ g X g X X X X   (18)
 

By using the Taylor series expansion of the performance 
function Z and truncating the series at the linear terms the 

first-order mean, μz, and variance, σ2
Z, of Z can be 

approximated as 
 

 
1 2 3
, , ,...,

nZ X X X Xg      (19)
 

and 
 

 2

1 1

,
n n

Z i j
i j i j

g g
COV X X

X X


 

 


   (20)

 

respectively. If the variables are statistically independent, 
which is the case herein, the last expression can be reduced 
to 

 
2

2

1

n

Z i
i i

g
VAR X

X




 
   
  (21)

 

By utilizing Eqs. (19)-(21) the reliability of the system 
can be determined simply by using Eq. (8). 

Although the FOSM method is relatively simple, it has 
some deficiencies. First of all, it does not use the statistical 
distribution characteristics. Secondly, the basic reliability 
expression, Eq. (8), doesn’t give the same result for 
mechanically equivalent performance functions. Therefore, 
an Advanced-FOSM (AFOSM or HL) method was 
proposed by Hasofer and Lind (1974) to overcome that 
deficiency. According to the method offered by Hasofer and 
Lind (1974) the assessment of the reliability index, βHL, is 
based on the reduction of the problem standardized 
coordinate system. The Hasofer Lind reliability index 
measures the distance from the expectations of the 
resistance and load (R-S) random variables to the unsafe 
region in a way that is independent of a particular choice of 
the performance function. Hence, the invariance can be 
accomplished, and the reliability index for different 
formulations of the same problem will not be different. 

The direct form of a HL method can be applied to 
normal random variables after initiating the reduced 
variables 

i

i

i X
i

X

X
X





   (22)

 

and by using this equation the limit state equation 
 

g(X) = 0 (23)
 

is transformed into a reduced limit state equation 
 

g(X′) = 0 (24)
 

Hasofer Lind Method utilizes analytical equations and 
uses directional cosines to determine the shortest distance to 
the multi-dimensional failure surface. That shortest distance 
corresponds to the reliability index . In literature this is 
widely referred to as Hasofer-Lind’s reliability and is shown 
by βHL. In the reduced system βHL is defined as the 
minimum distance from the origin to the line or surface 
identified by the limit state equation. That distance is 
expressed by 

 

   '* '*T

HL x x   (25)
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Fig. 4 The original limit state function 
 
 
For an S-R problem the point at which the minimum 

distance is obtained is called the design point (r*, s*) and 
located on the limit state function, Z = R ‒ S = 0 line (Fig. 
4). Its position vector x* is transformed into the new 
position vector x′* in the reduced system which is obtained 
by utilizing Eq. (22) for R and S respectively as 

 

R

R

R
R



   (26)

 

S

S

S
S



   (27)

 
The length of x′* vector is equal to the reliability index 

βHL as shown in Fig. 5. 
 

2 2

R S
HL

R S

 
 





 

(28)

 

If the method is generalized, then the probability 
function should consider the possibility of many random 
variables in original and transformed coordinates as in Eq. 
(29) and Eq. (30), respectively. 

 
 

Fig. 5 The transformed limit state function 

 

1 2 3X (X ,X ,X ,...,X )n  (29)
 

1 2 3X (X ,X ,X ,...,X )n      (30)
 

Also, nonlinear cases of the limit state function similar 
to Fig. 6 are very likely in structural problems. However, 
the length of the shortest position vector is not as simple as 
the linear case presented in Fig. 5. For such functions 
Haldar and Mahadevan (2000) proposes the use of 
Lagrange multipliers and via that method the reliability 
index can be obtained as 
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(31)

 

All the partial derivatives in Eq. (31) are evaluated at the 
design point in the transformed coordinate system, and the 
coordinates of the design point are 

 
*

i i HLx        (i = 1, 2, 3,..., n) (32)
 

where the direction cosines, αi, are defined as 
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(33)

 

Correspondingly, employing Eq. (22) the coordinates of 
the design point in the original system can be determined as 

 
*

i ii X i X HLx       (34)
 
In order to utilize the above-mentioned Hasofer-Lind 

procedure all the random variables should be statistically 
independent with a normal distribution. If not all the 
random variables are normally distributed the nonnormal 
random variables need to be transformed into equivalent 
normal variables. For this purpose several transformation 

 
 

Fig. 6 The transformed two-variable nonlinear limit state 
function 
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methods have been suggested in the literature. Rosenblatt 
(1952), Nataf (1962), Chen and Lind (1983), and Rackwitz 
and Fiessler 1978) have been widely recognized for their 
contributions in this area. In this paper, for the transforma-
tion of log-normal random variables to equivalent normal 
random variables the Rackwitz and Fiessler method is 
employed. 

 
 

8. The performance functions 
 

In this study the performance function is formed in an 
R-S problem character. Firstly, it is assumed that the 
performance function is a function of the inter-story drift, δi 
(subscript i is for the story number), and the inter-story drift 
limit, Δ. For example, for a certain limit state such as 
serviceability limit state (SL) the limit performance is ΔSL. 
Now, S is fixed as ΔSL, and the probability of failure 
corresponding to the SL state is the probability that the 
inter-story drift ratio, δi, passes ΔSL. Hence, the performance 
criterion for the reliability of the system can be set as 

 

 Z g R,S R S 0 ( ) ( ) 0i SL           (35)
 

The limit states and corresponding drift limits regarding 
to the performance levels considered in this study are given 
in Table 3. However, the function expressed by Eq. (35) 
cannot be instantly proceeded with because the statistical 
information about the inter-story drift, δi, is not available. 
However, it is a function of the load, F, and the structural 
displacement stiffness, K. Fortunately, there is statistical 
information, though limited, both for loads and structural 
members reported in literature. The details of the forces and 
their statistical parameters are presented in Table 1 and the 
Appendix. The details of the resistance K are presented in 
Table 5. 

Additionally, it should be indicated that K is assumed to 
be a normally distributed random variable having a 
coefficient of variation of 0.14. 

Hence, putting δi in the form 
 

i iF K    (36)
 

will make it possible to perform a reliability analysis. 
To obtain Ki, the intensity of the nominal load is 

replaced by a unit load (1) and correspondingly the story 
displacements, di, are obtained (Fig. 7). Hence, di ‒ di-1 
values represent the structural inter-story drift stiffnesses, 
Ki. 

Now, Eq. (36) can directly be used in the reliability 
analysis in the form of Eq. (37), because the statistical data 

 
 

Table 5 Nominal inter-story drift ratio stiffnesses for the 
earthquake (E) and wind (W) load distributions 

Story E stiffness W stiffness 

K1 2.64 0.72 

K2 4.00 0.96 

K3 3.40 0.76 

K4 2.12 0.36 
 

 

Fig. 7 A representational displacement shape of the frame
 
 

of all the variables are available. 
 

0iF K    (37)
 

In order to clarify the algorithm performed herein all the 
employed procedure is summarized in a flowchart (Fig. 8). 

 
 

9. Results and discussion 
 
The reliability analyses have been performed for a 

moment resisting frame under two typical load 
configurations: earthquake and wind loads. The selection of 
these forces basically results from the fact that the failure or 
performance criteria of framed structures are dominantly 
governed by horizontal forces and that the structural limits 
presented in Table 3 theoretically depend on horizontal 
forces. 

The structural performance of a frame is expressed in 
terms of inter-story drifts. For determining the performance 
functions regarding to the performance levels, which are 
presented in Table 3, structural analyses have been 
performed. The obtained inter-story drifts are converted to 
inter-story drift ratios and presented in Fig. 9. Faggella et 
al. (2013) obtained very similar inter-story drift profiles for 
a framed RC building subjected to earthquake loads. An 
instant investigation of Table 5 and Fig. 9 (as a hint for 
reliability index trends) shows that a failure regarding to 
earthquake is much probable and that the most critical 
reliability indices will be obtained for second story for both 
cases. 

After obtaining the performance function, the procedure 
for reliability analysis is an iterative process, therefore a 
problem which was previously investigated by Haldar and 
Mahadevan (2000) and Ellingwood et al. (1980) is also 
analyzed in order to understand if there is a convergence or 
calculation problem in the algorithm (Table 6). The results 
of the present study are in a step-by-step agreement with the 
results of Haldar and Mahadevan (2000). The procedure of 
Ellingwood et al. (1980) is different and it is completed in 
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three steps; therefore there is no stepwise agreement. But, 
the final steps of all three studies are very close and the 
difference of the result of Ellingwood et al. (1980) is 
0.132%. 

The reliability analyses were initially performed for two 
load cases, three performance levels, and four different 
story levels. The reliability indices of the wind loading case 
are 5.5 to 6 times higher than that of the earthquake loading. 
This result is in agreement with the fact that the failures 

 
 

Table 6 Comparison of the performance of the algorithm for 
the problem g(F, Z) = FZ ‒ 1140, which was investigated
by Haldar and Mahadevan (2000) and Ellingwood et al. 
(1980) 

Step number 1 2 3 4 

, Present 3.9386 5.1455 5.1509 5.1508

, Haldar and Mahadevan (2000) 3.939 5.145 5.151 5.151

, Ellingwood et al. (1980) 5.001 5.136 5.144 - 
 

Fig. 8 The algorithm flowchart for the procedure 
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caused by earthquakes are much more probable compared 
to the failures caused by wind loads. Most critical results 
are obtained from the second story and the safest results are 
obtained from the fourth story; this issue is valid for both 
earthquake and wind load cases. The ratio of highest to the 
lowest reliability indices is 1.43 which is calculated for 
earthquake load performance case at serviceability limit 
(SL) state. The same ratio for wind load performance case 
is relatively low (1.21) and it is again obtained for the SL 
state. From these results it can be deduced that for low 

 
 

Table 7 Results of the reliability analyses for the earthquake 
loading 

Limit (mm)  (story 1)  (story 2)  (story 3)  (story 4)

SL 18 1,8298 1,4305 1,5865 2,0401 

DL 30 2,3204 1,9209 2,0770 2,5306 

UL 90 3,3756 2,9760 3,1321 3,5859 
 

 
 

Table 8 Results of the reliability analyses for the wind loading 

Limit (mm)  (story 1)  (story 2)  (story 3)  (story 4)

SL 18 9,0877 8,5721 8,9908 10,3309

DL 30 10,0038 9,4878 9,9068 11,2478

UL 90 11,9759 11,4592 11,8788 13,2213
 

 
 

 
 

reliability index cases the drift stiffness differences between 
the stories is more critical. The reliability indices obtained 
from the analyses are tabulated in Tables 7 and 8. 

Another set of analyses has been performed for 
investigating the effect of the coefficient of variation of the 
variables of the performance function (Eq. (37)). The 
coefficient of variation of the lognormal random variable F, 
VF, was considered for a range between 0.1 and 1.3 (Fig. 
10(a)). The calculations were performed only for 
serviceability limit – SL performance level (Δ = 18 mm), 
and in order to easily monitor the effect of VF, during the 
calculations VK was kept constant as 0.14. Similarly, the 
effect of the coefficient of variation of the normally 
distributed random variable K, VK, was considered for a 
range between 0.08 and 1.60 (Fig. 10(b)), and the 
calculations were performed for SL performance level. This 
time VF was kept constant as 1.38. The analyses show that 
the variation of VF is significantly more effective between 
0.1 and 0.3. For the variation VK that kind of a range is not 
observed. Additionally, it should be noted that the effect of 
coefficient of variation is similar at all of the stories and for 
both cases. 

 
 

10. Conclusions 
 

 The proposed reliability algorithm employs FORM 
methods which enable to emphasize the impact of 
 
 

(a) Earthquake load (b) Wind load 

Fig. 9 The inter-story drift ratios obtained for the nominal loads 

(a) Effect of VF (b) Effect of VK 

Fig. 10 The effect of the coefficient of variations on the reliability index 
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the considered random variables. Although the 
procedure presented herein is focused on moment 
resisting steel frames, it can be adapted for all 
framed structures for which there exists a drift based 
signifier of performance levels. 

 For low reliability index cases the drift stiffness 
differences between the stories is more critical. 
Among the stories the highest reliability is obtained 
for the story 4 which has the lowest drift stiffness. 

 The effect of coefficient of variation is similar to 
each other at all the stories for both of the loading 
conditions. 

 If a single stiffness indicator is to be used for 
calculating reliability, then using the stiffness of the 
story which has the highest inter-story drift ratio 
would be on the safe side. Although, for framed 
structures that story is generally one of the mid-
stories, it doesn’t always have to be, because it 
highly depends on loading and structural element 
characteristics. 

 Generally, reliability of a structure is treated for a 
single performance function. This arises from the 
idea of making reliability calculations practically 
applicable to engineering problems. But, it should be 
noted that there may exist multiple performance 
functions for the same problem depending on the 
point of view. For example, the reliability indexes 
that obtained for a strength limit and that for a 
serviceability limit would probably be different. 
Additionally, the reliability of the results highly 
depends on the available data sets, parameters of the 
distribution function, idealization of the load 
process, and failure mode idealization. 

 By using the proposed procedure the reliability 
indices of steel frames can be calculated, however, 
extensive studies are needed for obtaining common 
agreements on target reliability indices. In order to 
have confident reliability approaches, target 
reliability indices are crucial. Yet, in the current 
literature there is no complete work for the broad 
variety of different cases. 

 Another inadequate item in the literature is the 
relation between performance criteria and failure 
probability. Also, the probabilistic relation between 
structural element behavior and the total structural 
behavior requires extensive research. 
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Appendix. Nominal earthquake and wind loads 
 
Earthquake load 
 
The nominal earthquake loads and their distribution on 

the structure depend on the seismic zone, mass, and 
dynamic properties of the structure. Similarly, the nominal 
wind load of the structure and its distribution on the 
structure depend on the local wind characteristics of the 
construction site and the area of the structure which is 
subjected to wind pressure. The earthquake load and wind 
load calculations for the considered frame are as follows: 

The mass of each story was assumed as; 
m1 = 33 t, m2 = 33 t, m3 = 33 t, m4 = 27.5 t, and the total 

mass M = 126.5 t. 
The total base shear of the frame can be calculated as 
 

0
b

D

A IS
V Mg

R
  (A1)

 

where g is the gravitational acceleration A0 is the ground 
acceleration coefficient, I is a building importance factor, S 
is the spectral acceleration coefficient, and RD is the 
ductility reduction factor. 

The acceleration spectrum used for earthquake loads (E) 
is presented in Fig. A1. With a dynamic analysis the period 
of the frame was obtained as 0.79 s and therefore, the 
spectral acceleration coefficient was chosen as 2.5. The 
effective ground acceleration coefficient was chosen as 0.4, 
and the building importance factor was chosen as 1. For 

 
 

Fig. A1 Period-acceleration spectrum used for the 
considered frame 

 
 

ductile steel frames the seismic load reduction factor can be 
chosen as 8 (DBYBHY-2007 2007). Therefore, the total 
base shear was Vb = 155.12 kN. 

The distribution of the base shear to the stories is 
applied by the following approximate distribution rule 

 

1

i i
i b N

j j
j

w H
F V

w H

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(A2)

 

where w is the weight of the story and H is the height of that 
story. Thus, the distribution which is presented in Fig. A2 
was obtained. 

The statistical properties indicated for the earthquake 
load intensity should be attributed to the acceleration shown 
in Fig. A1. Therefore, in order to obtain the inter-story drift 
ratio stiffnesses the earthquake load was normalized by 2.5, 
which is the spectral acceleration coefficient of the 
considered frame. Thus, for the earthquake load reliability 
the random variable F of Eq. (37) was assumed to be a 
lognormal distribution having a nominal value of 2.5 and a 
mean value of 1.6 (Table 1) with a coefficient of variation 
of 1.38. Accordingly, the inter-story drifts were obtained for 
a unit acceleration and these drifts are the stiffnesses for the 

 
 

Fig. A2 Nominal earthquake load distributed to the 
stories 

 
 

F4=55.4 kN

F3=49.9 kN

F2=33.3 kN

F4=16.6 kN

(a) Effect of VF (b) Effect of VK 

Fig. A3 Wind load distribution 
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earthquake load distribution of the unit-intensity accelera-
ion. 

 
Wind load 
 

In order to determine nominal wind load of the frame, 
the wind pressure W can approximately be determined as 

 
2

1600


v
W    (kN/m2) (A3)

 

where v is the wind velocity. Without considering the 
variation of the pressure W through the height, its 
distribution can be assumed as shown in Fig. A3(a) (TS498 
1997). In a case that there is no specific data, the wind 
velocity can be assumed as 28 m/s for the height up to 9 m 
and 36 m/s for the height between 9 m and 12 m. 

Thus, the wind pressure was calculated as W = 0.5 
kN/m2 for the first 9 meters and W = 0.8 kN/m2 for the 
upper 3 m. As the attributed area of the frame was assumed 
to have a width of 6 m, the nominal wind load distribution 
was calculated as shown in Fig. A3(b). 

For wind load it was assumed that the statistical 
information is attributable to the wind pressure W. Hence, 
the wind load was normalized by 0.5 for determining the 
inter-story drift ratio stiffness for the wind load distribution. 

For the reliability of the wind load case the random 
variable F of Eq. (37) was assumed to be a lognormal 
distribution having a nominal value of 0.5 and a mean value 
of 0.165 (Table 1) with a coefficient of variation of 0.59. 
Accordingly, the inter-story drifts were obtained for a unit 
pressure and these drifts are the stiffnesses for the wind load 
distribution of the unit-intensity acceleration. 
 
 
 

382




