
Steel and Composite Structures, Vol. 24, No. 3 (2017) 297-307 
DOI: https://doi.org/10.12989/scs.2017.24.3.297 

Copyright © 2017 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 

 
The Green and Naghdi (GN) thermoelasticity theories 

(1991, 1992, 1993) are developed to produce a consistent 
theories, which consider elastic and thermal waves 
associated with second sound. Many works were devoted to 
investigate various theoretical and practical aspects in 
thermoelasticity, in the context of the GN theories of type II 
or /and of type III. Chandrasekharaiah (1998) has proved 
uniqueness theorems using energy method. Based on GN 
theories, the three-phase lag thermoelasticity theory was 
proposed by Roy Choudhuri (2007). Ciarletta (2009) 
established a theory of micropolar thermoelasticity without 
energy dissipation. Chirita and Ciarletta (2010) established 
the reciprocal and variational principle in linear 
thermoelasticity without energy dissipation. El-Karamany 
and Ezzat (2016) proposed three models of generalized 
thermoelasticity: a single-phase-lag GN theory of type III, a 
dual-phase-lag GN theory of type II and of type III. The 
heat conduction law and heat transport equation are given, 
which consolidate the three theories and also the Lord-
Shulman theory (Lord and Shulman 1967) and the GN 
theories of type II and of type III. Kumar et al. (2007, 2008, 
2014), Sharma et al. (2015) solved some problems in GN 
theories and Alzahrani and Abbas (2016) studied the effect 
of the magnetic field on a thermoelastic fiber-reinforced 
under GN of type III. 

Tzou (1995) introduced a generalization of thermo- 
elasticity theory with dual-phase-lag who proposed two 
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different phase-lags in the Fourier law of heat conduction 
law in which the first for the heat flux vector and the second 
for the temperature gradient. One can refer to the references 
Horgan and Quintanilla (2005), Jou and Criado-Sancho 
(1998), El-Karamny and Ezzat (2014) for more applications 
on the dual-phase-lag model Ezzat et al. (2012) on three-
phase lag heat transfer and Abbas and Kumar (2016) 
investigated two-dimensional deformation in initially 
stressed thermoelastic half space problem. Othman et al. 
(2002) constructed thermo-viscoelastic plane waves with 
two relaxation times in istropic medium. Sharma et al. 
(2013a) studied the propagation of Lamp waves in 
thermoelastic micropolar solid with two temperature border 
with layers or half-space of inviscid liquid subjected to 
stress free boundary conditions and the wave propagation in 
anisotropic thermoviscoelastic medium in the context 
Green-Naghdi theories of type-II and type-III examined by 
Sharma et al. (2013). Sharma and Sharma (2014) studied, 
the temperature fluctuations in tissues based on Penne’s bio-
heat transfer equation. 

An increasing attention is being devoted to the 
interaction between magnetic and strain field in a 
thermoelastic solid due to its many applications in the fields 
of geophysics, plasma physics and related topics. It was 
assumed that the interactions between the two fields take 
place by means of the Lorentz forces appearing in the 
equations of motion and by means of a term entering Ohm’s 
law and describing the electric field produced by the 
velocity of a material particle moving in a magnetic field. 

The inclusion of the electric displacement current in 
Maxwell’s equations modify electromagnetic field 
equations, changing them from parabolic to hyperbolic type 
and thereby eliminating the unrealistic result that electro-
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magnetic disturbances are realized instantaneously 
everywhere within a solid. Solution of boundary value 
problems for linear thermoelastic perfect conducting 
materials has made great strides in the last decades, as seen 
in the works of Mehditabar et al. (2014), Zenkour (2014) 
and Lata et al. (2016) and Sharma et al. (2014) . 

Recently, the fractional order theory of thermoelasticity 
was derived by Ezzat (2011, 2012). It is a generalization of 
both the coupled and the generalized theories of 
thermoelasticity. El-Karamany and Ezzat (2011) introduced 
two general models of fractional heat conduction law for a 
non-homogeneous anisotropic elastic solid. Uniqueness and 
reciprocal theorems are proved and the convolutional 
variational principle is established and used to prove a 
uniqueness theorem with no restriction on the elasticity or 
thermal conductivity tensors except symmetry conditions. 
One can refer to Ezzat and El-Karamany (2011a, b) and 
Ezzat and El-Bary (2016) for a survey of applications of 
fractional calculus. 

The aim of the present article is to introduce a unified 
mathematical model for phase-lag GN magneto-
thermoelasticty theories by using the methodology of 
fractional calculus theory based on Lord-Shulman 
generalized theory (Lord and Shulman 1967). The resulting 
formulation is applied to one-dimensional thermal shock 
problem for a half-space subjected to an arbitrary heating. 
Laplace transforms techniques are used to get the solution 
representing the thermal shock. The effect of the different 
values of Alfven velocity and time fractional derivative 
parameter is discussed for different types of GN theories. 
The inversion of the Laplace transforms is carried out using 
a numerical approach proposed by Honig and Hirdes 
(1984). 

 
 

2. Mathematical model 
 
We shall consider a thermoelastic medium of perfect 

conductivity occupying the half-space and permeated by an 
initial magnetic field H. Due to the effect of this magnetic 
field there arises in the conducting medium an induced 
magnetic field h and induced electric field E (both assumed 
to be small). We assume that both h and E are small in 
magnitude in accordance with the assumptions of the linear 
theory of thermoelasticity. Also, there arises a force F (the 
Lorentz Force). Due to the effect of the force, points of the 
medium undergo a displacement vector u, which gives rise 
to a temperature. 

Motivated by this fact, the displacement-temperature 
formulation is adopted here although in some other practical 
cases the stress-temperature formulations have a number of 
advantages (Parkus 1970). 

 

(i) Linearized equations of electromagnetism for slowly 
moving media (Ezzat 2001) 
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(ii) Displacement equation, taking into account the 
Lorentz force is 
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(iii) Constitutive equation 
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(iv) Strain-displacement relation 
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(v) Fractional Fourier law 
Introducing the fractional Fourier law in the form  
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We define the operator Kijθ,j by the relation proposed by 
El-Karamany and Ezzat (2016) 
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is the Caputo fractional derivative defined by Gorenflo and 
Mainardi (1997) 
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(vi) Heat transport equation 
Eqs. (8) and (9) lead to the following fractional order 

heat transport equation 
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Limiting cases 
Eq. (11) when υ → 1 and 1)( t  (Chirita and 

Ciarletta 2010) lead to the Fourier law for the following 
theories: 

 

(1) The coupled thermoelasticity theory (Biot 1956) 
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when: ,00  ,11 a 032  aa  
(2) Lord-Shulman theory (LS) (1967), when ,0 q 

,11 a 032  aa  
(3) The single -phase -lag GN theory of type III 

(SPLGN-III), when ,11 a ,02 a 13 a  
(4) The dual-phase-lag GN theory of type II (DPLGN-

II), when ,01 a ,12 a 13 a  
(5) The dual-phase-lag GN theory of type III 

(DPLGN-III), when 1321  aaa  
(6) GN theory of type II without energy dissipation 

(GN-II), when ,0   ,01 a 132  aa  and 
we get: jiji kq ,

*  
(7) The GN theory of type III (GN-III), when ,00   

,02 a 131  aa  
 

In the case 0 < υ < 1, the correspondent heat transfer 
equations for the fractional phase-lag GN thermoelasticity 
theories result. 

 

(8) The unified fractional phase-lag model GN 
magneto-thermoelasticity theories (UFPLGN), 
when ,0 q  ,0 ,1321  aaa  0 < υ < 1. 

 
 

3. One-dimensional formulations 
 
We shall consider a solid occupying the region x ≥ 0, 

where x-axis is taken perpendicular to the bounding plane 
of half-space pointing inwards. Assume also that the initial 
conditions are homogeneous and the initial magnetic field 
has components (0, 0, Ho). The induced magnetic field h 
will have one component h in the z-direction, while the 
induced electric field E will have one component E in y-
direction. For the one-dimensional problems, all the 
considered functions will depend only on the space 
variables x and t. 

The displacement components 
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The strain-displacement relation 
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From Eq. (1), it follows that the electric current density 
J will have one component only J in y-direction, given by 
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The vector Eqs. (2) and (3), reduce to the following 
scalar equations 
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Expressing the components of the vector J in terms of 
displacement, by eliminating from Eq. (16) the quantities h 

and E and introducing them into the displacement Eq. (5), 
we arrive as in Ref. Ezzat (2006) 
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where, ./1 22 ca oo   
Eq. (17) is to be supplemented by the fractional phase- 

lag Green-Naghdi heat conduction equation 
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The constitutive equation 
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The Eqs. (14)-(19) in non-dimensional form become 
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The heat conduction law can be deduced from Eq. (8) as 
 

































x

A
tx

C
t

q

t
x

o

 

 2

1  (26)

 

We assume that the boundary conditions have the form 
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where f (t) is a known function of t. 
The initial conditions are taken as 
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4. Solution in Laplace transform domain 
 
Appling the Laplace transform with parameter s defined 

by the relation 
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and the boundary conditions (27) become 
 

0),0(     ),(),0( 0   ssfs  (37)
 

Eliminating u between Eqs. (33) and (34), we obtain 
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In a similar manner, we can show that u  satisfies the 
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The solutions of Eqs. (38) and (39) which are bounded 

for x ≥ 0 have the form 
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and Ci, i = 1, 2, 3, 4 are parameters depending on s to be 
determined from the boundary conditions of the problem. 

Substitution from Eqs. (40) and (41) into Eq. (34), we 
obtain the following relations 
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Substitution from Eq. (44) into Eq. (41), we have 
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Substitution from Eqs. (40) and (45) into Eq. (35), we 

have 
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The strain and induced electric and magnetic fields can 
be obtained from Eqs. (30)-(32), and (45) 
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From Eq. (36) the heat flux component is given by 
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In order to determine the C1 and C2, we shall use the 
boundary conditions (37), we obtain 
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It should be noted that the corresponding expressions for 
generalized GN theories in the absence of a magnetic field 
can be deduced by setting ao = β = 1.0. 

This completes the solution in the Laplace transform 
domain. 

 
 

5. Numerical results and discussion 
 
In this section, we aim to illustrate the numerical results 

of the analytical expressions obtained in the previous 
section and explain the influence of fractional orders and 
phase-lag parameters on the behavior of the field quantities 

 

Fig. 1 The variation of heat flux for different theories 

Fig. 2 The variation of temperature for different theories 
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in different types of GN theory. 
 The method based on a Fourier series expansion 

proposed by Honig and Hirdes (1984) and developed in 
detail in many works such as Ezzat (2001) and Ezzat and 
Abd-Elaal (1997a, b) is adopted to invert the Laplace 
transform in Eqs. (45)-(51). 

In order to interpret the numerical computations, we 
consider material properties of copper-like material, whose 
physical data is given in Table 1 as in Refs. (Ezzat and El-
Bary 2016). 

Considering the above physical data, we have evaluated 
the numerical values of the field quantities with the help of 
a computer program developed by using FORTRAN 

 
 

 
 

Table 1 Values of the constants 

k = 386 N/Ks, αT = 1.78 (10)-5 K-1, CE = 383.1 m 2/K, 

η = 8886.73 s/m2, To = 293 K, μ = 3.86 (10)10 N/m2,

λ = 7.76 (10)10 N/m2, ρ = 8954 kg/m3, Co = 4158 m/s, 

ε = 0.0168, τo = 0.02 sec, τα = 0.03 sec, 

c = 415 m/s, k* = 10, μo = 21.256×106 Ns2/C2, 

εo = 8.854×10-12 C2/Nm2, μoHo = 1 Tesla, 

ao = 1.01, ao = 1.01,  

Fig. 3 The variation of displacement for different theories 

 

Fig. 4 The variation of stress for different theories 
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language. The accuracy maintained was seven digits for the 
numerical program. 

The calculations were carried out for a thermal shock 
problem for half-space subjected to ramp- type heating as 
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The computations were performed for values of time (t 

= 0.1), ramping parameter (to = 0.15, 0.25, 0.35, 0.45), 
fractional order (υ = 0.0, 0.2, 0.5, 0.8, 1.0) and Alfven 
velocity (αo = 0.0, 5.0). The numerical technique outlined 

 
 

 
 

above was used to obtain the heat flux, temperature, stress 
and displacement distributions as well as the induced 
electric and magnetic fields. The results are displayed 
graphically at different positions of x as shown in Figs. 1-9. 

The important phenomenon observed in all figures that 
the solution of any of the considered function in the unified 
fractional phase-lag model of GN theory is restricted in a 
bounded region. Beyond this region, the variations of these 
distributions do not take place. This means that the 
solutions according the new model exhibit the behavior of 
finite speeds of wave propagation. 

Figs. 1-4 indicate the variation in heat flux, temperature, 
displacement and stress distributions with distance x for one 
value of time (t = 0.1) for different theories. In these figures, 
dotted line represents the solution obtained in the frame of 

 

Fig. 5 The variation of temperatures for fractional phase-lag unified GN-theory 

Fig. 6 The stress for different values of fractional order and Alfven velocity 
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dynamic coupled theory (υ = 0, τo = 0) (Biot 1956) and 
dashed line represents the solution obtained in the frame of 
generalized thermoelasticity with thermal relaxation time (υ 
= 1.0, τo = 0.02) (Lord and Shulman 1967), while the solid 
line represents the solution obtained in the frame of the new 
unified fractional phase-lag model of GN theory (0 < υ < 1, 
τq = 0.02, τα = 0.03). A comparison was made between the 
previous three theories and we observed that the thermal 
and mechanical waves are continuous functions smooth and 
reach to steady state depending on the value of fractional 
parameter υ. 

Figs. 5-9 display temperature, displacement and stress 
distributions as well as induced magnetic and electric fields 
with distance x for different values of fractional order υ = 
0.2, 0.5, 0.8. We noticed from these figures that these fields 
have been affected by the time-fractional parameter, where 

 
 

 
 
the increasing of the value of the parameter υ causes 
decreasing in temperature. It observed that the displace-
ment, stress, induced magnetic and electric fields have the 
same behavior as temperature fields except the wide range 
of x. The effects of ramping parameter on the temperature 
and on both of magnetic and electric fields are studied in 
Figs. 5, 8 and 9. It is found that the temperature and the 
induced magnetic and electric fields increase when the 
value of the ramping parameter to decreases. Also, the 
effects of Alfven velocity on the displacement and stress 
distributions are shown in Figs. 6 and 7. One can found that 
the magnetic field acts to decrease the displacement and 
stress distributions. 

 
 

6. Conclusions 

Fig. 6 The stress for different values of fractional order and Alfven velocity 

Fig. 7 The stress for different values of fractional order and Alfven velocity 
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(1) The main goal of this work is to introduce a unified 

mathematical model for GN-thermoelasticity 
theory with time-derivative fractional order. 

(2) Five generalized GN thermoelasticity theories: 
Single-phase-lag GN theory of type III, Dual-
phase-lag GN theory of type II, Dual-phase-lag GN 
theory of type III, GN theory of type II without 
energy dissipation and GN theory of type III which 
admit thermal wave propagation with finite speed 
are proposed. 

(3) For the fractional GN thermoelasticity theory 0 < υ 
< 1, the solution seems to behave like the 
generalized theory of generalized thermoelasticity 

 
 

 
 
(LS theory). This result is very important that the new 
unified model may preserve the advantage of the   
generalized theory that the velocity of waves is finite. 
The presence of the magnetic field which acts to the 
perfect conducting elastic medium raises the velocity of 
the dilational elastic waves from v = [(λ + 2μ)/ρ]1/2, speed 
of propa-gation of longitudinal waves to 

.22
oo vC  The modified electromagnetic elastic 

wave is propagated with velocity Co, and that is, with 
the same velocity as the modified elastic wave that 
produces a jump in stress. The magnetic field acts to 
decrease the magnitude of the displacement and thermal 
stress. This is mainly due to the fact that the magnetic 

 

Fig. 8 The variation of induced magnetic field for different values of fractional orders υ and ramping parameter to

Fig. 7 The variation of induced electric field for different values of fractional orders  υ and ramping parameter to 
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field corresponds to a term signifying a positive force 
that tends to accelerate the charge carries. 
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Nomenclature 
 

a1, a2, a3  key numbers, each equals to 0 or 1 

x  = (x1, x2, x3), position 

t  time 

H  magnetic field intensity vector 

E  electric field intensity vector 

J  conduction electric density vector 

Ho  constant component of magnetic field 

σo  electrical conductivity 

μo  magnetic permeability 

εo  electric permeability 

CE  specific heat at constant strain 

kij  thermal conductivity tensor 

k*
ij  conductivity rate tensor 

T  temperature 

To  reference temperature 

ui  components of displacement vector 

v  
= [(λ + 2μ)/ρ]1/2, speed of propagation of 
longitudinal waves 

qi  components of heat flux vector 

e  = ui,i, dilatation 

c  = (1/μoεo)
1/2, speed of light 

Co  
22
ov   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Greek symbols 
 

λ, μ Lame’s constants 

ρ density 

αT coefficient of linear thermal expansion 

α thermal displacement    

ε thermoelastic coupling parameter 

γ = (3λ = 2μ) αT 

δij Kronecker delta function 

τo relaxation time 

τα 
phase-lag of the thermal displacement 
gradient 

τq phase-lag of the heat flux 

υ fractional derivative order 

σij components of stress tensor 

η = ρCE/k 

θ = T ‒ T0, such that |θ / T0| << 1 

αo = (μoH
2
o/ρ)

1/2, Alfven velocity 
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