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1. Introduction 

 
A particular target of interest in this paper is a steel-

concrete composite beam. The configuration of this 
composite beam is composed of an upper beam made of 
concrete and a lower beam made of steel which is 
connected to the upper beam by a series of metallic studs. 
The two ends of the studs are embedded in the concrete slab 
and welded on the top surface of the steel beam, 
respectively. This kind of construction is broadly used in 
many engineering structures within the fields of bridge and 
building engineering due to its outstanding engineering 
properties such as high strength, high stiffness and high 
ductility. 

Since the steel-concrete composite beams are often 
subjected to dynamic loads in complex environmental 
conditions, it is necessary to adopt an accurate 
mathematical model to analyze their vibration 
characteristics. Thus, the effects of the design parameters on 
the modal properties of the composite beams can be easily 
determined and can be used to improve the dynamic 
performance of the composite beams. 

Because of the practical importance and potential 
benefits, there exists plenty of research concerning the 
various aspects of the steel-concrete composite beams. 
Among those investigations, the attention is greatly focused 
on the estimation of the static characteristics of the 
composite beams. A literature overview reveals that only a 
few researchers have made efforts to deal with the dynamic 
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behavior of the composite beams. 

Girhammar and Pan (1993) performed the exact and 
approximate dynamic analyses of the composite members 
with interlayer slip and attained the general closed-form 
solutions for the displacements and internal forces. Adam et 
al. (1997) investigated the flexural vibration of the elastic 
two-layer beams with interlayer slip using the Bernoulli-
Euler beam theory and the linear constitutive equation 
between the horizontal slip and the interlaminar shear force. 
Using the Bernoulli-Euler beam theory Biscontin et al. 
(2000) proposed a one-dimensional model for the vibration 
analyses of steel-concrete composite beams, in which the 
same flexural displacement of the concrete slab and the 
steel beam was assumed and a strain energy density 
function was adopted to describe the stud connectors. 
Dilena and Morassi (2003) investigated the dynamic 
behavior of the steel-concrete composite beams with the 
damage in the junction, where the Bernoulli-Euler beam 
theory was used to construct the analytical model and the 
axial flexibility of the stud connectors was considered. Wu 
et al. (2007) investigated the free vibrations of the partial-
interaction composite beams with axial force on the basis of 
the Bernoulli-Euler beam theory. Girhammar et al. (2009) 
treated the free and forced vibrations of the partial-
interaction composite beams subjected to general dynamic 
loadings based on the Bernoulli-Euler beam theory. Shen et 
al. (2011) performed the dynamic analysis of the partial-
interaction composite beams with generalized boundary 
conditions using the state-space method and Bernoulli-Euler 
beam theory. Li et al. (2014) analyzed the free vibration of 
the steel-concrete composite beams using the Bernoulli-
Euler beam theory and dynamic stiffness method, in which 
the concrete slab and steel beam have the same transverse 
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displacement and different longitudinal displacements. 
Berczynski and Wroblewski (2005) investigated the free 
vibrations of the steel-concrete composite beams using the 
Bernoulli-Euler beam theory and Timoshenko beam theory. 
The relative longitudinal and flexural displacements 
between the concrete slab and the steel beam were 
considered in the mathematical model. Xu and Wu (2007) 
studied the static, dynamic and buckling behavior of the 
partial-interaction composite beams with the shear 
deformation and rotary inertia of two beams taken into 
account. Dilena and Morassi (2009) presented a Bernoulli-
Euler model and a Timoshenko model of steel-concrete 
composite beams and studied the vibration characteristics of 
the composite beams with partially degraded connection. 
Lenci and Clementi (2012) studied the linear dynamics of a 
two-layer beam with normal and tangential detachments 
where each beam was modeled by the Timoshenko 
kinematics and all inertia terms were considered. Based on 
the two-dimensional theory of elasticity, Xu and Wu (2008) 
adopted the state-space method conjunction with the 
differential quadrature method to study the free vibration 
and buckling behavior of the partial-interaction composite 
beams with axial force. Henderson et al. (2015b) simulated 
the dynamic behavior of the steel-concrete composite 
beams using the model based on the Timoshenko beam 
theory, in which the relative longitudinal and transverse 
displacements between the steel beam and the concrete slab 
were considered. Nguyen et al. (2012) presented an exact 
analysis approach for the free vibration of two-layer shear-
deformable beams by assuming that the two layers had the 
same transverse displacement and the negligible rotary 
inertias. Zhou et al. (2016) presented the analytical solution 
of the free flexural vibration of the steel-composite 
composite beams based on the Timoshenko beam theory 
with the transverse separation between the concrete slab and 
the steel beam ignored. Morassi and Rocchetto (2003) 
conducted the experimental tests on four steel-concrete 
composite beams and examined the effect of the damage 
formed in the connection on the natural frequency and 
mode shape. Berczynski and Wroblewski (2010) carried out 
the experimental study to validate the natural vibration 
models of the steel-concrete composite beams. Henderson 
et al. (2015a) performed an experimental study on three 
steel-concrete composite beams with different shear 
connection types. Morassi et al. (2005, 2007) and Jimbo et 
al. (2012) applied the dynamic analysis of steel-composite 
beams to identify the possible damage inside the 
connection. 

In order to accurately evaluate the modal characteristics 
of the steel-concrete composite beams, a comprehensive 
structural model must be employed. It is well-known that 
due to the neglect of the transverse shear effect the 
elementary Bernoulli-Euler beam theory may increase the 
displacement and decrease the natural frequency. As a 
result, the Timoshenko beam theory that considers the 
effects of shear deformation and rotary inertia is adopted in 
this paper, which will more satisfactorily approximate the 
dynamic behavior of the composite beams. The finite 
rigidity of the connection provided by the stud connectors 
between the concrete slab and the steel beam makes the 

dynamic behavior of composite beams more complex. The 
effect of the stud connectors is described by their strain 
energy, which considers the transverse and axial 
deformations of the studs. The main task of this paper is to 
develop an exact dynamic stiffness matrix for a steel-
concrete composite beam. The dynamic stiffness method 
used to determine the natural frequencies and mode shapes 
has certain advantages over the conventional finite element 
and other approximate methods, because it is based on the 
closed-form analytical solutions of the homogeneous 
governing differential equations. Therefore, the dynamic 
stiffness method allows an infinite number of modal 
properties of a vibrating structure to be accounted for, 
without loss of accuracy. 

This paper deals with the development and solution of 
the equations of motion governing the free vibration of the 
steel-concrete composite beams. The coupled governing 
differential equations of motion of the composite beams are 
derived using the Hamilton’s principle. The exact general 
solutions of the homogeneous governing equations of 
motion are employed to formulate the dynamic stiffness 
matrix, which represents the relationship of the generalized 
forces and generalized displacements at the two ends of the 
composite beams. The modal properties of the steel-
concrete composite beams with any desired boundary 
conditions can be computed by using the corresponding 
stiffness terms of the dynamic stiffness matrix. The 
Wittrick-Williams algorithm (Wittrick and Williams 1971) 
is adopted together with the dynamic stiffness matrix to 
determine the eigenfrequencies of a particular steel-concrete 
composite beam. The accuracy and effectiveness of the 
present model and formulation are demonstrated and the 
influence due to boundary condition on the eigen-
frequencies of the appropriately chosen example is 
presented. 

 
 

2. Mathematical model 
 

The longitudinal and transverse vibrations of a 
composite beam system in the o1xz1 plane as shown in Fig. 
1 are investigated. The system consists of an upper beam 
made of concrete and a lower beam made of steel which is 

 
 

 

 

Fig. 1 Configuration of a steel-concrete composite beam
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connected to the upper beam by a series of metallic 
connectors or studs. The top ends and bottom ends of the 
connectors are embedded in the concrete slab and welded 
on the top surface of the steel beam, respectively. 

The basic assumptions used to derive the governing 
differential equations of motion of the steel-concrete 
composite beam are described as follows: 

 

(1) Both the concrete slab and the steel beam are 
homogeneous, prismatic and of the same length L; 

(2) The materials of the concrete slab and steel beam 
behave linear elastic and isotropic; 

(3) The Timoshenko beam theory applies to the concrete 
slab and steel beam; 

(4) The relative slide between the concrete slab and the 
steel beam occurs on the contact interface and the 
relative transverse displacement occurs between the 
concrete slab and the steel beam; 

(5) The connectors or studs are uniformly distributed 
longitudinally; the distance between the two 
consecutive connectors is small when compared with 
the beam length L and the length of the connectors is 
half of the thickness of the concrete slab. 

 

Since the effects of the shear deformation and rotary 
inertia of the concrete slab and steel beam are allowed for, 
the total kinetic energy T and strain energy V of the concrete 
slab and steel beam can be given by 
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where ui = ui(x, t), wi = wi(x, t) and ψi = ψi(x, t) (i = 1, 2) are 
the longitudinal displacement, transverse displacement and 
normal rotation of the concrete slab and steel beam, 
respectively. x and t are the spatial coordinate and the time, 
respectively. Ei, Gi, ρi and mi are the Young’s modulus, 
shear modulus, mass density per unit volume and mass 
density per unit length of the concrete slab and steel beam, 
respectively. Ai, Ii and ki are the cross-sectional area, second 
moment of area and shear correction factor of the concrete 
slab and steel beam, respectively. The subscripts 1 and 2 are 
used to distinguish the quantities relevant to the concrete 
slab and steel beam. The superscripts prime and overdot 
indicate the partial differentiation with respect to the 
coordinate x and time t, respectively. 

The relative longitudinal displacement and relative 
transverse displacement can occur between the concrete 
slab and the steel beam. However, these relative 
displacements are constrained by the connectors which 
produce a series of concentrated forces and moments acting 
on the concrete slab and steel beam at their junctions with 

the connectors. The strain energy of the ith connector can be 
defined as (Berczynski and Wroblewski 2005) 
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where K, Ec and Ac denote the shear stiffness, Young’s 
modulus and cross-sectional area of the connector, 
respectively. ζ1 = ψ1 and ζ2 = ψ2 denote the top end rotation 
and bottom end rotation of the connector, respectively. It 
should be mentioned that the top end and bottom end of the 
connector are fixed to the neutral axis of the concrete slab 
and the upper surface of the steel beam, respectively. δ1 = u2 
‒ u1 = ψ2es and δ1 = w1 ‒ w2 denote the relative transverse 
displacement and relative longitudinal displacement 
between the top end and the bottom end of the connector, 
respectively. ec and es are the distance between the top 
surface of the steel beam and the centroid of the concrete 
slab and the distance between the top surface of the steel 
beam and the centroid of the steel beam, respectively, as 
shown in Fig. 1. 

Substituting the expressions of ζ1, ζ2, δ1 and δ2 into Eq. 
(3) and conducting some algebraic manipulations result in 
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On the basis of assumption (5) the discrete connectors 
can be approximated as the continuous connection. Thus, 
the strain energy of all the connectors is simply described as 
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where k = K/d and μ = ecAc/ecd are the shear stiffness and 
axial stiffness per unit length of the connection, 
respectively. d is the distance between the two consecutive 
connectors. 

The governing differential equations of motion and the 
associated boundary conditions of the steel-concrete 
composite beam can be derived conveniently with help of 
the Hamilton's principle, which may be stated in the form 
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where δ denotes the variation calculus. 
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Substitution of Eqs. (1), (2) and (5) into Eq. (6) and 
integrating by parts yield the following governing 
differential equations of motion of the steel-concrete 
composite beam 
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The associated boundary conditions at the composite 
beam ends (x = 0, L) are 

 

01 u  or 1111 uAEN   (8a)
 

01 w  or  111111111 AGkwAGkS   (8b)
 

01   or 1111   IEM  (8c)
 

02 u  or 2222 uAEN   (8d)
 

02 w  or  222222222 AGkwAGkS   (8e)
 

02   or 2222   IEM  (8f)
 
 

3. Dynamic stiffness formulation 
 
If the steel-concrete composite beam vibrates freely, the 

axial displacement ui, the transverse displacement wi and 
the normal rotation ψi can be expressed as 
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where ω is the circular frequency, Ui(x), Wi(x) and Ψi(x) 
describe the mode functions of the sinusoidally varying 
axial displacement, transverse displacement and normal 
rotation, respectively. 

Substitution of Eq. (9) into Eqs. (7a)-(7f) and 
eliminating the time-dependent term yield 
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Since Eqs. (10a)-(10f) are a set of ordinary differential 
equations with constant coefficients, the displacement and 
rotation mode functions Ui(x), Wi(x) and Θi(x) can be 
assumed to have the following forms 
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Substituting Eqs. (11) into Eqs. (10a)-(10f) and letting 
the determinant of the coefficient matrix of ,
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where the coefficients ηi (i = 0 ‒ 6) are described in detail in 
the Appendix. 

The general solutions to Eqs. (10a)-(10f) take the forms 
of 
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where jj    (j = 1 ‒ 6), χj are the roots of the 
following sixth-order polynomial equation 
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In the solution of Eq. (14), if any of the χj’s are zero or 
are repeated, the solutions to Eqs. (10a)-(10f) will be 
modified according to the well-known methods for the 
ordinary differential equations with constant coefficients, 
for those particular values of χj. 

In Eqs. (13a)-(13f) ,121 AA  ,121 BB  ,121 CC   
,121 DD  121 EE   and 121 FF   are six sets of twelve 

constants. However, there are only twelve independent 
constants. Introducing Eqs. (13a)-(13f) into Eqs. (10a)-
(10e) obtains the relations between the constants 
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where the coefficients tj, ,jt ,ˆ
jt jt~  and jt


 (j = 1 ‒ 6) are 

presented in the Appendix. 
In view of the sign convention shown in Fig. 2 and 

removing the time-dependent term, the expressions of the 
amplitude functions N1(x), N2(x), S2(x), M1(x), M2(x) of the 
sinusoidally varying normal forces, shear forces and 
bending moments for the steel-concrete composite beam 
can be written from Eqs. (8a)-(8f), (13a)-(13f) and (15a)-
(15e), respectively, as follows 
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Fig. 2 Sign convention for positive normal forces N1(x), 
N2(x), shear forces S1(x), S2(x) and bending 
moments M1(x), M2(x) 

 
 

Fig. 3 Boundary conditions for generalized 
displacements and generalized forces 
of steel-concrete composite beam 
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With reference to Fig. 3, the boundary conditions for the 

generalized displacements and generalized forces of the 
steel-concrete composite beam are, respectively, 

 
Displacements 
 
At 0x : 111 UU     111 WW     111   

         212 UU     212 WW     212   
(17a)

 
At Lx  : 121 UU     121 WW     121   

         222 UU     222 WW     222   
(17b)

 
Forces 
 
At 0x : 111 NN    111 SS    111 MM   

        212 NN    212 SS    212 MM   
(17c)

 
At Lx  : 121 NN   121 SS    121 MM   

        222 NN    222 SS    222 MM   
(17d)

 
Substituting Eqs. (17a) and (17b) into Eqs. (13a)-(13f) 

and taking into account Eqs. (15a)-(15e), the nodal 
displacements at the steel-concrete composite beam ends, 
shown in Fig. 3, can be expressed by the twelve constants 

)( 122 jj BB  (j = 1 ‒ 6) as 

)(1 xN )(1 xN

)(2 xN )(2 xN

)(xS

)(xM

)(xS

)(xM

)(1 xN )(1 xN

)(2 xN )(2 xN

)(xS

)(xM

)(xS

)(xM
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}]{[}{ BRD   (18)
 

where {D} is the nodal degree-of-freedom vector defined 
by 
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}{B  is composed of the twelve constants )( 122 jj BB  (j 

= 1 ‒ 6) as follows 
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Inserting Eqs. (17c) and (17d) into Eqs. (16a)-(16f) and 

consideration of Eqs. (15a)-(15e), the nodal forces 
corresponding to the twelve nodal displacements, as 
exhibited in Fig. 3, also can be described in terms of the 
twelve constants )( 122 jj BB  (j = 1 ‒ 6) as 

 

}]{[}{ BHF   (19)
 

where {F} is the nodal force vector indicated by 
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The dynamic stiffness equation can be generated by 
combining Eqs. (18) and (19) and eliminating the constant 
vector },{B  which is given by 

 

}]{[}{ DKF   (20)
 

where 
1]][[][  RHK  is the exact dynamic stiffness matrix 

of the steel-concrete composite beam. It may be mentioned 
that dynamic stiffness matrix is symmetric and frequency-
dependent. 

The derived element dynamic stiffness matrix can be 
directly applied to a single-span steel-concrete composite 
beam with various boundary conditions. If a structure 
composed of steel-concrete composite beams is investi-
gated, the element dynamic stiffness matrix can be 
assembled in the same way as that used for the classical 
finite element method to construct the total dynamic 
stiffness matrix of the structure. Because the dynamic 
stiffness formulation leads to a transcendental eigenvalue 
problem, some elegant solution techniques must be adopted 
in order to ensure that no natural frequencies of the 
structure being analyzed are missed. In the present study, 
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a reliable and accurate method, i.e., the well-known 
Wittrick-Williams algorithm (Wittrick and Williams 1971), 
is employed together with the dynamic stiffness matrix to 
determine the natural frequencies of the steel-concrete 
composite beam or its assembly. This algorithm uses the 
Sturm sequence property of the dynamic stiffness matrix 
and finds the total number of the natural frequencies below 
an arbitrarily chosen trial value rather than directly 
calculating the natural frequencies. The application of the 
algorithm when using the dynamic stiffness formulation has 
been discussed in a large number of papers (e.g., Lee 2009) 
and is not explained here for brevity. The mode shapes 
corresponding to the natural frequencies can be found in the 
usual way by making an arbitrary assumption about one 
appropriately chosen and unknown variable of the steel-
concrete composite beam system and then calculating the 
remaining variables in terms of the appropriately chosen 
one. 

 
 

4. Numerical results and discussion 
 
Application of the dynamic stiffness formulation 

derived above to the study of free vibration of a particular 
steel-concrete composite beam is carried out. The natural 
frequencies and mode shapes of the composite beam are 
determined to assess the accuracy and effectiveness of the 
proposed formulation. The effect of the boundary condition 
upon the natural frequencies of the composite beam is also 
presented. Four types of supports at the beam end are under 
investigation. These are 

 

(1) Clamped support (C): 
 

0222111  WUWU  
 

(2) Hinged support 1 (H1): 

 
 

0222111  MWUMWU  
 

(3) Hinged support 2 (H2): 
 

0222111  MWNMWN  
 

(4) Free support (F): 
 

0222111  MSNMSN  
 

The concerned composite beam consists of an upper 
concrete slab having a depth of 0.06 m and a width of 0.5 m 
and a lower steel beam made of a Fe430 steel section bar of 
IPE 140 series. The concrete slab is connected to the steel 
beam by a group of studs made of Fe430 steel. The 
diameter of the studs equals to 0.0125 m and the ends of 
studs are embedded in the concrete slab and welded on the 
top flange of the steel beam. The Young’s modulus E2, 
cross-sectional area A2 and moment of inertia J2 of the steel 
beam as well as the cross-sectional area A1 and moment of 
inertia J1 of the concrete slab are assumed to equal to their 
nominal values. The mass densities per unit volume ρi and 
mass densities per unit length mi of the concrete slab and 
steel beam are extracted from the measurement of the total 
mass of each beam in the event of homogeneous material. 
The Young’s modulus E1 of the concrete slab and the shear 
stiffness K of each stud are usually deduced with help of the 
experimental tests. The Young’s modulus Ec and cross-
sectional area Ac of each stud are chosen as its nominal 
values. The shear modulus Gi of the concrete slab and steel 
beam can be obtained using the relation Gi = Ei/2(1+vi), 
where vi is the Poisson ratio of the concrete and steel. The 
shear correction factor ki of the concrete slab and steel beam 
can be estimated by the formula (Berczynski and 

Wroblewski 2005) ,)()( 222
i

A
xzixyiii dASAk

i
i    in which 

τxyi and τxzi denote the shear stresses of the concrete slab and 

Table 1 Eigenfrequencies (in Hz) of the steel-concrete composite beam 

Mode No. C-C C-H1 C-H2
F-F 

C-F H1-H1 H2-H2
Present Berczynski and Wroblewski (2005) Biscontin et al. (2000) 

1 50.44 44.71 37.54 58.22 58.339 59.625 9.62 39.94 26.03

2 121.33 109.35 105.77 138.21 138.870 133.875 52.78 98.60 90.41

3 213.41 196.57 194.97 236.61 238.015 235.250 129.75 180.67 176.98

4 321.07 300.84 300.18 347.93 350.042 345.000 224.73 281.24 279.70

5 441.57 418.76 309.32 470.49 473.104 459.000 309.32 396.44 395.77

6 572.70 547.72 418.47 602.24 605.115 578.250 334.48 523.19 522.89

7 617.68 617.67 547.59 617.70* N/A 617.750* 456.00 617.67 617.67

8 713.17 686.09 686.02 742.32 745.216 706.750 587.54 659.49 659.35

9 862.41 833.12 833.09 890.14 892.908 853.000 727.78 804.37 804.30

10 1020.58 988.88 924.32 1046.66 N/A N/A 876.37 957.79 957.75

11 1188.16 1153.91 988.86 1211.78 N/A N/A 924.38 1120.29 1120.28

12 1228.88 1288.88 1153.90 1229.29* N/A 1233.625* 1033.70 1228.87 1228.88

13 1365.80 1328.91 1328.91 1388.21 N/A N/A 1200.35 1292.66 1292.65

14 1553.96 1514.49 1514.48 1584.52 N/A N/A 1376.94 1475.61 1475.60
 

*Note:  The superscript asterisk denotes the longitudinal vibration mode 
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Fig. 4 First fourteenth normal mode shapes of the C-F composite beam: (a) mode 1; (b) mode 2; (c) mode 3; 
(d) mode 4; (e) mode 5; (f) mode 6; (g) mode 7; (h) mode 8; (i) mode 9; (j) mode 10; (k) mode 11; (l) 
mode 12; (m) mode 13; (n) mode 14 
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steel beam. 
The reasonable selection of various parameters is not 

discussed in detail for the sake of brevity. The geometrical 
and mechanical properties of the composite beam under 
study are the same as those used in (Berczynski and 
Wroblewski 2005), which are characterized by the 
following parameters 

 
10

1 10539.4 E N/m2, 10
1 10945.1 G N/m2, 

2
1 1000.3 A m2, 6

1 1000.9 I m4, 

26001  kg/m3, 20.111 k , 11
2 101.2 E N/m2, 

 
 

10
2 1008.8 G N/m2, 3

2 1064.1 A m2, 

6
2 1041.5 I m4, 78502  kg/m3, 49.211 k , 

5.3L m,  03.0ce m, 07.0se m, 

810858.2 K N/m, 11101.2 cE N/m2, 

4102272.1 cA m2, 21875.0d m. 
 

The first fourteen eigenfrequencies of the steel-concrete 
composite beam with seven end conditions (i.e., C-C, C-H1, 
C-H2, F-F, C-F, H1-H1 and H2-H2) are computed and the 
numerical results are displayed in Table 1. The composite 
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beam is modeled using one element only. To compare the 
present results with some results available in literature, we 
also list the analytical solutions obtained in (Berczynski and 
Wroblewski 2005) and the experimental results given in 
(Biscontin et al. 2000) in Table 1 for the composite beam 
with F-F end condition. It may be mentioned that the rigid 
body vibration frequencies are ignored. 

Table 1 shows the influence of the end condition on the 
natural frequencies of the composite beam. An observation 
of the numerical results shown in Table 1 reveals that the 
end condition has a significant effect on the natural 
frequencies of the composite beam. Keeping the mode order 
invariant, the eigenfrequency of the composite beam with 
F-F end condition is the highest and that of the composite 
beam with C-F end condition is the lowest. From the 
numerical analysis it is seen that there is a general tendency 
to decrease the natural frequency in the case of increasing 
fixing extent. 

With reference to Table 1, a comparison of the results 
obtained by the present procedure with those derived by 
means of the analytical analysis method in (Berczynski and 
Wroblewski 2005) shows that complete agreement is found 
for the first eight bending modes. For the first five modes, 
the eigenfrequencies obtained using the present dynamic 
stiffness method and the experimental values are in perfect 
agreement, as can be seen from Table 1. However, when the 
mode order increases, the bending vibration eigen-
frequencies of the composite beam deviate from the 
experimental results. Both the results achieved by the 
present formulation and by the analytical method in 
(Berczynski and Wroblewski 2005) overestimate the eigen-
frequencies associated with the bending vibration modes. It 
can also be observed that the present results are slightly 
accurate than those given in (Berczynski and Wroblewski 
2005) when compared to the experimental values. As far as 
the longitudinal eigenfrequencies are concerned, the present 
results are highly consistent with the experimental values 
for the first two longitudinal vibration modes. 

 
 

The exact modes of vibration of the C-F composite 
beam are calculated by the present formulation and are 
illustrated in Fig. 4. The first fourteen normal mode shapes 
are plotted in Figs. 4(a)-(n). It can be seen from Fig. 4 that 
the longitudinal displacement, bending displacement and 
bending rotation are coupled for all the fourteen mode 
shapes. In other words, no deformation components equal to 
zero. It can also be clearly seen that each mode shape is 
either dominated longitudinal vibration or dominated 
bending vibration. This is the reason that the terms of 
longitudinal modes and bending modes are used in this 
section for the sake of simplicity and unambiguity. For the 
modes 5 and 11, the longitudinal vibration is prevailed; 
while for the other modes, the bending vibration is 
dominated. The differences in the longitudinal displacement 
between the concrete slab and the steel beam are evident for 
the first two longitudinal vibration modes. The discre-
pancies in the longitudinal displacement between the 
concrete slab and the steel beam are noticeable for the lower 
bending eigenfrequencies, while these discrepancies 
become rather small for the higher bending eigen-
frequencies. In fact, the coupling between the longitudinal 
vibration and the bending vibration is rather weak for the 
higher bending modes. The bending displacements of the 
concrete slab and the steel beam are hardly distinguished 
for the first five modes. However, the bending rotations of 
the concrete slab and the steel beam have significant 
differences except for the fundamental mode. 

In order to better understand the dominated deformation 
in each mode shape of the C-F composite beam, the 
percentages of the strain energies stored in the concrete 
slab, the steel beam, and the connectors are calculated, 
respectively. The numerical results are displayed in Table 2. 
The strain energy percents of the concrete slab and the steel 
beam are composed of three parts including shear, bending 
and longitudinal strain energy percents, respectively. It can 
be seen from Table 2 that for the modes 5 and 11, the total 
longitudinal strain energies stored in the concrete slab and 
 

Table 2 Percentages of strain energies stored in concrete slab, steel beam and connectors of C-F composite beam 

Mode No. 
Concrete slab Steel beam 

Connectors 
Shear Bending Longitudinal Shear Bending Longitudinal 

1 0.02 10.22 11.56 1.76 26.97 45.69 3.79 

2 0.12 13.64 6.96 8.60 28.90 27.36 14.42 

3 0.24 17.48 4.03 14.23 30.01 15.77 18.24 

4 0.41 21.92 2.11 19.07 29.77 8.11 18.61 

5 0 0.03 80.25 0.04 0.03 19.54 0.11 

6 0.64 26.62 1.11 22.42 27.77 4.33 17.11 

7 0.96 31.61 0.58 24.33 24.46 2.26 15.80 

8 1.38 36.80 0.33 24.74 20.43 1.24 15.08 

9 1.92 42.14 0.19 23.85 16.32 0.70 14.88 

10 2.61 47.41 0.27 21.96 12.56 0.38 14.81 

11 0 0.07 83.54 0.15 0.02 15.50 0.72 

12 3.45 52.55 0.07 19.55 9.42 0.27 14.69 

13 4.43 57.20 0.04 16.92 6.93 0.19 14.29 

14 5.53 61.18 0.05 14.38 5.05 0.13 13.68 
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the steel beam contain 99.79% and 99.04% of the total 
strain energy of the whole composite beam, respectively. 
That is, the modes 5 and 11 are dominated longitudinal 
vibration modes, which is consistent with the mode shapes 
shown in Figs. 4(e) and 4(k). 

 
 

5. Conclusions 
 
An exact dynamic stiffness matrix capable of accurately 

analyzing the free vibration of the steel-concrete composite 
beams is established in this paper. The effects of shear 
deformation and rotary inertia as well as the relative 
longitudinal displacement and relative transverse displace-
ment of the two beams are considered in the mathematical 
model. The dynamic stiffness matrix is developed by 
directly solving the governing differential equations of 
motion of the composite beams in free vibration. The 
application of the dynamic stiffness method is illustrated by 
evaluating the natural frequencies and mode shapes of an 
appropriately chosen composite beam with seven end 
conditions. For the first five bending eigenfrequencies the 
present results are in perfect agreement with the experi-
mental values. When the mode order increases, the present 
bending eigenfrequencies slightly deviate from the 
experimental results. As far as the longitudinal eigenfre-
quencies are concerned, the present results are highly 
consistent with the experimental values for the first two 
longitudinal vibration modes. In addition, the present results 
are somewhat accurate than the existing solutions when 
compared to the experimental values. Although the 
particular example clarified in this paper is a single-span 
composite beam, the present method can be applied to more 
general composite beam assemblages without any difficulty. 
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Appendix 
 
The coefficients ηi (i = 0 ‒ 6) in Eq. (12) are 
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The coefficients tj, ,jt ,ˆ

jt jt~  and jt
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 (j = 1 ‒ 6) in Eqs. 
(15a)-(15e) are 
 

55761186105
2
31475

2
4

15111385576118610

5
2
3

2
121

2
7214

2
9529543

8557625
2
315855

76
2
482

2
361412855

7625
2
31475

2
4215138

557625
2
3

2
12108

55765
2
35

2
321415

2
4

2
427512

2
751413

2
75

2
12

8557625
2
31475

2
4

215127521413752
2
12113

((()

(()))((

(())2

)))((())(

()(())))(

(()(()))

(((()))))

((2(())

2(((

)))))((()

(((

aaaaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaaa

aaaaaaaaaka

aaaaaakaaaaka

akaaaaakaaaakaaa

aaaaaaaaaaaa

aaaaaaaaaaaaa


























 

)))2(

2)))((

())(()

(()(

))))((()))

510961095119

954385576118610

5
2
31585576

2
4811

2
361412

2
814107151071411

2
958557615108





aaaaaaaaa

aaaaaaaaaaaaa

aaaaaaaaaaa

aaaaaaaaaaaaa

aaaaaaaaaa










 

 

)))))((

(())))(

(()))((

()((

)))(((

()(

)))))((()

(((

2
7148557614

75151310
2
95855

7615108557611

86105
2
31475

2
4151112

85576107511
2
12

751413111
2

211751412

8557625
2
31475

2
4

215127521413752
2
12104





aaaaaaaa

aaaaaaaaaa

aaaaaaaaaa

aaaaaaaaaaaa

aaaaaaaaaa

aaaaaakaaaaaa

aaaaaaaaaaaa

aaaaaaaaaaaaa
















 

 

)))))(

(((

(

855

761475151275141375
2
1210

7514121117521412105

aaa

aaaaaaaaaaaaaaa

aaaaaaaaaaaa





 

 

jjj

jj

jjj

jjj

a

aaaaaaaa

aaaaaaaa

aaaaaakat

















))))

(()))

()(()

()(()(((

22
7

8493
2

5312
2

7

85
2

5
2

7864
2

5

693
2

1213
2

1011

 

 

jjjj

jj

jjj

jjj

aaaaaaaa

aaaakakaaaaa

aaaaaaaaaa

kaaaaaaaaaa

aaaakakaaaaa

aaaaaaaaaat





















))))(

)((2

()))((

()))(

)((2

)()(((

24
9101

2
9210111

43101
2

9439211

4324311
2

1011
2

12

22
512

4
9101

2
9210111

43101
2

9439211

4324311
2

56
2

1213

 

 

jjjj

jjj

jjjj

aaaaaaaa

aaaaaaaa

aaaaaaakat













))))((

)))()((

)()()((((ˆ

22
78493

2
5312

2
785

2
5

2
7864

2
5693

2
1213

2
12

 

 

jj

jjjj

jj

jj

jjj

jjj

jjj

jjj

aaaaaa

aaaaaaaa

aaaaaaaa

aaaaakaaaaa

kaaaaaaa

aaaaaaaa

aaaaaaaak

aaaakaat

















))))((

)))()()(

()((())

())(2(

())))()

(()(())

()()((

))()(2(((~

2
129435

2
785

2
5

2
786

2
1

2
2

56
2
31211

2
910

432
2

10143
4

9101

2
95

2
785

2
5

2
7

86
2

10
2

56
2
32

2
7

85
2

5
2

786
4

101
2

2
56

2
101

2
312

















 

 

90



 
Free vibration of a steel-concrete composite beam with coupled longitudinal and bending motions 

jjjj

jjj

jjj

jjjj

jj

jjj

jj

jjjj

jjj

jjj

jjjj

jjj

jjj

jjj

aaaaa

aaaaa

aaaaaaaa

aaaaaaaa

aaaaaaa

aaaaaaka

aaakaa

aaaaaaaa

aaaaaaaa

aaaakaaaa

kaaaaaaa

aaaaaaaa

aaaaaaaak

aaaakaat

























































)))))(((

)))()

()(()((

)))()()(

()((()))

(())(

())(2(())))

()(()

(())()

()(())()(

2(())))()

(()(())

()()((

))()(2(((

22
78

2
12

2
3

2
785

2
5

2
7

86
2

12
2

56
2
3

2
12

2
785

2
5

2
786

2
1

2
2

56
2
31311

22
7

8
2

10
2
32

4
101

22
7

8
2

101
2
3

2
7

85
2

5
2

786
2

10
2

5

6
2
32

2
785

2
5

2
7

86
4

101
22

56
2

101

2
3

2
12

2
785

2
5

2
7

86
2

10
2

56
2
32

2
7

85
2

5
2

786
4

101
2

2
56

2
101

2
313



 

 

)))))()((

())(((

)))(()

)(())(2((

))()

()2()(((

2
78

2
95

2
12

2
3

2
54312

2
1294351311

2
78

2
10

2
32

4
101

22
78

2
101

2
312

2
910432

4
9101

2
4310

1943
2

12135













jjj

jj

jjj

jj

jjj

jj

aaaaaaa

aaaaaaaaaaaa

aaaaaaa

kaaaakaa

aaaaaaaaaaa

akaaakaaa













 

 
 
 

91




