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Free vibration of a steel-concrete composite beam
with coupled longitudinal and bending motions
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Abstract. Free vibrations of steel-concrete composite beams are analyzed by using the dynamic stiffness approach. The
coupled equations of motion of the composite beams are derived with help of the Hamilton’s principle. The effects of the shear
deformation and rotary inertia of the two beams as well as the transverse and axial deformations of the stud connectors are
included in the formulation. The dynamic stiffness matrix is developed on the basis of the exact general solutions of the
homogeneous governing differential equations of the composite beams. The use of the dynamic stiffness method to determine
the natural frequencies and mode shapes of a particular steel-concrete composite beam with various boundary conditions is
demonstrated. The accuracy and effectiveness of the present model and formulation are validated by comparison of the present
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results with the available solutions in literature.
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1. Introduction

A particular target of interest in this paper is a steel-
concrete composite beam. The configuration of this
composite beam is composed of an upper beam made of
concrete and a lower beam made of steel which is
connected to the upper beam by a series of metallic studs.
The two ends of the studs are embedded in the concrete slab
and welded on the top surface of the steel beam,
respectively. This kind of construction is broadly used in
many engineering structures within the fields of bridge and
building engineering due to its outstanding engineering
properties such as high strength, high stiffness and high
ductility.

Since the steel-concrete composite beams are often
subjected to dynamic loads in complex environmental
conditions, it is necessary to adopt an accurate
mathematical model to analyze their vibration
characteristics. Thus, the effects of the design parameters on
the modal properties of the composite beams can be easily
determined and can be used to improve the dynamic
performance of the composite beams.

Because of the practical importance and potential
benefits, there exists plenty of research concerning the
various aspects of the steel-concrete composite beams.
Among those investigations, the attention is greatly focused
on the estimation of the static characteristics of the
composite beams. A literature overview reveals that only a
few researchers have made efforts to deal with the dynamic
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behavior of the composite beams.

Girthammar and Pan (1993) performed the exact and
approximate dynamic analyses of the composite members
with interlayer slip and attained the general closed-form
solutions for the displacements and internal forces. Adam et
al. (1997) investigated the flexural vibration of the elastic
two-layer beams with interlayer slip using the Bernoulli-
Euler beam theory and the linear constitutive equation
between the horizontal slip and the interlaminar shear force.
Using the Bernoulli-Euler beam theory Biscontin et al.
(2000) proposed a one-dimensional model for the vibration
analyses of steel-concrete composite beams, in which the
same flexural displacement of the concrete slab and the
steel beam was assumed and a strain energy density
function was adopted to describe the stud connectors.
Dilena and Morassi (2003) investigated the dynamic
behavior of the steel-concrete composite beams with the
damage in the junction, where the Bernoulli-Euler beam
theory was used to construct the analytical model and the
axial flexibility of the stud connectors was considered. Wu
et al. (2007) investigated the free vibrations of the partial-
interaction composite beams with axial force on the basis of
the Bernoulli-Euler beam theory. Girhammar et al. (2009)
treated the free and forced vibrations of the partial-
interaction composite beams subjected to general dynamic
loadings based on the Bernoulli-Euler beam theory. Shen et
al. (2011) performed the dynamic analysis of the partial-
interaction composite beams with generalized boundary
conditions using the state-space method and Bernoulli-Euler
beam theory. Li et al. (2014) analyzed the free vibration of
the steel-concrete composite beams using the Bernoulli-
Euler beam theory and dynamic stiffness method, in which
the concrete slab and steel beam have the same transverse
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displacement and different longitudinal displacements.
Berczynski and Wroblewski (2005) investigated the free
vibrations of the steel-concrete composite beams using the
Bernoulli-Euler beam theory and Timoshenko beam theory.
The relative longitudinal and flexural displacements
between the concrete slab and the steel beam were
considered in the mathematical model. Xu and Wu (2007)
studied the static, dynamic and buckling behavior of the
partial-interaction composite beams with the shear
deformation and rotary inertia of two beams taken into
account. Dilena and Morassi (2009) presented a Bernoulli-
Euler model and a Timoshenko model of steel-concrete
composite beams and studied the vibration characteristics of
the composite beams with partially degraded connection.
Lenci and Clementi (2012) studied the linear dynamics of a
two-layer beam with normal and tangential detachments
where each beam was modeled by the Timoshenko
kinematics and all inertia terms were considered. Based on
the two-dimensional theory of elasticity, Xu and Wu (2008)
adopted the state-space method conjunction with the
differential quadrature method to study the free vibration
and buckling behavior of the partial-interaction composite
beams with axial force. Henderson et al. (2015b) simulated
the dynamic behavior of the steel-concrete composite
beams using the model based on the Timoshenko beam
theory, in which the relative longitudinal and transverse
displacements between the steel beam and the concrete slab
were considered. Nguyen et al. (2012) presented an exact
analysis approach for the free vibration of two-layer shear-
deformable beams by assuming that the two layers had the
same transverse displacement and the negligible rotary
inertias. Zhou et al. (2016) presented the analytical solution
of the free flexural vibration of the steel-composite
composite beams based on the Timoshenko beam theory
with the transverse separation between the concrete slab and
the steel beam ignored. Morassi and Rocchetto (2003)
conducted the experimental tests on four steel-concrete
composite beams and examined the effect of the damage
formed in the connection on the natural frequency and
mode shape. Berczynski and Wroblewski (2010) carried out
the experimental study to validate the natural vibration
models of the steel-concrete composite beams. Henderson
et al. (2015a) performed an experimental study on three
steel-concrete composite beams with different shear
connection types. Morassi et al. (2005, 2007) and Jimbo et
al. (2012) applied the dynamic analysis of steel-composite
beams to identify the possible damage inside the
connection.

In order to accurately evaluate the modal characteristics
of the steel-concrete composite beams, a comprehensive
structural model must be employed. It is well-known that
due to the neglect of the transverse shear effect the
elementary Bernoulli-Euler beam theory may increase the
displacement and decrease the natural frequency. As a
result, the Timoshenko beam theory that considers the
effects of shear deformation and rotary inertia is adopted in
this paper, which will more satisfactorily approximate the
dynamic behavior of the composite beams. The finite
rigidity of the connection provided by the stud connectors
between the concrete slab and the steel beam makes the

dynamic behavior of composite beams more complex. The
effect of the stud connectors is described by their strain
energy, which considers the transverse and axial
deformations of the studs. The main task of this paper is to
develop an exact dynamic stiffness matrix for a steel-
concrete composite beam. The dynamic stiffness method
used to determine the natural frequencies and mode shapes
has certain advantages over the conventional finite element
and other approximate methods, because it is based on the
closed-form analytical solutions of the homogeneous
governing differential equations. Therefore, the dynamic
stiffness method allows an infinite number of modal
properties of a vibrating structure to be accounted for,
without loss of accuracy.

This paper deals with the development and solution of
the equations of motion governing the free vibration of the
steel-concrete composite beams. The coupled governing
differential equations of motion of the composite beams are
derived using the Hamilton’s principle. The exact general
solutions of the homogeneous governing equations of
motion are employed to formulate the dynamic stiffness
matrix, which represents the relationship of the generalized
forces and generalized displacements at the two ends of the
composite beams. The modal properties of the steel-
concrete composite beams with any desired boundary
conditions can be computed by using the corresponding
stiffness terms of the dynamic stiffness matrix. The
Wittrick-Williams algorithm (Wittrick and Williams 1971)
is adopted together with the dynamic stiffness matrix to
determine the eigenfrequencies of a particular steel-concrete
composite beam. The accuracy and effectiveness of the
present model and formulation are demonstrated and the
influence due to boundary condition on the -eigen-
frequencies of the appropriately chosen example is
presented.

2. Mathematical model

The longitudinal and transverse vibrations of a
composite beam system in the o;xz; plane as shown in Fig.
1 are investigated. The system consists of an upper beam
made of concrete and a lower beam made of steel which is
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Fig. 1 Configuration of a steel-concrete composite beam
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connected to the upper beam by a series of metallic
connectors or studs. The top ends and bottom ends of the
connectors are embedded in the concrete slab and welded
on the top surface of the steel beam, respectively.

The basic assumptions used to derive the governing
differential equations of motion of the steel-concrete
composite beam are described as follows:

(1) Both the concrete slab and the steel beam are
homogeneous, prismatic and of the same length Z;

(2) The materials of the concrete slab and steel beam
behave linear elastic and isotropic;

(3) The Timoshenko beam theory applies to the concrete
slab and steel beam;

(4) The relative slide between the concrete slab and the
steel beam occurs on the contact interface and the
relative transverse displacement occurs between the
concrete slab and the steel beam;

(5) The connectors or studs are uniformly distributed
longitudinally; the distance between the two
consecutive connectors is small when compared with
the beam length L and the length of the connectors is
half of the thickness of the concrete slab.

Since the effects of the shear deformation and rotary
inertia of the concrete slab and steel beam are allowed for,
the total kinetic energy 7 and strain energy V of the concrete
slab and steel beam can be given by

r=y2 [ mllaf + (i g2 [ o Fas

L L (1
+1/2L mz[(uz)z +(W2)2}lx+l/2v[) pzlz(Wz)zdx

V= 1/2...()L]‘71G1Al (Wl ~¥ )zdx+l/2J-0LE1]1 (‘//1 )de
L 2 L , >
+1/2L EA () fdv+1/2 L kG, 4, (wy —y, Vdx ()
+1/2 J'OL E, Ly, Vdx+1/2 L “E, A,V

where u; = u(x, t), w; = w(x, t) and w; = wi(x, ) (i = 1, 2) are
the longitudinal displacement, transverse displacement and
normal rotation of the concrete slab and steel beam,
respectively. x and ¢ are the spatial coordinate and the time,
respectively. E;, G;, p; and m; are the Young’s modulus,
shear modulus, mass density per unit volume and mass
density per unit length of the concrete slab and steel beam,
respectively. 4;, I; and k; are the cross-sectional area, second
moment of area and shear correction factor of the concrete
slab and steel beam, respectively. The subscripts 1 and 2 are
used to distinguish the quantities relevant to the concrete
slab and steel beam. The superscripts prime and overdot
indicate the partial differentiation with respect to the
coordinate x and time ¢, respectively.

The relative longitudinal displacement and relative
transverse displacement can occur between the concrete
slab and the steel beam. However, these relative
displacements are constrained by the connectors which
produce a series of concentrated forces and moments acting
on the concrete slab and steel beam at their junctions with

the connectors. The strain energy of the ith connector can be
defined as (Berczynski and Wroblewski 2005)

Vi = l/Z[l/ZKeC(§] + §2)+K5] ]51
+ 1/2[1/6Kef,(2/;1 + §2)+ 1/2Kec§1].,/1
+1/2[/6 ke (¢, +22,)+1/2Ke 5,
+1/2(EcAc/ec d, )52

where K, E. and A. denote the shear stiffness, Young’s
modulus and cross-sectional area of the connector,
respectively. {; = w; and {; = y, denote the top end rotation
and bottom end rotation of the connector, respectively. It
should be mentioned that the top end and bottom end of the
connector are fixed to the neutral axis of the concrete slab
and the upper surface of the steel beam, respectively. J, = u,
— u; = yre, and J; = w; — w, denote the relative transverse
displacement and relative longitudinal displacement
between the top end and the bottom end of the connector,
respectively. e. and e, are the distance between the top
surface of the steel beam and the centroid of the concrete
slab and the distance between the top surface of the steel
beam and the centroid of the steel beam, respectively, as
shown in Fig. 1.

Substituting the expressions of {j, {», J; and J, into Eq.
(3) and conducting some algebraic manipulations result in

Vi=1/2Ke, (”2 —U Y, )'//1
+l/2Kec(u2 —u tyse )‘//2
+1/2K(”2_”1+V/2€s)2 “)
+1/6 Ke? [(‘//1 )2 Ty, t (‘//2 )2]
+1/2E, 4, [e, (w,—w, )

(€)

On the basis of assumption (5) the discrete connectors
can be approximated as the continuous connection. Thus,
the strain energy of all the connectors is simply described as

1/2ke, (”2 U tyse )‘/’1
+1/2ke,(u, —u, + e, s
V. _J. +1/2k(u2 U 'H/’ze.s) )
ket f + v, + (v, )]
+ 1/2 ,U(Wl -W, )2

where k = K/d and u = e.AJe.d are the shear stiffness and
axial stiffness per wunit length of the connection,
respectively. d is the distance between the two consecutive
connectors.

The governing differential equations of motion and the
associated boundary conditions of the steel-concrete
composite beam can be derived conveniently with help of
the Hamilton's principle, which may be stated in the form

j'za(T—V—Vc)dtzo
5 6)
ouy =ow, =0y, =du, =ow, =0y, =0 at t=t,t,

where ¢ denotes the variation calculus.



82 Jun Li, Li Jiang and Xiaobin Li

Substitution of Egs. (1), (2) and (5) into Eq. (6) and
integrating by parts yield the following governing
differential equations of motion of the steel-concrete
composite beam

—myii, + E, Au — ku, +1/2 ke y,

7
+ku, +(1/2 ke, + ke, Yy, =0 (72)

—m + kG AW — o, — kG Ay + pw, =0 (7b)

—pid i, + 1/ 2keu, + kG AW + E Ly
~ (kG 4, +1/3ke? Yy, —1/2 ke u, (7¢)
—(1/6ke? +1/2kee, hy, =0

_mziiz +ku1 —I/Zkecl//l +E2A2u;' —ku2

—(1/2ke, + ke, Jy, =0 9

—myW, + o, + k, G, A,wy — uw, —k,G, Ay, =0 (7e)

— paloiy + (12 ke, + ke Ju, - (1/6 ke? +1/2ke,e,
—(1/2ke, + ke Ju, +k,G, A, W} + E, ! (7)
~(ky G, 4y +1/3ke? + ke,e, +ke? Jy, =0

The associated boundary conditions at the composite
beam ends (x =0, L) are

u, =0 or N, =EAu (8a)

w =0 or S, =—(kG AW —kG Ay,) (8b)
w,=0 or M,=-E Ly, (8¢)

u,=0 or N,=E,Au, (8d)

w,=0 or S, =—(k,G,A,w, —k,G, Ay, ) (8e)
v,=0 or M,=-E,Ly) (89)

3. Dynamic stiffness formulation

If the steel-concrete composite beam vibrates freely, the
axial displacement u;, the transverse displacement w; and
the normal rotation y; can be expressed as

fu () w0 pi () uy(x,0) wyx) w0} o)
=V, W) () Uy () W () ()™
where w is the circular frequency, U(x), Wi(x) and W{(x)
describe the mode functions of the sinusoidally varying
axial displacement, transverse displacement and normal
rotation, respectively.

Substitution of Eq. (9) into Egs. (7a)-(7f) and
eliminating the time-dependent term yield

aUl+a,U, +a;¥, +kU, +a,¥, =0 (10a)

aW/'+a W, —a\V|+uW, =0 (10b)

a,U, +a W/ +a, ¥+ a, ¥, —a,U, —a, ¥, =0 (10c¢)

kU, —as¥, +a Uy +a,U, —a,¥, =0 (10d)
uW+a Wi+ apW, —a, ¥y =0 (10e)

a,U,—ay\¥, —a,U, +ap,W, +a,\¥) +a,¥, =0 (100

where
a=EAd a=mo’-k a;=1/2ke,
a,=1/2ke, +ke, a;=kGA  a,=mao*-u
a,=El  ay=plo* (kG4 +1/3ke?)
a, =1/6ke’ +1/2ke.e,  a,=E,A,
a,=mo’ -k  a,=k,G,4,
a; =mo’ - u ay =By,

a,s = p,,0" —(k2G2A2 +1/3ke’ + ke e, +kef)

Since Egs. (10a)-(10f) are a set of ordinary differential
equations with constant coefficients, the displacement and
rotation mode functions Ufx), Wi(x) and ®,x) can be
assumed to have the following forms

Mmmm%%wm%m%m} o

Substituting Egs. (11) into Egs. (10a)-(10f) and letting
the determinant of the coefficient matrix of 4, B, C,
D, E and F equal to zero produce the characteristics
equation, which is an twelfth-order polynomial equation in
K

7761(12+775K'10+774K'8+773K6+772K4+771K2+770:O (12)

where the coefficients #; (i = 0 — 6) are described in detail in
the Appendix.

The general solutions to Egs. (10a)-(10f) take the forms
of

6
Uy(x) = Z(AZj—leKjx + Az‘/ei’(‘f'x)

(13a)
j=1
6 pa— [e—
W,(x)= (B, e +B,,e™") (13b)
j=1
6 p— p—
¥ (1) =D (Cyy e +Cype ™) (13¢)
Jj=1
6 —_— p—
Uy(x)= Y (D, +D, e ™) (13d)
Jj=1
6 _— —_— -
W)= (E,; ¢ +E, e ™) (13¢)
Jj=1
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6
V()= (B e + Fye™) (13f)

J=1

where x,=,/7, (j = 1 — 6), y are the roots of the
following sixth-order polynomial equation

Nex° 007 0,20+’ vy’ +may+n,=0  (14)

In the solution of Eq. (14), if any of the y’s are zero or
are repeated, the solutions to Eqs. (10a)-(10f) will be
modified according to the well-known methods for the
ordinary differential equations with constant coefficients,
for those particular values of ;. o L

In  Eqs. (13a)-(13) 4,-4,, B -8B, C-Cp,,
D,-D,, E,—E, and F —F, are six sets of twelve
constants. However, there are only twelve independent
constants. Introducing Egs. (13a)-(13f) into Egs. (10a)-
(10e) obtains the relations between the constants

Ay, =t,B,, L, =—1,B, (15a)
C,,,=1,B,,, C,, =—1,B,, (15b)
52/'—1 =fj_2j,1 _2j :_Aj_zj' (15¢)
Eya =18y, E, =1B, (15d)
1?2‘/—1 = ZJEZJ—I sz = _;IEZJ (15¢)

where the coefficients #;, 7,7, 1,
presented in the Appendix.

In view of the sign convention shown in Fig. 2 and
removing the time-dependent term, the expressions of the
amplitude functions N;(x), Ny(x), S>(x), M (x), M>(x) of the
sinusoidally varying normal forces, shear forces and
bending moments for the steel-concrete composite beam
can be written from Eqs. (82)-(8f), (13a)-(13f) and (15a)-
(15e), respectively, as follows

i, (G=1-6)are

N (x)= alUI’
:zat K. (sz le +§2je"<jx) (168)
S (%)= (a W/ —a¥ )
6
Z( ask; +at XBZJ e LA szeflc/x) (16b)
j=1
M (x)= —a7‘P{
6
_ Z—a7zj](‘j (Ezjilelcl-x +§2jefr(lx) (160)
=1
N,(x)=a,U,
6 (16d)

n K
— J
=D k(B e

J=1

X T —kKx
+B,e)

S(x) S(x)
N, (%) —1—-.-.-‘5‘ ------- ‘ﬁ‘ﬁ‘r‘rﬁ'ﬁ‘ﬁ~‘— N, (x)
Ny(x) Ny(x)
M(x) M(x)

Fig. 2 Sign convention for positive normal forces N;(x),
N,(x), shear forces S(x), S>(x) and bending
moments M(x), M,(x)

W S W, S,
vl N“"__._.ﬁ, ....... S ﬁ_._._._ﬁ,_._A’_Un N,
U, N, > Up Ny,
W M, W, M,

Fig. 3 Boundary conditions for generalized
displacements and generalized forces
of steel-concrete composite beam

S,(x)= (ale' a,¥ )

6

-2

J=1

T \Yn Kix KX 16e
.+a12thsz_1ef —B,e ") (16¢)

M,(x)=~a,\¥;

= 16
—z a14tK(sz e "+ B,e) (16

With reference to Fig. 3, the boundary conditions for the
generalized displacements and generalized forces of the
steel-concrete composite beam are, respectively,

Displacements
At x=0: U, =U, Wi =w, Y =1,
(17a)
U,=U, W, =W, Y, =Y,
At x=L: U, =U W =W, Y =Y
1 12 1 12 1 12 (17b)
U,=U, W,=W, ¥, =Y,
Forces
At x=0: Ny=-N,, S =S8, M =M,
(17¢)
N,=-N,, §,=8, M,=M,
At x=L: N, =N,, S, =-§ M, =-M
1 12 Pl 12 1 12 (17d)
N,=N, §,=-8, M,=-M,

Substituting Egs. (17a) and (17b) into Egs. (13a)-(13f)
and taking into account Egs. (15a)-(15e), the nodal
displacements at the steel-concrete composite beam ends,

shown in Fig. 3, can be expressed by the twelve constants
B, (B,,,) (=1-6)as



84 Jun Li, Li Jiang and Xiaobin Li

{D} =[R]{B} (18)

where {D} is the nodal degree-of-freedom vector defined
by
{D}:{Ull Wy Wy Uy Wy Wy

U12 I/VIZ \PIZ U22 WZZ ‘1122 }T

{B} is composed of the twelve constants EZ ,-(Ez ) U
=1-6) as follows

{B}:{Bl y Bs B, By By,
= = = = = = I
B, B, By By B, B, }
R S N R A
1 1 1 1 1 1
O
1 2 b A 5 6
hoL o5 4 L
R
te"t et et tett et t et
equ eKzL erc3L eK4L erc5L eK6L
te"t fet et rett rett tett
LMt et et fett fet feret
Ee/qL ’t‘zef(zL t~3€K3L aemL ’tgeKSL t~éeKﬁL
lTlequ t'zeKZL 1736’(31‘ t'zlequ t'SeKSL ?GeKGL
-4 - -4 -1 —Is —l 1
1 1 1 1 1 1
_t-l _t-z _t_3 _-4 _fs —t-,,
_1 _; _; _; _; —I
4 h A D ‘s s
- ;l -, 2 - f3 - ;4 - fs 1 6
—te Mt~ —pet —pemh —pesh —t et
e KL e oL e L il sk ool
_ lTle—l(lL _ Zrze—sz _ Z'Be—;qL _ fAe_K“L _ t'se—;csL _ fée—xﬁL
_ t*le-K,L —fze'KzL _2‘36—/(3L _ i‘4e—x4L _ i‘se—K5L _ t*ée«(,L
?lefqu Eesz 't;efk‘_;L aeﬂqL Tseﬂ(sL Z’ewﬁL
_lT]e—K]L _sze—)QL _lTsefk‘3L _tv4e—rc4L _Zsef)qL _tvﬁefr((,L_

Inserting Egs. (17¢) and (17d) into Egs. (16a)-(16f) and
consideration of Egs. (15a)-(15¢), the nodal forces
corresponding to the twelve nodal displacements, as
exhibited in Fig. 3, also can be described in terms of the
twelve constants B, (B,, ) (j=1-6)as

{Fy=[H]{B} (19)

where {F7} is the nodal force vector indicated by

{F}:{Nn Sn Mu N21 S21 M21
Ny, S, My, Ny, Sy, Mzz}T

_Nt] _Ntz _Ntz _14 _Nts _Nts
L Lo I I,
t t, t, t, ts t
fﬁ 15 t% ia i% t%
h I I I Is I
[H]= A t, A t, ts ts
t"lex]L i‘zelc?_L £3€K3L f4eK4L ;SeKSL i‘ eK{,L
:K‘L :)\”')L :KL :AL :KL :x‘L
—He" —te" —teVt —ettt —tevt —tes
z kL 7 koL 7 k3L 7 ksl 7 ksl = kel
—1ett et et —ettt —tet —lger
t'leK]L t'zek‘zL i}elQL t'4eK4L lTSeKSL Z'6eK5L
2 KL :/(L ol x K4l 7 kL ~ k6l
_ﬁel _52/62 _tgeS _2‘64 _,téeS _iﬁe()
2 KL 2 KoL 2 k3l 2 K4l 2 ksl 2 kel
— e —re™" —te™t -t et —te™ —te
hoth o th o th oh ok
— —b —h -4 — s
t t, t, t fs t
[ B B S .
jl jz fz 14 js j@
b b f A is fs
fe™t  fe™t  fet [t fest f e
'tTe—)qL 7 eﬂ": tzeﬂc;L 7 e—;qL tse—K5L tN‘e—KﬁL
et —t,et e —re —f et —fe
;Ie—xll lize—sz éeﬁqL ae—nL lTse—KsL t’(‘e—A‘sL
;le—;ql fze—sz ;367/(3L f4e—K4L i‘se—/rsL li‘(,e—»\‘ﬁL
2 KL T—WL 77”3L 7‘—L 7\lfL P:fL
—he™ —hLe™ —he™ —pe™ — e — e |
in which
tj =a1tj1(j tj :—aslcj-i-aStj tj :—a7tj/(j
l; =a,l K, =—aptK; +apt, 1 =—a,lK,
(j=1-6)

The dynamic stiffness equation can be generated by
combining Egs. (18) and (19) and eliminating the constant
vector {B}, which is given by

{Fy=[K{D} (20)
where [K]=[H][R]" is the exact dynamic stiffness matrix
of the steel-concrete composite beam. It may be mentioned
that dynamic stiffness matrix is symmetric and frequency-
dependent.

The derived element dynamic stiffness matrix can be
directly applied to a single-span steel-concrete composite
beam with various boundary conditions. If a structure
composed of steel-concrete composite beams is investi-
gated, the element dynamic stiffness matrix can be
assembled in the same way as that used for the classical
finite element method to construct the total dynamic
stiffness matrix of the structure. Because the dynamic
stiffness formulation leads to a transcendental eigenvalue
problem, some elegant solution techniques must be adopted
in order to ensure that no natural frequencies of the
structure being analyzed are missed. In the present study,
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Table 1 Eigenfrequencies (in Hz) of the steel-concrete composite beam
ModeNo. C-C  C-HI C-H2 . rr A R CF HI-HI H2-H2
Present  Berczynski and Wroblewski (2005)  Biscontin et al. (2000)

1 50.44 4471 3754 5822 58.339 59.625 9.62 3994 26.03
2 121.33 109.35 105.77 138.21 138.870 133.875 52.78 98.60 90.41
3 21341 196.57 194.97 236.61 238.015 235.250 129.75 180.67 176.98
4 321.07 300.84 300.18 347.93 350.042 345.000 224.73 281.24 279.70
5 441.57 418.76 309.32 470.49 473.104 459.000 309.32 396.44 395.77
6 572.70 547.72 41847 602.24 605.115 578.250 334.48 523.19 522.89
7 617.68 617.67 547.59 617.70" N/A 617.750" 456.00 617.67 617.67
8 713.17 686.09 686.02 742.32 745.216 706.750 587.54 659.49 659.35
9 862.41 833.12 833.09 890.14 892.908 853.000 727.78 804.37 804.30
10 1020.58 988.88 924.32 1046.66 N/A N/A 876.37 957.79 957.75
11 1188.16 1153.91 988.86 1211.78 N/A N/A 924.38 1120.29 1120.28
12 1228.88 1288.88 1153.90 1229.29" N/A 1233.625" 1033.70 1228.87 1228.88
13 1365.80 1328.91 1328.91 1388.21 N/A N/A 1200.35 1292.66 1292.65
14 1553.96 1514.49 1514.48 1584.52 N/A N/A 1376.94 1475.61 1475.60

*Note: The superscript asterisk denotes the longitudinal vibration mode

a reliable and accurate method, i.e., the well-known
Wittrick-Williams algorithm (Wittrick and Williams 1971),
is employed together with the dynamic stiffness matrix to
determine the natural frequencies of the steel-concrete
composite beam or its assembly. This algorithm uses the
Sturm sequence property of the dynamic stiffness matrix
and finds the total number of the natural frequencies below
an arbitrarily chosen trial value rather than directly
calculating the natural frequencies. The application of the
algorithm when using the dynamic stiffness formulation has
been discussed in a large number of papers (e.g., Lee 2009)
and is not explained here for brevity. The mode shapes
corresponding to the natural frequencies can be found in the
usual way by making an arbitrary assumption about one
appropriately chosen and unknown variable of the steel-
concrete composite beam system and then calculating the
remaining variables in terms of the appropriately chosen
one.

4. Numerical results and discussion

Application of the dynamic stiffness formulation
derived above to the study of free vibration of a particular
steel-concrete composite beam is carried out. The natural
frequencies and mode shapes of the composite beam are
determined to assess the accuracy and effectiveness of the
proposed formulation. The effect of the boundary condition
upon the natural frequencies of the composite beam is also
presented. Four types of supports at the beam end are under
investigation. These are

(1) Clamped support (C):
U =W =Y=U,=W,=¥,=0

(2) Hinged support 1 (H1):

U =W =M,=U,=W,=M,=0
(3) Hinged support 2 (H2):

N =W,=M,=N,=W,=M, =0
(4) Free support (F):

N =8§=M=N,=5,=M,=0

The concerned composite beam consists of an upper
concrete slab having a depth of 0.06 m and a width of 0.5 m
and a lower steel beam made of a Fe430 steel section bar of
IPE 140 series. The concrete slab is connected to the steel
beam by a group of studs made of Fe430 steel. The
diameter of the studs equals to 0.0125 m and the ends of
studs are embedded in the concrete slab and welded on the
top flange of the steel beam. The Young’s modulus E,
cross-sectional area 4, and moment of inertia J, of the steel
beam as well as the cross-sectional area 4; and moment of
inertia J; of the concrete slab are assumed to equal to their
nominal values. The mass densities per unit volume p; and
mass densities per unit length m; of the concrete slab and
steel beam are extracted from the measurement of the total
mass of each beam in the event of homogeneous material.
The Young’s modulus E; of the concrete slab and the shear
stiffness K of each stud are usually deduced with help of the
experimental tests. The Young’s modulus E. and cross-
sectional area A, of each stud are chosen as its nominal
values. The shear modulus G; of the concrete slab and steel
beam can be obtained using the relation G; = E/2(1+v)),
where v; is the Poisson ratio of the concrete and steel. The
shear correction factor k; of the concrete slab and steel beam
can be estimated by the formula (Berczynski and

Wroblewski 2005) & = (4 52) j (r2,+72,)dA,, in which
S|, @

xzi

7, and 7,; denote the shear stresses of the concrete slab and



86

0.8

0.6

044

U, W, %, U, W,

7
fiom

7
d

Jun Li, Li Jiang and Xiaobin Li

pPReTe

2

U, W, 9, U, W, ¥

U, W, 9, U, W, v,

U, W, %, U, W, v,

-0.6

-0.8

0.0

x/L

(b)

U, W, v, Uy W, v,

U, W, %, U, W, ¥,

-0.8

0.0

2

02 04

x/L

N

U, W, %, U, W, ¥

-0.6

-0.8 4

0.0

x/L

U, W, ¥, Uy W,

-0.6

-0.8

0.0

0.2 0.4

x/L

06 0.8 1.0

Fig. 4 First fourteenth normal mode shapes of the C-F composite beam: (a) mode 1; (b) mode 2; (¢) mode 3;
(d) mode 4; (e) mode 5; (f) mode 6; (g) mode 7; (h) mode 8; (i) mode 9; (j) mode 10; (k) mode 11; (1)
mode 12; (m) mode 13; (n) mode 14



Free vibration of a steel-concrete composite beam with coupled longitudinal and bending motions

0.0 02 04 0.6 08 1.0
x/L

1.0 (J)

0.84

Uy Wi W, Uy, Wy, ¥,

0.4

0.8

0.6

0.4

02

04

06
x/L

U, W, 9, U, W, v,

044
0.6+

-0.8

0.0

0.8

0.6

044

0.2

04

0.6

x/L

U, W, ¥, U, W, ¥,

04

-0.6

0.8

0.0

Fig. 4 Continued

steel beam.

The reasonable selection of various parameters is not
discussed in detail for the sake of brevity. The geometrical
and mechanical properties of the composite beam under
study are the same as those used in (Berczynski and
Wroblewski 2005), which are characterized by the
following parameters

E, =4.539x10"N/m*, G, =1.945x10" N/m’,
A, =3.00x102m% 1, =9.00x107° m*,

p, =2600kg/m’, k =1/1.20, E,=2.1x10"N/m’,

G, =8.08x10" N/m*, 4, =1.64x107° m’,

I,=541x10°m*, p, =7850kg/m’, k =1/2.49,

L=35m,

e,=0.03m, e, =0.07m,

K =2.858x10°N/m, E, =2.1x10" N/m?,

A, =12272x10*m* d=0.21875m.
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The first fourteen eigenfrequencies of the steel-concrete
composite beam with seven end conditions (i.e., C-C, C-H1,
C-H2, F-F, C-F, H1-H1 and H2-H2) are computed and the
numerical results are displayed in Table 1. The composite
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beam is modeled using one element only. To compare the
present results with some results available in literature, we
also list the analytical solutions obtained in (Berczynski and
Wroblewski 2005) and the experimental results given in
(Biscontin et al. 2000) in Table 1 for the composite beam
with F-F end condition. It may be mentioned that the rigid
body vibration frequencies are ignored.

Table 1 shows the influence of the end condition on the
natural frequencies of the composite beam. An observation
of the numerical results shown in Table 1 reveals that the
end condition has a significant effect on the natural
frequencies of the composite beam. Keeping the mode order
invariant, the eigenfrequency of the composite beam with
F-F end condition is the highest and that of the composite
beam with C-F end condition is the lowest. From the
numerical analysis it is seen that there is a general tendency
to decrease the natural frequency in the case of increasing
fixing extent.

With reference to Table 1, a comparison of the results
obtained by the present procedure with those derived by
means of the analytical analysis method in (Berczynski and
Wroblewski 2005) shows that complete agreement is found
for the first eight bending modes. For the first five modes,
the eigenfrequencies obtained using the present dynamic
stiffness method and the experimental values are in perfect
agreement, as can be seen from Table 1. However, when the
mode order increases, the bending vibration eigen-
frequencies of the composite beam deviate from the
experimental results. Both the results achieved by the
present formulation and by the analytical method in
(Berczynski and Wroblewski 2005) overestimate the eigen-
frequencies associated with the bending vibration modes. It
can also be observed that the present results are slightly
accurate than those given in (Berczynski and Wroblewski
2005) when compared to the experimental values. As far as
the longitudinal eigenfrequencies are concerned, the present
results are highly consistent with the experimental values
for the first two longitudinal vibration modes.

The exact modes of vibration of the C-F composite
beam are calculated by the present formulation and are
illustrated in Fig. 4. The first fourteen normal mode shapes
are plotted in Figs. 4(a)-(n). It can be seen from Fig. 4 that
the longitudinal displacement, bending displacement and
bending rotation are coupled for all the fourteen mode
shapes. In other words, no deformation components equal to
zero. It can also be clearly seen that each mode shape is
either dominated longitudinal vibration or dominated
bending vibration. This is the reason that the terms of
longitudinal modes and bending modes are used in this
section for the sake of simplicity and unambiguity. For the
modes 5 and 11, the longitudinal vibration is prevailed;
while for the other modes, the bending vibration is
dominated. The differences in the longitudinal displacement
between the concrete slab and the steel beam are evident for
the first two longitudinal vibration modes. The discre-
pancies in the longitudinal displacement between the
concrete slab and the steel beam are noticeable for the lower
bending eigenfrequencies, while these discrepancies
become rather small for the higher bending eigen-
frequencies. In fact, the coupling between the longitudinal
vibration and the bending vibration is rather weak for the
higher bending modes. The bending displacements of the
concrete slab and the steel beam are hardly distinguished
for the first five modes. However, the bending rotations of
the concrete slab and the steel beam have significant
differences except for the fundamental mode.

In order to better understand the dominated deformation
in each mode shape of the C-F composite beam, the
percentages of the strain energies stored in the concrete
slab, the steel beam, and the connectors are calculated,
respectively. The numerical results are displayed in Table 2.
The strain energy percents of the concrete slab and the steel
beam are composed of three parts including shear, bending
and longitudinal strain energy percents, respectively. It can
be seen from Table 2 that for the modes 5 and 11, the total
longitudinal strain energies stored in the concrete slab and

Table 2 Percentages of strain energies stored in concrete slab, steel beam and connectors of C-F composite beam

Concrete slab Steel beam
Mode No. Connectors
Shear  Bending Longitudinal Shear Bending Longitudinal
1 0.02 10.22 11.56 1.76 26.97 45.69 3.79
2 0.12 13.64 6.96 8.60 28.90 27.36 14.42
3 0.24 17.48 4.03 14.23 30.01 15.77 18.24
4 0.41 21.92 2.11 19.07 29.77 8.11 18.61
5 0 0.03 80.25 0.04 0.03 19.54 0.11
6 0.64 26.62 1.11 22.42 27.77 433 17.11
7 0.96 31.61 0.58 24.33 24.46 2.26 15.80
8 1.38 36.80 0.33 24.74 20.43 1.24 15.08
9 1.92 42.14 0.19 23.85 16.32 0.70 14.88
10 2.61 47.41 0.27 21.96 12.56 0.38 14.81
11 0 0.07 83.54 0.15 0.02 15.50 0.72
12 345 52.55 0.07 19.55 9.42 0.27 14.69
13 4.43 57.20 0.04 16.92 6.93 0.19 14.29
14 5.53 61.18 0.05 14.38 5.05 0.13 13.68




Free vibration of a steel-concrete composite beam with coupled longitudinal and bending motions 89

the steel beam contain 99.79% and 99.04% of the total
strain energy of the whole composite beam, respectively.
That is, the modes 5 and 11 are dominated longitudinal

vibration modes, which is consistent with the mode shapes
shown in Figs. 4(e) and 4(k).

5. Conclusions

An exact dynamic stiffness matrix capable of accurately
analyzing the free vibration of the steel-concrete composite
beams is established in this paper. The effects of shear
deformation and rotary inertia as well as the relative
longitudinal displacement and relative transverse displace-
ment of the two beams are considered in the mathematical
model. The dynamic stiffness matrix is developed by
directly solving the governing differential equations of
motion of the composite beams in free vibration. The
application of the dynamic stiffness method is illustrated by
evaluating the natural frequencies and mode shapes of an
appropriately chosen composite beam with seven end
conditions. For the first five bending eigenfrequencies the
present results are in perfect agreement with the experi-
mental values. When the mode order increases, the present
bending eigenfrequencies slightly deviate from the
experimental results. As far as the longitudinal eigenfre-
quencies are concerned, the present results are highly
consistent with the experimental values for the first two
longitudinal vibration modes. In addition, the present results
are somewhat accurate than the existing solutions when
compared to the experimental values. Although the
particular example clarified in this paper is a single-span
composite beam, the present method can be applied to more
general composite beam assemblages without any difficulty.
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Appendix

The coefficients #; (i = 0 — 6) in Eq. (12) are

1y = ~(aya,(a,aq +2asa,) +a; (azas + a5 (a3
—a,ay)+2a,a,a, +a,ay )+ k(2a;ay +4a,a,a,

—ask)+as(aya; +k(2a3 +agh)))aa, — 1)

n, =—ahas(a,ai +k(2ai + agk)) —a,;(a,
+ay,)a,a.(a,a, +2a3a0) +a,(a,aa, + ag(aga,
+as(as +ay)) +2aa,a5a, + a,ga.al) + 2(aaia,
+a;(aga, +as(as +ag)) +2aa,a.a,)k + (a,,a,a,
—asa5)k* +ays((a, + ayy)aza, + a,(ajas — ayyagay)
+2ajask +(aqga, +as(as +ag))k*)) +(a,y(a;aq
+ay5(a; — a,a0) + 2aza,a4 + a,a5) + a,(a,5a;
+a,(a,a, +2aa,)) + a,(a,a; +k(2a; +a,sk))

+ a14(a2a32 + k(2a32 +ag)) i’ —ay, (alzab(aiakl
+ay, (a3 —a,a0) +a5(a; — a,a,) +2a,a,a, + a,a5)
+a(aa, (a32 —a,ag) + a; (asa; +as(as + ag))
+ays(a3as —ajasa, — a,(aqga, +as(as + ay)))
+2a,a,a5a, + (a,a5 + a,a,)ai )+ 2a,,a5(aza,
+a,a,) p+ (=a,,a5 + a,sa,a, - aza; +aya,5a,
+a,a,a5 — a,a5) 1) = ay, (a5a4(a,a3 + k(245
+agh)) + a,a,(aagas + 2a;(agaq + asp))
+k(2alasa, +4aja,(agay +asp)

—agk(aga, +2asu)))

_ 2 2 _ 2
1, = —0130,,0,0,A5 — A,,0,,A50; — 2a,3a,,a5a5k
2 272 2
—2aya;asa:k — ay3a,,a5k" — ay3ay5a5a,k
2 2 2 2
= a130,,a,0,k” — a,5a,,a5a5k " — ap, (a,a5a;

+ k(2a32a5 + (asa, + as(as + ag))k))

+ag))+ay(as(asa; +as(as +ag))-asag))
—(a,,0,4a; +a,0a,5a, +aaag) 1’ —ap, (a,a4(a3
—ayag)+a;(asa; +as(a; +ag))+a,s(aja;
—ayasag —ay (aga; +as(as +ay)))+2a;a,a5a,

+ay(ayasay +agasay +2a,a; 1))

My = a1 (ajha,a50; + ay30,,a,a5a; + ay, (4,54,
—ai)asa; +ay(—ajas +a,(asa; +as(as + ay)))))
+apa,asa;(a,a, —k*) +a (a,a,a,a5a,
+ap(a,,a5a; +ay,(aga; + as(as + ay)))
+ay,((a,a,5 — ai)asa, +a, (—a3as + a,,a.ay
+ay,(aga; +as(as + ag))) + a,(a;5(aga,
+as(as +ag)) - a,a3)) + a4, (a5 (a,5a5a,

+ a14(asa7 +das (as + ax))) - a14a7/u2))

Ns = Ayya1,4,,0,A5a, + a,(a,,4,,a,,d5a,
2
+ay(apasa; +aa,asa; +ay(asasa; +ay(aga,

+as(as +ay)))))

t;=(a, +k+ alo’(jz' )=(ay; + alz’(jz')(as%(aé
+agk?) + a(ag(ag + a;,x7) + ask’; (as + ag
+a;K7))) — @y, asasic; 1+ (aya, + a, (ag

Fax ) KA,

t_j =((a;; +a121(]2. Nag + as’(jz' Naya;a, + a,asa,
+a,,a,ay +2asa,k —aok® +((a, +a,y)a,a,
+(a,ay, +aya, )%)KJ2 + alaIOaQK_?)+ alzas’(_,z' (—k*
+(a, + a]’("/z' Nay, + a]OK/2‘ Nu—(aya5a, +a,a;a,
+a,a,ay +2asa,k —agk® +((a, +a,y)asa,

+(a,a), +a,,a,)ay)K; +a,a,)a,K "} )yz)/KjAj

The coefficients #,

51,1, and 7, (j=1-06)in Egs.
(15a)-(15e) are

~, » 2 2 2
7 t,= ((a, +k+a1Kj )(a; ta,k; Nasay(ag +a5Kj)
2 2 2
ta,(ag(ag +a;x7)+ask;(as +ag +a;x7;)))
2

=a, (as,a,a.a, +a,a,a,a.a,+a.,(a.a 2 2 2
s 1;( 1282454 123 14020507 +a,, (4,54, +ay,a5a55 11— (a38y + a,(ag + a,K0) ))/KjAj
—ajy)asa, +a,(—asas +a,(aga, +as(as +ag)))))

2 2 2 2 2 -
—apasa;k” —ajaasa;k” —ap (asa;(aya; +k(2a; t].:(—alz(af(Zk—i-(al+a10)Kj2.)(a6+a5Kj2-)
2 2
+ask))+a,(ayaias +k(2ajas +(aga, +as(a; + (K _alaloK;)(ae(ag +a7Kj2.)+a5K]2.(a5 +a
+a D)) +a,(a’(-a’a. +a,(a.a, +a.(a
s D)+t (aa 32 s+ a6ty 25( ’ +a7K,2'))+az(a32(ae+a5K,2')_a10K,2'(ae(as
+ag)))+a;((asa, —ay)asa, +a,(-asas +a,(aga, 5 ) ) 2
+a,k;) + asi; (as + ag + a,x7)))) —as(—agk
2 2 J J J
+as(as +ay)))—ay(a,ae(ay —aya) +a;(aqa, N iy 2k +(a +a, )K2) + a
a,a,0a,K; +asa, a, +a,y)k;) +a,(aya,
+as(as +ag))+as(aia; —a,(aga, +as(as +ay))) 21 R 12

+a,,a,K +a, (a,(—a;(a, +a.x*)+(a
+2aa,asa, +a2a5a92)—a14a2a7,u2)+a1(a122(—a32a5 10 29 _1)),u n( 212( 3(26 ’ ‘/) ( 22
+ax;)ag(ag + a;x7) + askj (as + ag + a;x7;)))

—as(aza, +ay(a, + alsz' )),U))/Aj

tayagag +ay(asa; +as(as+ag))+a;((aa;

2 2
—ay)asa; +ay,(—ayas +ayasag +a,,(aga; +as(as
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tvj = (—ay3(a5 2k + (a, + alO)sz')(a6 + asK,Z‘)
+(k* - alalo/(;.‘)(aﬁ(a8 + aﬂ(?) + aslsz- (as +aq
+ a7’(,2' )+a, (asz (as+ as’(jz') - alo’cjz' (a4(ag
+ a7lcj2.) + aSKJZ. (as+ay+ aﬂcf)))) - aan (ai(2k
+(a, + alo)’(jz')(ae + as"f‘) +(k* - alaIOK;)(aé(as
+ a7K]2.) + assz_ (a5 +ag + aﬂ(f)) +a,(a;(a,
+ asrcf.) - alorcf. (ag(ag + a7/<j2.) + aslcjz. (as +aq
+a,K)))) + (a3 (2k + (@) + a7 + (ag
+ a7K,2' )(k* = alalo’(j) +a,(a; - alo’??(as
+ a7’f_,2- M’ + all(al3(_a32(a6 + as’??) +(a,
+ allcjz. Nag(ag + a7K12.) + aSKf (a;+ag + a7/(12. )
+ay,k (a5 (ag + ask?) + (ay + ayic; ) (ag (a
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