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1. Introduction 

 
Nowadays ,  the  use  of  carbon  nano tubes  in 

polymer/carbon nanotube composites has attracted wide 
attention (Wagner et al. 1997). A high aspect ratio, low 
weight of carbon nanotubes (CNTs) and their extraordinary 
mechanical properties (strength and flexibility) provide the 
ultimate reinforcement for the next generation of extremely 
lightweight but highly elastic and very strong advanced 
composite materials. On the other hand, by using of the 
polymer/carbon nanotube composites in advanced 
composite materials, we can achieve structures with low 
weight, high strength and high stiffness in many structures 
of civil, mechanical and space engineering. Several 
researches have recently investigated the elastic properties 
of multi-walled carbon nanotube (MWCNT) and their 
composites (Fidelus et al. 2005, Ghavamian et al. 2012). 
Gojny et al. (2005) focused on the evaluation of the 
different types of the carbon nanotubes applied, their 
influence on the mechanical properties of epoxy-based 
nanocompos i t e s  and  the  re l evance  o f  su r f ace 
functionalization. Therefore, the study of the mechanical 
performance of carbon nanotube based composites and the 
discovery of possible innovative applications has recently 
attracted the interest of many researchers. Several 
researchers have reported that mechanical properties of 
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polymeric matrices can be drastically increased (Montazeri 
et al. 2010, Yeh et al. 2006) by adding a few weight percent 
(wt%) multi-walled carbon nanotubes. Montazeri et al. 
(2010) showed that modified Halpin-Tsai equation with 
exponential Aspect ratio can be used to model the 
experimental result of MWNT composite samples. They 
also demonstrated that reduction in Aspect ratio (L/d) and 
nanotube length cause a decrease in aggregation and Above 
1.5wt%, nanotubes agglomerate causing a reduction in 
Young’s modulus values. Thus, it is important to determine 
the effect Aspect ratio and arrangement of carbon nanotubes 
on the effective properties of carbon nanotube-reinforced 
composite (CNTRC). Yeh et al. (2006) used the Halpin-Tsai 
equation to shows the effect of MWNT shape factor (L/d) 
on the mechanical properties. They showed that the 
mechanical properties of nanocomposite samples with the 
higher shape factor (L/d) values were better than the ones 
with the lower shape factor. The reinforcement effect of 
multi-walled carbon nanotubes (MWCNTs) with different 
aspect ratio in an epoxy matrix has been carried out by 
Martone et al. (2011). They showed that progressive 
reduction of the tubes effective aspect ratio occurs because 
of the increasing connectedness between tubes upon an 
increase in their concentration. Also they investigated on 
the effect of nanotube curvature on the average contacts 
number between tubes by means of the waviness that 
accounts for the deviation from the straight particles 
assumption. Marin and Marinescu (1998) studied 
thermoelasticity of initially stressed bodies. They first wrote 
the mixed initial boundary value problem within the context 
of thermoelasticity of initially stressed bodies. Then they 
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established some Lagrange type identities and also 
introduced the Cesaro means of various parts of the total 
energy associated to the solutions. Marin and Lupu (1998) 
obtained a spatial estimate, similar to that of Saint-Venant 
type by using a measure of Toupin type associated with the 
corresponding steady-state vibration and assuming that the 
exciting frequency was lower to a certain critical frequency. 
Marin (2010) extended the concept of domain of influence 
in order to cover the elasticity of microstretch materials. 

In structural mechanics, one of the most popular semi-
analytical methods is differential quadrature method 
(Bellman and Casti 1971, Tahouneh 2014, 2016, Tahouneh 
and Naei 2015), remarkable success of which has been 
demonstrated by many researchers in vibration analysis of 
plates, shells, and beams. Liu and Liew (1999), Liew and 
Liu (2000) presented Differential Quadrature Method 
(DQM) for free vibration analysis of Mindlin isotropic 
circular and annular sector plates with various types of 
boundary conditions. A new version of the DQM was 
extended by Wang and Wang (2004) to analyze the free 
vibration of thin circular sector plates with six combinations 
of boundary conditions. Liew et al. (1996) employed 
differential quadrature method for free vibration analysis of 
moderately thick plates on Winkler foundation. Gupta et al. 
(2006) studied the free vibration analysis of non-
homogeneous circular plate of non-linear thickness 
variation by the Differential Quadrature Method (DQM). 
Tornabene et al. (2014) studied free vibrations of free-form 
doubly-curved shells made of functionally graded materials 
using higher-order equivalent single layer theories. The 
partial differential system of equations was solved by using 
the Generalized Differential Quadrature (GDQ) method. 
Viola and Tornabene (2009) investigated free vibration of 
three and four parameter functionally graded parabolic 
panels and shells of revolution. For the discretization of the 
system equations the Generalized Differential Quadrature 
(GDQ) method had been used. Numerical results 
concerning functionally graded parabolic panels and shells 
showed the influence of the three parameters of the power-
law distribution on their mechanical behavior. The 
mathematical fundamental and recent developments of 
differential quadrature method as well as its major 
applications in engineering are discussed in detail in book 
by Shu (2000). One can compare DQM solution procedure 
with the other two widely used traditional methods for plate 
analysis, i.e., Rayleigh-Ritz method and finite element 
method (FEM). The main difference between the 
differential quadrature method and the other methods is 
how the governing equations are discretized. In differential 
quadrature method, the governing equations and boundary 
conditions are directly discretized, and thus elements of 
stiffness and mass matrices are evaluated directly. But in 
Rayleigh-Ritz and finite element method (FEM), the weak 
form of the governing equations should be developed and 
the boundary conditions are satisfied in the weak form. 
Generally by doing so larger number of integrals with 
increasing amount of differentiation should be done to 
arrive at the element matrices. In addition, the number of 
degrees of freedom will be increased for an acceptable 
accuracy. 

In comparison with research works on the free vibration 
or buckling analyses of FG structures (Dong 2008, Nie and 
Zhong 2007, 2010, Bennai et al. 2015, Bouchafa et al. 
2015, Arefi 2015, Moradi-Dastjerdi 2016, Hadji et al. 2016, 
Bakora and Tounsi 2015), only a few references can be 
found that consider the effect of multi-walled carbon 
nanotube on the vibrational behavior of structures 
(Heshmati and Yas 2013). Farid et al. (2010) studied three-
dimensional (3-D) temperature dependent free vibration 
analysis of FGM curved panels resting on two parameter 
elastic foundation by using a hybrid semi-analytical 
method. Jam et al. (2012) used the new version of Rule of 
mixture to show the effect of waviness of carbon nanotube 
on the vibrational behavior of nanocomposite cylindrical 
panel. They considered different waviness conditions with 
variable aspect ratio and they understood that the waviness 
have a significant effect on the natural frequency of 
nanocomposite cylindrical panel. Despite the aforemen-
tioned extensive research on the free vibration analysis of 
structures resting on elastic foundations, to the authors’ best 
knowledge, still very little work has been done for vibration 
analysis of functionally graded-multiwalled carbon 
nanotube (FG-MWCNT) structures. The aim of this study is 
to fill this apparent gap in this area by providing the 3-D 
vibration analysis results for functionally graded-
multiwalled carbon nanotube plates with power-law 
distribution of nanotube. The effective material properties 
of the plates are estimated using a modified Halpin-Tsai 
equation. Also a parametric study is carried out to highlight 
the influence of multi-walled carbon nanotube volume 
fraction in the structure thickness, type of carbon nanotube 
distributions and geometrical parameters on vibration 
behavior of functionally graded-multiwalled carbon 
nanotube plates. 

 
 

2. Problem description 
 
2.1 Mechanical properties of the structure 
 
Consider an annular plate resting on two-parameter 

elastic foundations as shown in Fig. 1. This plate is 
referring to a cylindrical coordinate system (r, θ, z) as 
depicted in Fig. 1. It is assumed the thickness of structure is 
“h”. The structure has continuous grading of reinforcement 
through thickness direction. 

In this study, we will discuss about the results in the 
literature on mechanical properties of polymer nanotube 
composites. The Halpin-Tsai equation assumes that the 
filler are straight and uniform dispersion of the filler in the 
polymer matrix. The Halpin-Tsai equation (Halpin and Tsai 
1969, Affdl Halpin and Kardos 1976) has been recognized 
for its ability to predict the modulus values for the fiber-
reinforced composite samples. The effective mechanical 
properties of the carbon nanotube-reinforced composite 
(CNTRC) plate are obtained based on a modified Halpin-
Tsai equation according to (Montazeri et al. 2010, Yeh et al. 
2006) 

 

1 / 1,
1 /

L T cn cn m
m T

T cn cn m L

V E EE E
V E E

η η αη
η α η

+ −
= =

− +
 (1) 

 

658



 
Using modified Halpin-Tsai  approach for vibrational analysis of thick functionally graded multi-walled... 

 
 
The effective Young’s modulus of MWNT can be 

deduced from Eq. (1) as follows 
 

( ) E ( )
[( l/ d ) ( ) ]

cn cn m
f m

cn m cn

2l/d+V 2l/d 1 V EE E
2 V 1 E 1 V Eα

− −
=

+ + − −
 (2) 

 
From the linear region of the fitting line for multi-walled 

carbon nanotube composite/phenolic composites, the 
effective Young’s modulus (Ef) of multi-walled carbon 
nanotube is 953 Gpa. In above equations, Ecn and Em are the 
longitudinal elastic moduli of the multi-walled carbon 
nanotube composite and pure polymer; Vcn is the carbon 
nanotube volume fraction; ηl is the exponential shape 
factor; l and d are the length and the diameter of carbon 
nanotube and α is carbon nanotube composite orientation 
efficiency. 

2 cnaV b
L

l e
d

η − −=  (3) 

 
In which ηl is related to the aspect ratio of reinforcement 

length l and diameter d in the Halpin-Tsai equation. a and b 
are constants, related to the degree of multi-walled carbon 
nanotubes aggregation, which account for the nonlinear 
behavior of the Halpin-Tsai equation in the multi-walled 
carbon nanotubes wt% range considered (Montazeri et al. 
2010, Yeh et al. 2006). The resulting effective properties for 

 
 

Table 1 Material properties for the pure phenolic the MWCNTs 

Polymer (phenolic) MWCNTs 

Em = 5.13 Gpa Ecn = 953 Gpa, 
ρcn = 1.03 g/ml, υcn = 0.29 

ρm = 1.03 g/ml a = 1/6, l = 17.57 μm, 
d = 23.63 nm, 

υm = 0.34 a = 75, b = 1 
 

 
 
the randomly oriented multi-walled carbon nanotube 
composite are isotropic, despite the carbon nanotubes 
having transversely isotropic effective properties. The 
orientation of a straight carbon nanotube is characterized by 
α. When carbon nanotubes are completely randomly 
oriented in the matrix, the composite is then isotropic. In 
this article, the experimental data for the Young’s modulus 
of multi-walled carbon nanotubes/phenolic composites with 
different mass fraction of multi-walled carbon nanotubes, 
reported by Yeh et al. (2006), was used to fit the above 
Halpin-Tsai. In Fig. 2, the predicted Young’s moduli using 
Eq. (1) is shown. The best fit was achieved by taking the 
model parameters given in Table 1. Using this prediction 
model, the Young’s modulus of functionally graded multi-
walled carbon nanotubes/phenolic composites will be 
estimated during the numerical solutions in the next 
sections. Also, the mass density and Poisson’s ratio of the 
multi-walled carbon nanotube/phenolic composite 
according to rule of mixtures can be calculated, 
respectively, by (Shen 2009) 

 
, 12,13 23cn m

ij cn m

cn m
cn m

V V ij and

V V

υ υ υ

ρ ρ ρ

= + =

= +
 

(4) 

 
where υcn and ρcn are Poisson’s ratio and density, 
respectively, of the carbon nanotube and υm, ρm are 
corresponding properties for the matrix. 

It is assumed that the following specific power-law 
variation of the reinforcement volume fraction (Pelletier 
and Vel 2006) 

 
* * *
, , ,( )( ) p

cn i cn o cn i cnV V V V z h= + −  (5) 
 
 

 
Fig. 1 Geometry of the FG-MWCNT annular plate on an 

elastic foundation 

 
Fig. 2 Prediction of the Young’s modulus of MWCNT/ 

phenolic composites containing various wt% of 
MWCNTs 

 
Fig. 3 Variations of the volume fraction of reinforcement 

(VMWCNT) through the thickness of plate for different 
values of “p”. 
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where V *
i,cn and V *

o,cn which have values that range from 0 
to 0.2, denote the volume fractions of reinforcement on the 
lower and upper surfaces, respectively. The exponent “P” 
controls the volume fraction profile in the thickness 
direction of the plate. The volume fraction profile through 
the thickness (z/h) is illustrated in Fig. 3. 

In this figure it is assumed the reinforcement volume 
fractions for a plate with graded fiber volume fraction are 
V *

i,cn = 0.2 (20 % multi-walled carbon nanotube constituent) 
and V*

o,cn = 0 (0% multi-walled carbon nanotube constituent) 
on the lower and upper surfaces, respectively. In this figure 
the reinforcement volume fraction decreases from 0.2 at z/h 
= 0 to 0 at z/h = 1. At z/h away from 1, the rate of increase 
of the reinforcement volume fraction for p < 1 is high 
compared to p > 1 and at z/h closer to 1, the rate of increase 
of the reinforcement volume fraction for p > 1 is much 
higher than for p < 1. 

 
 

3. Governing equations 
 
In the absence of body forces, the governing equations 

are as follows (Reddy 2003) 
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(6) 

 
Where σr, σθ, σz are axial stress components, τrθ, τθz, τrz 

are shear stress components, ur, uθ, uz are displacement 
components, ρ denotes material density and t is time. The 
relations between the strain and the displacement are 
(Reddy 2003) 
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where εr, εθ, εz, γθz, γrθ, γrz are strain components. 

The constitutive equations for orthotropic material are 
(Reddy 2003) 
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(8) 

 
where cij are material elastic stiffness coefficients. 

Using the three-dimensional constitutive relations and 
the strain-displacement relations, the equations of motion in 
terms of displacement components for a linear  elastic 

functionally graded (FG) plate with infinitesimal deforma-
tions can be written as 
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dc
c ij

ij =′  

Eqs. (9) and (10) represent the in-plane equations of 
motion along the r and θ -axes, respectively; and Eq. (11) is 
the transverse or out-of-plane equation of motion. 

The related boundary conditions are as follows: 
 

at z = 0 
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at z = h 
 

, ,zr z zθτ τ σ= = =0 0 0  (13) 
 
Kw and Kg are the Winkler and shearing layer elastic 

coefficients of the foundation. 
In this paper three different kinds of  boundary 

conditions are considered: clamped-clamped (c-c), simply 
supported-clamped (s-c) and free-clamped (f-c). The 

660



 
Using modified Halpin-Tsai  approach for vibrational analysis of thick functionally graded multi-walled... 

boundary conditions at edges are 
 
Clamped(r = b)-Clamped(r = a) 
 

at  r = a r zu u uθ= = = 0  (14) 
at  r = b r zu u uθ= = = 0  

 
Simply supported(r = b)-Clamped(r = a) 
 

at  r = b z ru uθ σ= = = 0  
(15) 

at  r = a r zu u uθ= = = 0  
 
Free(r = b)-Clamped(r = a) 
 

at  r = a r zu u uθ= = = 0  
(16) 

at  r = b 0=== rzrr ττσ θ  
 
 

4. Solution procedure 
 
Using the geometrical periodicity of the plate, the 

displacement components for the free vibration analysis can 
be represented as 
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where m (= 0, 1,…, ∞) is the circumferential wavenumber; 
ω is the natural frequency and i )1( −=  is the imaginary 
number. It is obvious that m = 0 means axisymmetric 
vibration. At this stage the generalized differential 
quadrature method [a brief review of generalized 
differential quadrature method is given in Appendix A.] 
rules are employed to discretize the free vibration equations 
and the related boundary conditions. Substituting for the 
displacement components from Eq. (17) and then using the 
generalized differential quadrature rules for the spatial 
derivatives, the discretized form of the equations of motion 
at each domain grid point (rj, zk) with (j = 2, 3,…, Nr ‒ 1) 
and (k = 2, 3,…, Nz ‒ 1) can be obtained as 
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Eq. (10) 
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Eq. (11) 
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(20) 

 
Where Ar

ij, Az
ij and Br

ij, Bz
ij are the first and second order 
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generalized differential quadrature weighting coefficients in 
the r- and z- directions, respectively. 

In a similar manner the boundary conditions can be 
discretized. For this purpose, using Eq. (17) and the 
generalized differential quadrature discretization rules for 
spatial derivatives, the boundary conditions at z = 0 and h 
become, 

Eq. (12) 
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Eq. (13) 
 

at z = h 
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(22) 

 
where k = 1 at z = 0 and k = Nz at z = h, and j = 1, 2, ..., Nr. 

The boundary conditions at r = b and a stated in Eqs. 
(14)-(16) become, 

Simply supported (S) 
 

,zmjku = 0      ,mjkuθ = 0  
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r
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n
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(23a) 

 
Clamped (C) 
 

, ,rmjk mjk zmjku u uθ= = =0 0 0  (23b) 
 
Free (F) 
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z rN N
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In the above equations k = 2, ..., Nz ‒ 1; also j = 1 at r = b 

and j = Nr at r = a. 
In order to carry out the eigenvalue analysis, the domain 

and boundary degrees of freedom are separated and in 
vector forms they are denoted as {d} and {b}, respectively. 
Based on this definition, the discretized form of the 
equilibrium equations and the related boundary conditions 
take the following forms 

Equations of motion (18)-(20) 
 

[ ][ ]
{ }
{ }

[ ]{ } { }db dd

b
K K M d

d
ω

    − =  
  

2 0  (24) 

 
Boundary conditions (21), (22) and (23a)-(23c) 
 

[ ]{ } [ ]{ } { }bd bbK d K b+ = 0  (25) 
 
Eliminating the boundary degrees of freedom in Eq. (24) 

using Eq. (25), this equation become 
 

[ ] [ ]{ }( ) { }-K M dω =2 0  (26) 
 

where [K] = [Kdd] ‒ [Kdb][Kbb]-1[Kbd]. The above eigenvalue 
system of equations can be solved to find the natural 
frequencies and mode shapes of the plates. 

 
 

5. Numerical results and discussion 
 
In order to validate the presented solution, the natural 

frequency of annular functionally graded plate without 
elastic foundation was obtained. A functionally graded 
annular plate with simply-supported inner radius (b = 0.1 
m) and clamped outer radius (a = 1 m) was studied. It is 
assumed that the material properties vary exponentially 














==
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


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







h
z

Mh
z

M
ijij ezeczc

λλ

ρρ )(,)(  through the thickness of 

the plate. Superscripts M denote the material properties of 
the bottom surface of the plate, λ is the material property 
graded index. The ratio of the thickness and the radius is 
0.2. The convergence results of the first three non-
dimensional natural frequencies )/( 11ch ρωϖ = in which 

)21)(1(
)1(

11 υυ
υ
−+

−
=

Ec for mentioned plate and different Nr or 

Nz are listed in Table 2. The same problem has been 
analyzed by Nie and Zhong (2007) and Dong (2008). The 
results are shown in Table 2 together with those from Nie 
and Zhong (2007) and Dong (2008), and clearly there has 
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been good agreement between the results. The Convergence 
results of the first three non-dimensional frequencies 

)/( 11ch ρωϖ =  for FGM annular plates with clamped-
clamped boundary condition (a = 1 m, b = 0.2 m, h = 0.1 m, 
λ = 1) are listed in Table 3. The same problem has been 
analyzed by Nie and Zhong (2007), obviously there has 
been good agreement between the results. 

As another example, the convergence behavior and 
accuracy of the method for the first five frequency 

Table 4 Convergence study of the first five none-dimensional 
natural frequency parameters for free vibration of a 
clamped-clamped FGM annular plate 

Nr = Nz m ϖ1 ϖ2 ϖ3 ϖ4 ϖ5 
7 

0 

8.177 13.912 15.516 19.446 20.108 
9 8.201 13.875 15.511 19.481 20.158 
11 8.208 13.867 15.511 19.484 20.162 
13 8.210 13.870 15.511 19.485 20.164 
17 8.213 13.872 15.515 19.485 20.166 

(Dong 2008) 8.214 13.872 15.514 19.485 20.167 
7 

1 

8.303 9.696 13.803 14.885 15.546 
9 8.322 9.689 13.769 14.853 15.533 
11 8.327 9.688 13.767 14.851 15.533 
13 8.329 9.688 13.765 14.850 15.533 
17 8.332 9.689 13.76 14.849 15.536 

(Dong 2008) 8.333 9.689 13.766 14.850 15.535 
7 

2 

8.849 11.160 13.842 15.638 16.561 
9 8.861 11.147 13.814 15.615 16.548 
11 8.863 11.146 13.812 15.615 16.549 
13 8.865 11.145 13.810 15.614 16.549 
17 8.868 11.145 13.811 15.614 16.550 

(Dong 2008) 8.869 11.145 13.810 15.615 16.550 
7 

3 

9.901 12.693 14.423 16.390 17.699 
9 9.906 12.681 14.399 16.422 17.714 
11 9.919 12.670 14.402 16.451 17.718 
13 9.921 12.673 14.407 16.453 17.720 
17 9.923 12.673 14.407 16.456 17.721 

(Dong 2008) 9.924 12.672 14.407 16.455 17.721 
 

. , . , ,
( )i mi

m

a h hb a c
ρλ ϖ ω= = = =

44

2 5 0 5 1  

 
 

parameters of thick FG annular plates with both the inner 
and the outer surface clamped are presented in Tables 4 and 
5. It is noticed there is good agreement between the present 
results with similar ones obtained by Dong (2008). 

In this section, we characterize the response of 
functionally graded multi-walled carbon nanotube plate 
with graded reinforcement volume fractions in the plate’s 
thickness on an elastic foundation. The non-dimensional 
natural frequency, winkler and shearing layer elastic 
coefficients are as follows (Tahouneh and Yas 2014) 

 

, ( )i i i i ia h D D E hω ρ υΩ = = −2 3 212 1  (27) 
 

,g g i w w iK k a D K k a D= =2 4  (28) 
 

where ρi, Ei and υi are mechanical properties of are 
mechanical properties of multi-walled carbon nanotube. 

The effects of variation of the Winkler elastic coefficient 
on the first non-dimensional natural frequency parameters 
of functionally graded multi-walled carbon nanotube (FG-
MWCNT) annular plate and for different values of shearing 
layer elastic coefficient and sets of boundary conditions are 

Table 2 Convergence results of the first three nondimensional 
frequencies for FG annular plates having Simply 
supported (r = b) and Clamped (r =a) conditions 
(a = 1 m, b = 0.1 m, h/a = 0.2 m) 

Nr = Nz m 
λ 

1 5 10 15 
7 

0 

0.1886 0.1331 0.0784 0.0529 
9 0.1873 0.1318 0.0783 0.0536 
11 0.1872 0.1316 0.0782 0.0534 
13 
17 

0.1872 
0.1870 

0.1314 
0.1315 

0.0782 
0.0781 

0.0535 
0.0534 

(Dong 2008) 0.1871 0.1315 0.0780 0.0536 
(Nie and Zhong 2007) 0.1936 - - - 

7 

1 

0.1801 0.1313 0.0733 0.0475 
9 0.1972 0.1394 0.0809 0.0576 
11 0.1990 0.1401 0.0821 0.0579 
13 
17 

0.1990 
0.1993 

0.1401 
0.1402 

0.0852 
0.0842 

0.0581 
0.0582 

(Dong 2008) 0.1994 0.1402 0.0840 0.0582 
(Nie and Zhong 2007) 0.2050 - - - 

7 

2 

0.2744 0.1955 0.1227 0.0851 
9 0.2748 0.1968 0.1202 0.0842 
11 0.2785 0.1973 0.1201 0.0832 
13 
17 

0.2783 
0.2782 

0.1969 
0.1967 

0.1201 
0.1187 

0.0831 
0.0823 

(Dong 2008) 0.2781 0.1967 0.1184 0.0820 
(Nie and Zhong 2007) 0.2684 - - - 

7 

3 

0.3831 0.277 0.1715 0.1188 
9 0.3824 0.2765 0.1697 0.1184 
11 0.3824 0.2757 0.1696 0.1180 
13 
17 

0.3819 
0.3819 

0.2757 
0.2752 

0.1692 
0.1692 

0.1181 
0.1182 

(Dong 2008) 0.3819 0.2751 0.1693 0.1182 
(Nie and Zhong 2007) - - - - 

 

Table 3 Convergence results of the first three non-dimensional 
frequencies for FG annular plates having Clamped (r = b) 
and Clamped(r = a) conditions (a = 1 m, b = 0.2 m, 
h = 0.1 m, λ = 1), Nr = Nz = 13 

m Present (Nie and Zhong 2007) Ansys (Nie and Zhong 2007) 
0 0.0801 0.0807 0.0810 
1 0.0831 0.0837 0.0839 
2 0.0955 0.0961 0.0963 
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shown in Fig. 4. It is clear that in all cases, with increasing 
the elastic coefficients of the foundation, the frequency 
parameters increase to some limit values. In range of 103 to 
104 for Winkler elastic coefficient the frequency parameter 
is sharply increasing, because in this range the stiffness of 
the plate is suddenly added to the elastic coefficient of the 
foundation and it results in increasing the total stiffness of 

 

 
 
the structure (= plate and foundation). 

It is observed for the large values of Winkler elastic 
coefficient, the shearing layer elastic coefficient has less 
effect and the results become independent of it. 

The influence of shearing layer elastic coefficient on the 
first non-dimensional natural frequencies for different sets 
of boundary conditions is shown in Fig. 5. One can see that 

Table 4 Convergence study of the first five none-dimensional natural frequency parameters for free vibration of a clamped-clamped FGM 
annular plate 

Nr = Nz m ϖ1 ϖ2 ϖ3 ϖ4 ϖ5 
7 

0 

10.063 18.379 19.726 24.456 25.726 
9 10.087 18.342 19.720 24.421 25.786 
11 10.094 18.333 19.721 24.424 25.790 
13 10.096 18.336 19.721 24.425 25.792 
17 10.098 18.338 19.723 24.427 25.794 

(Dong 2008) 10.099 18.338 19.724 24.426 25.794 
7 

1 

10.237 12.343 18.229 18.615 19.676 
9 10.256 12.336 18.195 18.583 19.653 
11 10.261 12.335 18.193 18.580 19.649 
13 10.263 12.335 18.191 18.578 19.649 
17 10.267 12.336 18.191 18.579 19.651 

(Dong 2008) 10.266 12.336 18.192 18.578 19.651 
 

Nr = Nz m ϖ1 ϖ2 ϖ3 ϖ4 ϖ5 
7 

2 

10.917 14.407 18.479 18.514 20.715 
9 10.929 14.394 18.451 18.490 10.702 
11 10.931 14.393 18.449 19.490 20.703 
13 10.933 4.392 18.447 19.489 20.703 
17 10.936 14.392 18.448 19.489 20.704 

(Dong 2008) 10.937 14.392 18.448 19.490 20.704 
7 

3 

12.178 16.685 19.325 20.630 22.402 
9 12.228 16.673 19.301 20.662 22.413 
11 12.241 16.662 19.304 20.691 22.418 
13 12.243 16.665 19.309 20.693 22.420 
17 12.247 16.664 19.310 20.694 22.421 

(Dong 2008) 12.246 16.664 19.310 20.695 22.421 
 

. , . , ,
( )i mi

m

a h hb a c
ρλ ϖ ω= = = =

44

2 5 0 5 1  

  
 

 
Fig. 4 Variation of the first non-dimensional natural frequency parameter of FG-MWCNT annular plate with Winkler and 

different shearing layer elastic coefficient for different types of boundary conditions (p = 1, h/a = 0.2, b/a = 0.2) 
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Fig. 5 Variation of the first non-dimensional natural frequency parameters of FG-MWCNT annular plates versus 

the shearing layer elastic coefficient for different Winkler elastic coefficient and different types of boundary 
conditions (p = 1, h/a = 0.2, b/a = 0.2) 

  
 

 
Fig. 6 Variation of the first non-dimensional natural frequency parameters of FG-MWCNT annular plates on 

an elastic foundation versus “p” for different shearing layer elastic coefficient and boundary conditions 
(Kw = 100, h/a = 0.2, b/a = 0.2) 
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the Winkler elastic coefficient has little effect on the non-
dimensional natural frequencies at different values of 
shearing layer elastic coefficient. 

Now the influence of reinforcement volume fraction “p” 
in the thickness direction is studied. This is carried out by 
varying the power-law exponent “p”. 

Fig. 6 shows the influence of the constituent volume 
fraction “p” on the first non-dimensional natural fre-
quencies of the multi-walled carbon nanotube plates on an 
elastic foundation. It is observed with increasing power-law 
exponent “p”, the first non-dimensional natural frequencies 
decrease sharply for small value of “p” (p < 1) and then for 
p > 15 it reaches a constant value for different values of the 
shearing layer elastic coefficient. It should be noted that 
second derivative of the curves in Fig. 3 is positive for p < 1 
and negative for p > 1. 

It is obvious for p = 1, the second derivative is equal to 
zero. Therefore, in Fig. 6, the curves have a first decreasing 
branch, followed by an increasing part, and finally they 
become constant for p > 15, because the volume fraction of 
the matrix gets approximately constant along the thickness 
of the plate. 

 
 

6. Conclusions 
 
In this research work, free vibration of continuous 

grading multi-walled carbon nanotube (MWCNT) annular 
plates on a two-parameter elastic foundation is investigated 
based on three-dimensional theory of elasticity. The elastic 
foundation is considered as a Pasternak model with adding 
a shear layer to the Winkler model. 

Three complicated equations of motion for the plate 
under consideration are semi-analytically solved by using 2-
D differential quadrature method. Using the 2-D differential 
quadrature method in the r- and z-directions, allows one to 
deal with functionally graded plates with arbitrary thickness 
distribution of material properties and also to implement the 
effects of the elastic foundations as a boundary condition on 
the lower surface of the plate efficiently and in an exact 
manner. The fast rate of convergence and accuracy of the 
method are investigated through the different solved 
examples. 

The effects of different geometrical parameters such as 
the thickness-to-outer radius ratio, the elastic foundation 
parameters and boundary conditions on the performance of 
the natural frequency parameters of the functionally graded 
multi-walled carbon nanotube (FG-MWCNT) plates are 
investigated. 

The main contribution of this work is to present useful 
results for continuous grading of multi-walled carbon 
nanotube reinforcement in the thickness direction of a plate 
on elastic foundations. It is shown that the variation of 
Winkler elastic coefficient has little effect on the non-
dimensional natural frequencies at different values of 
shearing layer elastic coefficient. It is clear that in all cases, 
with increasing the shearing layer elastic coefficient of the 
foundation, the frequency parameters increase to some limit 
values. It is observed for the large values of shearing layer 
elastic coefficient; the results become independent of it. It is 
also shown that with increasing the elastic coefficients of 

the foundation, the frequency parameters increase to some 
limit values. It is observed for the large values of Winkler 
elastic coefficient, the shearing layer elastic coefficient has 
less effect and the results become independent of it. 

It is observed that with increasing power-law exponent 
“p” the first non-dimensional natural frequencies decrease 
sharply for small value of “p” and then for p > 15, they 
become constant because the volume fraction of the matrix 
gets approximately constant along the thickness of the plate. 
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Appendix 
 

In Generalized Differential Quadrature Method (GDQM), the 
nth order partial derivative of a continuous function f (x, z) with 
respect to x at a given point xi can be approximated as a linear 
summation of weighted function values at all the discrete points in 
the domain of x, that is 
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Where N is the number of sampling points and cn

ij is the xi 
dependent weight coefficient. To determine the weighting 
coefficients cn

ij, the Lagrange interpolation basic functions are used 
as the test functions, and explicit formulas for computing these 
weighting coefficients can be obtained as (Shu 2000) 
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and for higher order derivatives, one can use the following 
relations iteratively 
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A simple and natural choice of the grid distribution is the 

uniform grid-spacing rule. However, it was found that nonuniform 
grid-spacing yields result with better accuracy. Hence, in this 
work, the Chebyshev-Gauss-Lobatto quadrature points are used 
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