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1. Introduction 

 

Moving materials are employed in different industrial 
applications such as magnetic tapes, paper and textile webs 
during production, processing and printing, plastic sheets, 
films, and the like. In general, although the mechanical 
characteristics of moving structures has been investigated 
up to now, much information is not available on the two 
dimensional moving systems. The effect of moving 
structures may be enough to change the dynamic behavior 
of the system even at low velocities. Higher than a special 
speed that is called “critical speed”, the behavior of the 
system is changed. In the other words, system becomes 
unstable and may leads to irreparable damages, such as loss 
of raw material, low surface quality and unsatisfactory 
performance. Prediction of the dynamic behavior of moving 
systems, and ensuring that they remain stable, are require-
ments for the optimal design of these systems. 

As the one of the first researches in the field of moving 
plates, Lin (1997) studied stability and vibration charac-
teristics of axially moving plates. He demonstrated that the 
critical speed is equal to the speed at the onset of instability 
predicted by static and dynamic analyses. Also, it increases 
by reducing the length to width ratio and increasing the 
flexural stiffness of the plate. Wang (1999) investigated 
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numerical analysis of moving orthotropic thin plates. He 
utilized a mixed finite element formulation based on the 
Mindlin-Reissner plate theory for his work and proved that 
it is reliable for both frequency and transient dynamics 
analyses. The modal spectral element formulation for 
moving thin plates was used by Kim et al. (2003). They 
assumed that plate moving with constant speed and 
subjected to a uniform in-plane axial tension. Then, they 
formulated the modal spectral element matrix in the 
frequency-domain by using the Kantorovich method. 
Hatami et al. (2007) developed free vibration analysis of 
axially moving symmetrically laminated plates subjected to 
in-plane forces with classical plate theory. At first, they 
employed an exact method to analyze vibration of multi-
span traveling cross-ply laminates, and then, utilized a 
semi-analytical finite strip method for moving symmetric 
laminated plates. In the other research, Hatami et al. (2008) 
considered exact free vibration analysis of axially moving 
viscoelastic plates with a constant axial speed. By using the 
rheological models, they obtained the stiffness matrix of 
viscoelastic plate and showed the influences of axial speed 
and viscoelastic parameters on the free vibration of moving 
plates. Vibration analysis of axially moving viscoelastic 
plate with parabolically varying thickness was analyzed by 
Zho and Wang (2008). They considered the Kelvin–Voigt 
model to simulate the viscoelastic behavior of materials and 
calculated the dimensionless complex frequencies of their 
system with various boundary conditions. Yang et al. (2009) 
investigated approximate solutions of axially moving 
viscoelastic beams subject to multi-frequency excitations. 
They studied about superharmonic, subharmonic, and 
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combination resonances. In other work, Yang and Fang 
(2013) presented the non-linear creep vibration of an axially 
moving string constituted by a fractional differentiation 
law.Their results indicated that the amplitude predicted by 
the fractional model is larger than that predicted by the 
viscoelastic solid models. Marynowski (2010) applied the 
viscoelastic theory to study free vibration of the axially 
moving Levy-type plate with two simply supported and two 
free edges boundary conditions. He illustrated influences of 
transport speed and relaxation times modeled by two-
parameter Kelvin-Voigt and three-parameter Zener 
rheological models on the dynamic behavior of the axially 
moving viscoelastic plate. Also, Marynowski and Grabski 
(2013) investigated dynamic analysis of an axially moving 
plate under thermal loading. They solved the differential 
equations of the transverse motion by employing the 
extended Galerkin method and demonstrated the effects of 
thermal critical loading, axial speed and tension on dynamic 
behavior of axially moving plate. The stability analysis of 
an axially moving elastic plate travelling at constant speed 
between two supports with a 2D formulation was done by 
Banichuk et al. (2010). They inserted a thin elastic plate 
under bending and tension and observed that the 2D 
formulation reduces to the classical 1D model for the limit 
of a narrow strip. In other work, Banichuk et al. (2011) 
presented the static stability problems of axially moving 
orthotropic membranes and plates. They solved the 
equations of motion using analytical techniques and showed 
that the buckling mode has a shape localized in the regions 
close to the free boundaries. Tang and Chen (2011) 
investigated nonlinear free transverse vibrations of in-plane 
moving plates subjected to plane stresses. They utilized the 
multiple scales method to solve the nonlinear partial 
differential equation and presented the relationship between 
the nonlinear frequencies and the initial amplitudes at 
various in-plane moving speeds and the nonlinear 
coefficients, respectively. Then, in other research, nonlinear 
forced vibrations of in-plane translating viscoelastic plates 
under plane stresses were presented by Tang and Chen 
(2012). They employed the Routh–Hurvitz criterion in order 
to calculate the stabilities of the steady-state responses and 
examined the influences of the in-plane axial speed, the 
viscosity coefficient, and the excitation amplitude on it. 
Yang et al. (2011) studied vibrations and stability of an 
axially moving rectangular antisymmetric cross-ply 
composite plate. They determined the natural frequencies 
for the in-plane and out-of-plane vibrations by both the 
Galerkin method and differential quadrature method. Then, 
by investigating the complex natural frequencies for 
constant axial speed, they studied the instability caused by 
divergence and flutter. Also, Yang et al. (2012) used finite 
difference method for dynamical analysis of axially moving 
plate. They considered the complex natural frequencies for 
linear free vibrations and bifurcation for forced nonlinear 
vibration of axially moving viscoelastic plate and derived 
the equations of out-of-plane motion by Newton’s second 
law. The nonlinear dynamics of an axially moving plate for 
forced motions was numerically developed by Ghayesh et 
al. (2013). Based on Lagrange equations, they determined 
the equations of motion via Hamilton’s principle and 

utilized the pseudo-arc length continuation technique to 
solve them. An and Su (2014) investigated dynamic 
analysis of axially moving orthotropic plates using the 
generalized integral transform technique (GITT). They 
assumed two types of boundary conditions and concluded 
that the amplitudes of moving orthotropic plate reduce with 
decreasing translating speed and aspect ratio for both CCCC 
and CCSS. At the one of last research, Ghorbanpour Arani 
and Haghparast (2016) studied vibration and instability of 
axially moving viscoelastic micro-plate. To discuss the size 
effect, they used the modified couple stress theory (MCST). 
They obtained the equations of motion based on Hamilton’s 
principle. Also, the effects of translating speed, viscosity 
coefficient, size effect, thickness and aspect ratio on the 
vibration characteristics were expressed by them. 

Despite mentioned researches, free vibration and 
instability analysis of FGCNTRC plate moving in two 
directions is a novel topic that cannot be found in literature. 
To the best of authors’ knowledge, for the first time, 
analysis of moving composite plate based on various types 
of shear deformation theories is developed in this paper. 
Utilizing Hamilton’s principle governing equations of 
motion are derived and solved by an analytical method for 
different boundary conditions. Effects of various parameters 
such as moving speed, orthotropic viscoelastic surrounding 
medium, aspect ratio, volume fraction and distributions of 
CNTs on instability and critical speed of moving composite 
plate are discussed in details. The results of this 
investigation can be used to improve the design and 
manufacturing of marine vessels. 

 
 

2. Fundamental relations 
 
As shown in Fig. 1, consider a rectangular composite 

plate with length (a), width (b) and thickness (h) which 
moves along the x and y directions with constant speed Cx 
and Cy, respectively. Also, composite plate is taken to rest 
on orthotropic visco-Pasternak foundation. CNTs reinforce-
ments are distributed through the thickness of composite 
plate as uniform distribution (UD) and three functionally 
graded (FG) distributions (FG-V, FG-O and FG-X). As it 
can be observed in Fig. 1, in UD distribution, CNTs are 

 
 

Fig. 1 Composite plate with different types of CNT 
distributions resting on orthotropic visco- 
Pasternak foundation moving in two directions 
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distributed in whole of plate uniformly, in FG-V 
distribution, CNTs are distributed from the bottom to top of 
plate linearly, in the type of FG-O, distribution of CNTs are 
decreased from the middle to outside of plate until it 
reaches zero and this case is vice versa for FG-X 
distribution. 

The volume fraction of various distributions of CNTs in 
composite plate can be expressed as follows 
(Mohammadimehr et al. 2015) 

 
*

*

*

*

2
(1 )

2
2(1 )

4( )

CNT

CNT

CNT

CNT

CNT

V UD

z
V FG V

h
V z

V FG O
h

z
V FG X

h



  

 

 





 (1)

 

where 

* ,
( )(1 )

CNT
CNT

CNT CNT M CNT

w
V

w w 


   
 

in which, w and ρ are defined as the mass fraction and mass 
density, respectively. Also, the subscript M is used to 
describe matrix phase. 

 

2.1 The extended rule of mixture 
 

The mechanical properties of CNT reinforced composite 
plate including longitudinal (E11), transversely elastic 
moduli (E22) and shear modulus (G12) can be obtained based 
on the extended rule of mixture as following form (Gibson 
1994) 
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where ηi (i = 1, 2, 3) and v are the efficiency parameters and 
Poisson’s ratio, respectively. 

 

2.2 Displacement fields 
 

In this study, to compare the accuracy of various shear 
deformation plate theories, six theories are selected. 
According to this, displacement fields which are predicted 
by four theories can be expressed as following form 
(Ghorbanpour Arani and Haghparast 2016) 

( , , )
( , , , ) ( , , ) ( ) ( , , ),

( , , )
( , , , ) ( , , ) ( ) ( , , ),

( , , , ) ( , , ),

x

y

w x y t
U x y z t u x y t z z x y t

x
w x y t

V x y z t v x y t z z x y t
y

W x y z t w x y t

 

 


  




  




(3)

 

in which u, v and w present the displacement components of 
composite plate along the x, y and z directions, respectively. 
Also, ϕx and ϕy are the rotation of middle surface in the x 
and y directions, respectively. It should be mentioned that 
by description of ψ(z), the four type of theories can be 
specified. Classical plate theory (CPT), first order shear 
deformation theory (FSDT), third order shear deformation 
theory (TSDT) and sinusoidal shear deformation theory 
(SSDT) can be introduced as ψ(z) = 0, z, z ‒ 4z3/3h2 and

,sin 







h

zh 


 respectively. 

According to higher order shear deformation theory 
(HSDT), displacement fields can be written as 
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where .sin)( 
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  Also, the displacement fields are 

expressed based on new FSDT as (Yang et al. 2013) 
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where θ is an unknown displacement function of the middle 
of plate. 

 
2.3 Kinematics and constitutive equations 
 
The linear relations between the strain and displacement 

fields can be obtained by 
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in which, ε and γ describe normal and shear strains, 
respectively. Substituting Eqs. (3)-(5) in Eq. (6), kinematics 
equations are determined and it should be noted that εzz will 
be calculated equal to zero for six theories. Therefore, the 
constitutive equations can be written as follows 
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σ and τ are normal and shear stresses, respectively and 
Qij (i, j = 1, 2 and 44, 55, 66) indicate the terms of 
engineering constants. Also, Ks is the shear correction 
factor. For FSDT, Ks = 5/6, and for the other five theories, 
Ks = 1. 

 

2.4 Two dimensional moving of composite plate 
 

The composite plate moving along the x and y directions 
with constant speed Cx and Cy, respectively. The velocity 
vector of plate can be obtained based on continuum 
mechanics as following relation (Marynowski and Grabski 
2013) 
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 can be 
written by Eq. (8) 
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2.5 Visco-Pasternak foundation 
 

In order to simulate normal load, the simplest way is the 
use of Winkler type of elastic foundation. But, visco-
Pasternak type of elastic foundation is one of the most 
comprehensive model that is able to consider both normal 
and transverse shear loads. Moreover, it takes into account 
the effects of damping loads on the system. In this research, 
the bottom surface of composite plate continuously rests on 
a visco-Pasternak foundation. So, based on this model, the 
force applied to the plate can be written as (Ghorbanpour 
Arani et al. 2016) 
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2 2
C ,w d gx gy

W WW

t
F K W K K

x y

  
  

  
  (10)

where Kw and Cd represent Winkler and damping 
coefficients. Also, Kgx and Kgy are shear foundation 
parameters in x and y directions. 

 

2.6 Hamilton’s principle 
 

The equations of motion are obtained based on 
Hamilton’s principle. The analytical form of Hamilton’s 
principle can be expressed as follows 
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in which, U, K and Σ are strain energy, kinetic energy and 
external work, respectively, and each terms can be 
expressed according to the following relations 
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By substituting Eqs. (7), (9) and (10) into Eqs. (12a), 

(12b) and (12c), respectively, and subsequent results into 
Eq. (11), the governing equations of motion can be derived. 

By setting the coefficients of δu, δv, δw, δϕx and δϕy to 
zero, separately, the governing equations of motion based 
on CPT, FSDT, TSDT and SSDT can be obtained as follows 
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By putting the coefficients of δu, δv, δw and δθ to zero, 

separately, the governing equations of motion based on 
NFSDT can be calculated as follows 
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Also, by setting the coefficients of δu, δv, δw, δϕx and 

δϕy to zero, separately, the governing equations of motion 
based on HSDT can be determined as follows 

2 2 2 3

121 661 661 1212 2

2 2 22

120 661 661 1112 2

2 2 2 3

121 111 660 1112 3

23 2 2

661 660 110 12 2 2

:

2 2

y y x

y

y

x
y

x x

x

w
B B B B

y x y x y y x

v
A A A A

y x y x y x

v w
A B A B

y x x y x x

w u u
B A A I C

y

u

x y x y t


  

  

 



   
  

      

  
   

     

   
   

     

  
   

     
2 2 3

2 2

3 1 32 3

2 2 2 2
2 2

3 3 3 12 2

2 2 23
2 2

3 1 1 32 2 2 2

23 2

3 0 12 2

2

3 3

2

2 2

2

2 2

x x
x x x

x x x x
x

x x x
x

x
x

x
x

y y y

y

y

y yx

w
I C I C I C

x x t x

I C I C I C I C
x t y t y y

w
I C I C I I

y x x t t

w u
I I I C C

x t t y x

I C C I C C
y x

 

   

  





  
  

   
   

   
     

  
   

    

 
  

    


 

 

3 2
2

02 2

2 2 2
2

0 0 02

3 3 2

3 3 02

2 2

2 2 2 0,

y y

y

x

x

x yx

w u
I C

y x x

u u u
I C I C I C

y x t y t

w w u
I C I C I C C

x t y x t y x

 


  

  
  

    

  
   

      

(15a)

 

2 2 2 3

221 221 121 2212 2 3

2 222

661 120 661 6612 2

2 2 2 3

121 661 660 121 2

23 2 2
2

661 660 220 32 2 2 2

:

2

y y x

y yx

x x

y

y

w
A B B B

y y y x y

u
B A A A

x y x y x x

u w
A B A B

y x y x y x y x

w v v
B A A I C

y x

v

x y y

  

 











   
   

    

 
   

     

   
   

       

  
   

    
2 2 2 3

2 2 2 2

1 3 1 32 2 2 2

2 2 2 2

3 3 1 1

3 3 3 3
2

3 3 3 33 2 2

2 2 22

1 3 0 12 2 2

2 2 2 2

2 2

2

y y y

y x x x

y y y y

y x x y

y y x

y y

x y

w
I C I C I C I C

y x x y x

I C I C I C I C
y t x t x t y t

w w w w
I C I C I C I

y y t y x t y t

v
I I I I C C

t t t

  

   

 

   
   

    

   
   

       

   
   

       

  
   

  

2

3

3 2 2
2 2

3 0 02 2 2

2 2 2

0 0 0

2

2

2 2 2 0,

y y

x y

x y x y

x y x y

I C C
y x y x

w v v
I C C I C I C

y x x y

v v v
I C I C I C C

x t y t y x

 


   

  
  

   

  
   

     

(15b)

 

2 2 2 2

442 441 552 5512 2 2 2
2 2

:

s s s s

w w w w
K C K C K C K C

y y x x

w
   

   
   

(15c)

534



 
Vibration analysis of functionally graded nanocomposite plate moving in two directions 

2 2

550 440 440 5502 2

552 551 442 441

33 3

122 661 1112 2 3

2 2

2 2

y x
s s s s

y yx x
s s s s

yx x

w w
K A K A K A K A

x y y x

K C K C K C K C
x x y y

B D D
y y x xx

 

  

 

  
   

   
  

   
   

 
   

    

3

661 2

3 334

122 222 121 6622 2 3 2 2

33 33

661 111 122 1122 3 2 3

3 3 4 3

121 221 222 6612 3 4 2

3 3

221 6623 2

2 2

2

2

2 4

y yx

yx x

y

y x

v
B

y x

w
B B D B

y x y y x y x

u
D B B B

y x x y x x

v w u
D B B B

y x y y y x

D B B
y y x

 

 



 


 

 
   

      

 
   

     

   
   

     

 
  

  

4 3

662 1212 2 2

33 4 4

121 112 4 52 4 2 2 2

33 3

4 5 32 2 2

3 3 4

5 3 52 2 3

4

5 03

2

2 2 2

2 2 2

2 2

y

x y

yx
x y x y x y

x
x y x y x y

x y x

w v
B

y x y x

u w w
B B I C C I

y x x y x x t

v
I C C I C C I C C

y x y x y x

u w
I C C I C C I C C

y x y x y x

w
I C C I C C

y x







 


   

  
   

      

 
  

     

  
  

     


 

 

2 3 3

3 32 2

3 3 34 2
2

4 5 5 0 52 2 2 2 2 2

3 33 3
2 2

5 3 5 33 3 2 2

3 3 33
2 2 2

5 3 5 52 3 2

2 2

2

y

y y y

x

y x
y y x y

y x x
x y x y

w u v
I I

y x x t y t

w w
I I I I I C

y t y t y t t y x

v v
I C I C I C I C

y y x t y t

u
I C I C I C I C

y x t y x x y

  

 

  

  
 

     

   
    

        

  
   

     

  
   

      
3 4 4 2

2

3 5 5 03 3 2

2 4 2 4
2 2

0 5 0 52 2 2 2

4 4 4 4
2 2 2

5 5 5 54 4 2 2 2

3 3

5 32 2

2 2 2

2 2

2

2 2 2

x y x x

y y x x

y x y x

y

y x

x

v w w w
I C I C I C I C

y x t y t x t x

w w w w
I C I C I C I C

y y x t x t y x

w w w w
I C I C I C I C

y x y x y x t

u
I C I C I

y t x t





   
   

       

   
   

       

   
   

      

 
  

   

33

3 5

33 3 3
2 2

4 4 4 42 2 3

3 33 3
2 2 2

4 4 4 33 2 3

3 3 2
2

4 3 02 2

2

2 2

2

2 2

C

x
y y

yx x x
y x x x

y yx
y y x x

y

y x y

w d gx

u
C I C

y x t y x t

I C I C I C I C
y x y x t x t x

u
I C I C I C I C

y y x t y x x

v w
I C I C I C

y t y x y t

W
K W K

t



  

 






     

  
   

       

  
   

      

  
  

     


  



2 2

2 2
0gy

W W
K

x y

 
 

 

(15c)

 
 

552 551 550 550

3

552 551 121 2

2

:

2

s x s x s x s

s s

x

w
K C K C K A K A

x
w w w

K C K C D
x x y x

  




  


  
  

   

(15d)

2 22 2

121 121 661 662

22 23

112 112 662 6622 3 2

23

661 1222

2

2

y y

yx x

y

v v
B D B A

y x y x y x y x

w
B B B A

x x y x y

w
D B

y x

 

 



  
   

       

 
   

    


 

 

2 2

661 662 2

22 2 3

661 661 661 1222 2 2

23 2 2

662 111 111 1222 2 2

2 23 2

111 112 121 1113 2 2

22

661 2 12 2

2

2

2

2

y x

x

y

x x

x

D B
y x y x y

u v w
B D A B

y y y x y x

w u u
B A B A

y x x x y x

w v
D A A D

x x y x x

u
A I I

y t

 





 



 
 

    

  
   

     

  
   

     

  
   

    


  

 

22 2

3 52 2 2

2 2 2 2
2

4 3 1 32 2

3 2 3 3
2 2 2

5 1 5 52 2 3 2

2 2 22
2 2 2

1 4 4 52 2 2

2

5 2

2 2 2

2

2 2 2

2 2

x

x
x x y

x y x y

x x x
x y x y

x
x x

u u
I I

t t t

u u u
I I C I C I C

t x x t y t

w u w w
I C I C I C I C

x t y x y x

u
I C I C I C I C

x y x y t

I C I C
x t





  



 
 

  

   
   

     

   
   

     

  
   

    


 

 

2 2 2
2

2 5 2

2 2 2 2
2 2 2

2 5 2 42 2 2

2 3 3
2

4 5 4 2

3 3 3
2

4 4 42 3

2 2

1 1

2

4

4 2

2 2

2 2

x x x
y x

x x x x
x y y x

x
y y y

x x y

y x y

I C I C
x t y t x

I C I C I C I C
x y y x t

w w
I C I C I C

y t y x t y x

w w w
I C I C I C

x t x y x t

u u
I C I C C

y t y x

  

   



  
 

    

   
   

    

  
  

      

  
  

     

 
 

   

2

3

3 2 2
2

5 3 32 2

2 2 2

2 5 4

3

4 2

2

2 2

2 2 4

2 0,

x y

x y x y

x x x
x y x y x y

x y

u
I C C

y x

w u u
I C C I C I C

y x x t y

I C C I C C I C C
y x y x y x

w
I C C

y x

  




 

  
  

    

  
  

     


 

 

(15d)

 
 

442 441 440 440

2 2

442 441 122 122

2 23 2

662 222 662 2212 2 2 2

2 22 2

661 221 662 6612 2

2

121

:

2

2

2

2

s y s y s y s

x
s

y

x
s

y y

y x

w
K C K C K A K A

y

w w
K C K C A B

y y y x y x

w v
B B A B

y x y x y

v u
D A B A

x y y x y x

u
A

y

  

 

 

 




  



  
   

     

  
   

    

  
   

     




 

23 3

661 222 6612 3
2 2 xw w

D B D
x y x y y x

 
  

    

(15e)

535



 
Ali Ghorbanpour Arani, Elham Haghparast and Hassan BabaAkbar Zarei 

2 22 3

661 122 662 2222 2 2

22 3 2

661 662 121 1212 2

2 22 3

221 661 121 2212 2 3

2
2

3 2

2 2

y y

x

y x

y

u w
B B B A

y x y x x y

v w u
B A D B

x y x y x y x

v w
D A D D

y x y x y

v
I C

y

 



 

  
   

     

  
   

      

  
   

    


 



2 3 2
2 2 2

1 5 12 2 2

2 3 2 2
2 2

3 5 3 32 3

2 2 3

1 1 5

2 2 2

5 5 2

2 2

2

2 4 2

2 2

2 2 2

2 2 2

2 2 2

y x x

x y y x

x y x

y y y

x y x

y y

y x

v w v
I C I C I C

y y x x

v w v v
I C I C I C I C

x y y t x t

v v w
I C I C I C

x t y t y x t

I C I C I C
x t y t x t

I C I C
y t x

  

 

  
 

   

   
   

     

  
  

      

  
  

     

 
  

  

2

2

4 2

2 2 2

2 2 2

5 2 52 2 2

2 2 2

2

2 4 42

3 3 3

5 4 42 2

23 3 2
2 2

4 4 4 33 2 2 2

23

5 52

4 4

2 2 2

2

y

y

y y y

x x y

y y y

y x y

y x y

y

y x

y

I C
y

I C I C I C
x x y

I C I C I C
y x t y t

w w w
I C I C I C

y t y x t y t

w w v
I C I C I I

y y x t t

w
I I

y t



  

  









  
  

  

  
  

    

  
  

      

  
   

    


 

  

2 2 3

2 1 42 2 2 2

3 2 2

4 1 32

2 23

5 5 22

2

4

2 2 2

2 2 2

4 0,

y

x y x y x y

y y

x y x y x y

y

x y

v w
I I I

t t t y t

w v v
I C C I C C I C C

y x y x y x

w
I C C I C C I C C

y x y x y x

I C C
y x



 



  
  

   

  
  

     

 
  

     


 

 

(15e)

 
 

It should be noted that all the parameters which are 
expressed in Eqs. (13)-(15) are defined in Appendix A. 

 
 

3. Solution approach 
 
The Navier’s type solution is selected to solve the 

equations of motion of simply-supported composite 
plate.Based on this procedure, the displacement variables 
are assumed as functions which satisfy at least the different 
geometric boundary conditions. It should be noted that the 
simply supported boundary condition is selected at x = {0, 
a} and y = {0, b}. According to above explanations, the 
functions of displacement variables can be considered as 
follows (Wang et al. 2000) 
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(16)

 
where m and n present half axial and transverse wave 
numbers, respectively and ωmn is the natural frequency of 
composite plate. 

Therefore, final relations can be obtained as a following 
matrices form 

 

     
5 5

0 ,mn mn mn xmn m

T

y nU V WP  



 

for CPT, FSDT, TSDT, SSDT and HSDT 
(17)

 

     
4 4

0 ,mn mn mn mn

T
U V WR 


  for NFSDT (18)

 
The elements of matrices P and R in above relations can 

be determined by substituting Eq. (16) into Eqs. (13)-(15) 
for six theories, separately. 

 
 

4. Numerical results and discussion 
 
In this section, effects of various parameters such as 

distribution and volume fraction of CNTs, moving speed in 
x and y directions, orthotropic pattern of viscoelastic 
foundation, aspect ratio and thickness on the vibration 
characteristics of moving CNTRC plate are discussed in 
details. Poly methyl methacrylate, referred to as PMMA, is 
selected for the matrix of CNTRC plate inside CNTs fibers. 
The effective material properties of PMMA and CNTs are 
presented in Table 1. 

It should be noted that η1 = 0.149, η2 = 0.934 for the 
case of V*

CNT = 0.11, η1 = 0.150, η2 = 0.941 for the case of 
V*

CNT = 0.14, and η1 = 0.149, η2 = 1.381 for the case of 
V*

CNT = 0.17. Moreover, it’s assumed that η2 = η3 and G12, 
G13 = G23 according to Zhu et al. (2012). It should be 
mentioned that following dimensionless parameters are 
defined to obtain dimensionless results 

 
 

 

Table 1 Mechanical properties of PMMA and SWCNT with 10 
(Wang and Shen 2012) 

ρCNT E11
CNT E22

CNT υCNT G12
CNT ρm υm Em 

(Kg/m3) (GPa) (GPa)  (GPa) (Kg/m3)  (GPa)

1400 600 10 0.19 17.2 1190 0.3 2.5
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The comparison between six plate theories is performed 

in Fig. 2. This figure shows the real part of dimensionless 
frequency versus length to thickness ratio. It can be seen 
that dimensionless frequencies decrease with increasing 
length to thickness ratio. As can be observed, the difference 
between the results of various theories is more prominent in 
low length to thickness ratio. In addition, it can be 
concluded that for low a/h, the results of CPT, NFSDT and 
HSDT is incredible. Moreover, it is evident that the results 
of TSDT are close to SSDT and these theories are more 
reliable than others. Based on the results of this figure, 
TSDT is selected to obtain the effect of various parameters 

 
 

on vibration characteristics of moving composite plate. 
In another attempt, the comparison between six shear 

deformation plate theories is performed in Tables 2-3. Table 
2 presents dimensionless natural frequencies of CNTRC 
plate (with zero moving speed) for different types of 
distribution and volume fraction of CNTs which are 
obtained by six shear deformation plate theories. It can be 
found that the in different types of distribution and volume 
fraction of CNTs, the results of HSDT and SSDT is more 
reliable than other plate theories. Note that we assume that 
the UD-CNTRC and FG-CNTRC plates have the same 
overall mass fraction wCNT of the carbon nanotube for the 
purpose of comparisons. It can be observed that the volume 
fraction of the CNT has so much influence on the real part 
of dimensionless frequencies of the plates. It is noticeable 
that the dimensionless frequencies of FG-X CNTRC plates 
are larger than deflections of UD-CNTRC plates while 
those of FG-O CNTRC plate are smaller through these four 
types of plates with the same mass fraction of the CNT. 
This is because that the form of distribution of 
reinforcements can affect the stiffness of plates and it is 
thus expected that the desired stiffness can be achieved by 
adjusting the distribution of CNTs along the thickness 
direction of plates. It is concluded that reinforcements 
distributed close to top and bottom are more efficient than 
those distributed nearby the mid-plane for increasing the 
stiffness of plates. 

Table 3 shows the influences of moving speed in both x 
and y directions on the real part of dimensionless 
frequencies of nanocomposite plate. This table approves 
that with increasing C*

x and C*
y, the frequencies of 

composite plate decreases, while the reduction percent is 
lower for the moving plate in x direction. This is due to the 
fact that adding CNTs along x direction leads to increase 
stability of moving plate and consequently the frequencies 
increase. 

The influences of moving speed in both x and y 
directions are demonstrated in Fig. 3. The left figure is 
related to real part of dimensionless frequency versus 
dimensionless moving speed in x direction when the 

 
 

Fig. 2 The real part of dimensionless frequency versus 
length to thickness ratio in different plate theories 

Table 2 Dimensionless frequencies of composite plate reinforced by CNTs which are obtained by various shear deformation theories
(a = 10 h, T = 300 K, C*

x = 0, C*
y = 0) 

  CPT FSDT TSDT HSDT SSDT NFSDT 

V*
CNT = 0.11 

UD 0.3482 0.2855 0.2790 0.3043 0.2792 0.3075 

FG-X 0.3986 0.2989 0.2931 0.3001 0.2937 0.3406 

FG-O 0.2892 0.2621 0.2554 0.3109 0.2551 0.2645 

FG-V 0.3112 0.2722 0.2674 0.3100 0.2675 0.2812 

V*
CNT = 0.14 

UD 0.3618 0.3076 0.3014 0.3392 0.3015 0.3237 

FG-X 0.4104 0.3229 0.3172 0.3345 0.3176 0.3571 

FG-O 0.3060 0.2824 0.2764 0.3466 0.2762 0.2819 

FG-V 0.3272 0.2933 0.2888 0.3454 0.2889 0.2982 

V*
CNT = 0.17 

UD 0.3642 0.3114 0.3053 0.3457 0.3054 0.3265 

FG-X 0.4126 0.3270 0.3213 0.3407 0.3218 0.3601 

FG-O 0.3085 0.2859 0.2799 0.3535 0.2797 0.2846 

FG-V 0.3292 0.2966 0.2922 0.3522 0.2923 0.3007 
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velocity in y direction is zero. Also, in the absence of C*

x, 
the effect of moving speed in y direction on vibration 
frequencies of moving plate is illustrated in the right side of 
Fig. 3. As can be seen, the critical speed of composite plate 
moving along the x direction is higher than when it moves 
along the y direction. It’s due to the fact that mechanical 
properties of CNTRC plates are much higher in the 
longitudinal direction (in x axis) than in the transverse 
direction (in y axis) since CNTs only align in x direction. 
Therefore, the stability and consequently the critical speed 
increase when the moving plate reinforced by CNT along 
the x direction. Moreover, Fig. 3 demonstrates the effect of 
distribution of CNTs on vibration frequencies of composite 
plate. It can be concluded that the highest and lowest 
frequencies are related to FG-X and FG-O distributions, 
respectively, due to reinforcements distributed close to top 
and bottom are more efficient than those distributed near 
the mid-plane for increasing the stiffness of CNTRC plates. 

The influences of CNT distribution on dimensionless 
frequencies versus aspect ratio of CNTRC plate are 
demonstrated in Fig. 4. This figure approved that increasing 
aspect ratio of composite plate leads to increase frequencies 
 
 

 
 
of moving system. In addition, the effect of CNTs 
distribution is more significant at square plate. Also, it can 
be found that the frequencies of composite plate which is 
reinforced by CNTs in FG-X distribution are more than 
others. 

The influences of volume fractions of composite plate 
on dimensionless frequencies versus dimensionless moving 
speed ratio are demonstrated in Fig. 5. This figure approved 
that increasing moving speed ratio leads to decrease 
frequencies of moving system. In addition, the effect of 
CNTs reinforcement is more significant at in high moving 
speed ratio. Also, it can be found that the frequencies of 
composite plate reinforced by 0.17 volume fractions of 
CNTs are close to 0.14. So, in this study V*

CNT = 0.17 is 
selected for the composite plate. It should be noted that 
designers could meet their purposes by selecting the 
suitable percent of fiber in composite structures. 

As mentioned ago, SWCNTs is selected as a reinforce- 
ment of face sheets of sandwich plate. The mechanical 
properties of CNTs at different temperatures are adopted 

 
 

Table 3 The influence of moving speed on dimensionless frequencies of composite plate reinforced by CNTs which are obtained by 
various shear deformation theories (a = 10 h, T = 300 K, V*

CNT = 0.17, FG-X distribution) 

  CPT FSDT TSDT HSDT SSDT NFSDT 

C*
x = 0 

C*
y = 0 0.4022 0.2971 0.3005 0.3104 0.3010 0.3457 

C*
y = 0.01 0.3972 0.2904 0.2938 0.3040 0.2944 0.3400 

C*
y = 0.02 0.3820 0.2692 0.2729 0.2838 0.2735 0.3221 

C*
y = 0.03 0.3553 0.2297 0.2340 0.2466 0.2347 0.2898 

C*
x = 0.02 

C*
y = 0 0.3972 0.2904 0.2938 0.3040 0.2944 0.3400 

C*
y = 0.01 0.3922 0.2835 0.2870 0.2974 0.2876 0.3341 

C*
y = 0.02 0.3768 0.2618 0.2656 0.2768 0.2662 0.3159 

C*
y = 0.03 0.3497 0.2209 0.2254 0.2385 0.2261 0.2829 

C*
x = 0.04 

C*
y = 0 0.3820 0.2692 0.2729 0.2838 0.2735 0.3221 

C*
y = 0.01 0.3768 0.2618 0.2656 0.2768 0.2662 0.3159 

C*
y = 0.02 0.3608 0.2381 0.2423 0.2545 0.2429 0.2966 

C*
y = 0.03 0.3323 0.1923 0.1974 0.2123 0.1982 0.2612 

 

Fig. 3 The influences of CNT distribution on the real part 
of dimensionless frequency versus dimensionless 
moving speed 

Fig. 4 The influences of CNT distribution on the real part 
of dimensionless frequency versus aspect ratio of 
composite plate 
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from Wang and Shen (2012). Fig. 6 presents the effect of 
temperature on vibration frequencies of moving sandwich 
plate. As can be seen, increasing temperature leads to 
increase the frequencies of moving composite plate. So by 
considering appropriate temperature, the stability of moving 
structures can be controlled and optimized to design and use 
this kind of structures. 

Figs. 7 and 8 illustrate the three-dimensional plot of 
simultaneous effects of (K*

w, C*
d) and (K*

gx, K*
gy) on the 

dimensionless frequency of composite plate, respectively. 
Fig. 7 shows that the stability of CNTRC plate decreases 
with increasing damping coefficient of elastic medium and 
decreasing Winkler constant. Also, Fig. 8 demonstrates that 
increasing both K*

gx and K*
gy leads to increase stability of 

CNTRC plate, while the influence of K*
gy is more effective 

than K*
gx. So, the optimum values of foundation parameters 

can be selected to improve the stability of CNTRC plate by 
using the results of recent two figures. 

The influences of moving speed in x and y directions, 
simultaneously, is shown in Fig. 9. As can be seen, the 
variation of dimensionless frequencies with increasing C*

y is 
more evident than C*

x. It can be concluded that due to 

 
 

 
 

 
 

existence of CNTs reinforcement align in x direction, the 
mechanical properties of CNTRC plates are much higher in 
the longitudinal direction (in x axis) than in the transverse 
direction (in y axis) and consequently the slop of curve 

Fig. 5 The influences of volume fraction of CNTs on the 
dimensionless frequency versus dimensionless 
moving speed ratio in two direction 

Fig. 6 The real part of dimensionless frequency versus 
dimensionless moving speed ratio for various 
temperature changes 

Fig. 7 Three-dimensional plot of dimensionless frequency 
variation versus Pasternak shear constant in ς and  
η directions 

Fig. 8 Three-dimensional plot of dimensionless frequency 
variation versus Winkler constant and damping 
constant 

Fig. 9 Three-dimensional plot of dimensionless frequency 
variation versus moving speed in x and y directions
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associated with moving speed in x direction is lower than 
other case. 

 
 

5. Conclusions 
 
Based on various types of shear deformation theories, 

vibration analysis of composite plate moving in two 
directions was developed for the first time. Orthotropic 
visco-Pasternak foundation was developed to consider the 
influences of orthotropy angle, damping coefficient, normal 
and shear modulus. Considering simply supported boundary 
conditions, the motion equations were obtained using 
Hamilton’s principle and solved by analytical solution. It 
was found that vibrating behavior of moving CNTRC plate 
was strongly dependent on moving speed, so that, with 
increasing moving speed, system stability decreases and 
became susceptible to buckling. In addition, the stability of 
FGCNTRC plate can be improved, considerably, by 
changing the distribution of CNTs. Moreover, orthotropic 
visco-Pasternak foundation plays an important role on the 
stability of axially moving SLGS, so that, varying the shear 
modulus of orthotropic elastic medium cause to change the 
intensity and the trend of orthotropy angle. The results of 
this study is hoped to be used in optimum design of 
aerospace and military equipment. 
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Appendix A 
 

All the parameters which are defined in Eqs. (13)-(15) can be 
written as follows: 

Strain energy parameters: 
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Kinetic energy parameters: 
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