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Vibration analysis of functionally graded nanocomposite
plate moving in two directions
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Abstract. In the present study, vibration analysis of functionally graded carbon nanotube reinforced composite (FGCNTRC)
plate moving in two directions is investigated. Various types of shear deformation theories are utilized to obtain more accurate
and simplest theory. Single-walled carbon nanotubes (SWCNTSs) are selected as a reinforcement of composite face sheets inside
Poly methyl methacrylate (PMMA) matrix. Moreover, different kinds of distributions of CNTs are considered. Based on
extended rule of mixture, the structural properties of composite face sheets are considered. Motion equations are obtained by
Hamilton’s principle and solved analytically. Influences of various parameters such as moving speed in x and y directions,
volume fraction and distribution of CNTs, orthotropic viscoelastic surrounding medium, thickness and aspect ratio of composite
plate on the vibration characteristics of moving system are discussed in details. The results indicated that thenatural frequency or
stability of FGCNTRC plate is strongly dependent on axially moving speed. Moreover, a better configuration of the nanotube
embedded in plate can be used to increase the critical speed, as a result, the stability is improved. The results of this investigation
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can be used in design and manufacturing of marine vessels and aircrafts.
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1. Introduction

Moving materials are employed in different industrial
applications such as magnetic tapes, paper and textile webs
during production, processing and printing, plastic sheets,
films, and the like. In general, although the mechanical
characteristics of moving structures has been investigated
up to now, much information is not available on the two
dimensional moving systems. The effect of moving
structures may be enough to change the dynamic behavior
of the system even at low velocities. Higher than a special
speed that is called “critical speed”, the behavior of the
system is changed. In the other words, system becomes
unstable and may leads to irreparable damages, such as loss
of raw material, low surface quality and unsatisfactory
performance. Prediction of the dynamic behavior of moving
systems, and ensuring that they remain stable, are require-
ments for the optimal design of these systems.

As the one of the first researches in the field of moving
plates, Lin (1997) studied stability and vibration charac-
teristics of axially moving plates. He demonstrated that the
critical speed is equal to the speed at the onset of instability
predicted by static and dynamic analyses. Also, it increases
by reducing the length to width ratio and increasing the
flexural stiffness of the plate. Wang (1999) investigated
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numerical analysis of moving orthotropic thin plates. He
utilized a mixed finite element formulation based on the
Mindlin-Reissner plate theory for his work and proved that
it is reliable for both frequency and transient dynamics
analyses. The modal spectral element formulation for
moving thin plates was used by Kim et al. (2003). They
assumed that plate moving with constant speed and
subjected to a uniform in-plane axial tension. Then, they
formulated the modal spectral element matrix in the
frequency-domain by using the Kantorovich method.
Hatami ef al. (2007) developed free vibration analysis of
axially moving symmetrically laminated plates subjected to
in-plane forces with classical plate theory. At first, they
employed an exact method to analyze vibration of multi-
span traveling cross-ply laminates, and then, utilized a
semi-analytical finite strip method for moving symmetric
laminated plates. In the other research, Hatami et al. (2008)
considered exact free vibration analysis of axially moving
viscoelastic plates with a constant axial speed. By using the
rheological models, they obtained the stiffness matrix of
viscoelastic plate and showed the influences of axial speed
and viscoelastic parameters on the free vibration of moving
plates. Vibration analysis of axially moving viscoelastic
plate with parabolically varying thickness was analyzed by
Zho and Wang (2008). They considered the Kelvin—Voigt
model to simulate the viscoelastic behavior of materials and
calculated the dimensionless complex frequencies of their
system with various boundary conditions. Yang et al. (2009)
investigated approximate solutions of axially moving
viscoelastic beams subject to multi-frequency excitations.
They studied about superharmonic, subharmonic, and

ISSN: 1229-9367 (Print), 1598-6233 (Online)



530 Ali Ghorbanpour Arani, Elham Haghparast and Hassan BabaAkbar Zarei

combination resonances. In other work, Yang and Fang
(2013) presented the non-linear creep vibration of an axially
moving string constituted by a fractional differentiation
law.Their results indicated that the amplitude predicted by
the fractional model is larger than that predicted by the
viscoelastic solid models. Marynowski (2010) applied the
viscoelastic theory to study free vibration of the axially
moving Levy-type plate with two simply supported and two
free edges boundary conditions. He illustrated influences of
transport speed and relaxation times modeled by two-
parameter Kelvin-Voigt and three-parameter Zener
rheological models on the dynamic behavior of the axially
moving viscoelastic plate. Also, Marynowski and Grabski
(2013) investigated dynamic analysis of an axially moving
plate under thermal loading. They solved the differential
equations of the transverse motion by employing the
extended Galerkin method and demonstrated the effects of
thermal critical loading, axial speed and tension on dynamic
behavior of axially moving plate. The stability analysis of
an axially moving elastic plate travelling at constant speed
between two supports with a 2D formulation was done by
Banichuk et al. (2010). They inserted a thin elastic plate
under bending and tension and observed that the 2D
formulation reduces to the classical 1D model for the limit
of a narrow strip. In other work, Banichuk er al. (2011)
presented the static stability problems of axially moving
orthotropic membranes and plates. They solved the
equations of motion using analytical techniques and showed
that the buckling mode has a shape localized in the regions
close to the free boundaries. Tang and Chen (2011)
investigated nonlinear free transverse vibrations of in-plane
moving plates subjected to plane stresses. They utilized the
multiple scales method to solve the nonlinear partial
differential equation and presented the relationship between
the nonlinear frequencies and the initial amplitudes at
various in-plane moving speeds and the nonlinear
coefficients, respectively. Then, in other research, nonlinear
forced vibrations of in-plane translating viscoelastic plates
under plane stresses were presented by Tang and Chen
(2012). They employed the Routh—Hurvitz criterion in order
to calculate the stabilities of the steady-state responses and
examined the influences of the in-plane axial speed, the
viscosity coefficient, and the excitation amplitude on it.
Yang et al. (2011) studied vibrations and stability of an
axially moving rectangular antisymmetric cross-ply
composite plate. They determined the natural frequencies
for the in-plane and out-of-plane vibrations by both the
Galerkin method and differential quadrature method. Then,
by investigating the complex natural frequencies for
constant axial speed, they studied the instability caused by
divergence and flutter. Also, Yang ef al. (2012) used finite
difference method for dynamical analysis of axially moving
plate. They considered the complex natural frequencies for
linear free vibrations and bifurcation for forced nonlinear
vibration of axially moving viscoelastic plate and derived
the equations of out-of-plane motion by Newton’s second
law. The nonlinear dynamics of an axially moving plate for
forced motions was numerically developed by Ghayesh et
al. (2013). Based on Lagrange equations, they determined
the equations of motion via Hamilton’s principle and

utilized the pseudo-arc length continuation technique to
solve them. An and Su (2014) investigated dynamic
analysis of axially moving orthotropic plates using the
generalized integral transform technique (GITT). They
assumed two types of boundary conditions and concluded
that the amplitudes of moving orthotropic plate reduce with
decreasing translating speed and aspect ratio for both CCCC
and CCSS. At the one of last research, Ghorbanpour Arani
and Haghparast (2016) studied vibration and instability of
axially moving viscoelastic micro-plate. To discuss the size
effect, they used the modified couple stress theory (MCST).
They obtained the equations of motion based on Hamilton’s
principle. Also, the effects of translating speed, viscosity
coefficient, size effect, thickness and aspect ratio on the
vibration characteristics were expressed by them.

Despite mentioned researches, free vibration and
instability analysis of FGCNTRC plate moving in two
directions is a novel topic that cannot be found in literature.
To the best of authors’ knowledge, for the first time,
analysis of moving composite plate based on various types
of shear deformation theories is developed in this paper.
Utilizing Hamilton’s principle governing equations of
motion are derived and solved by an analytical method for
different boundary conditions. Effects of various parameters
such as moving speed, orthotropic viscoelastic surrounding
medium, aspect ratio, volume fraction and distributions of
CNTs on instability and critical speed of moving composite
plate are discussed in details. The results of this
investigation can be used to improve the design and
manufacturing of marine vessels.

2. Fundamental relations

As shown in Fig. 1, consider a rectangular composite
plate with length (a), width (b) and thickness (%) which
moves along the x and y directions with constant speed C,
and C,, respectively. Also, composite plate is taken to rest
on orthotropic visco-Pasternak foundation. CNTs reinforce-
ments are distributed through the thickness of composite
plate as uniform distribution (UD) and three functionally
graded (FG) distributions (FG-V, FG-O and FG-X). As it
can be observed in Fig. 1, in UD distribution, CNTs are

Shear foundation

FG-X FG-0

Fig. 1 Composite plate with different types of CNT
distributions resting on orthotropic visco-
Pasternak foundation moving in two directions
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distributed in whole of plate uniformly, in FG-V
distribution, CNTs are distributed from the bottom to top of
plate linearly, in the type of FG-O, distribution of CNTs are
decreased from the middle to outside of plate until it
reaches zero and this case is vice versa for FG-X
distribution.

The volume fraction of various distributions of CNTs in

composite plate can be expressed as follows
(Mohammadimehr et al. 2015)
Vi uD
a +272) Vo, FG -V
Vewr = 2 . 1
2(1-%) V., FG-0 M
2L, -
4(7) V eur FG-X
where
V * — WCNT

CNT

Weyr + (pCNT /IOM )(1 ~Woenr ) ’
in which, w and p are defined as the mass fraction and mass

density, respectively. Also, the subscript M is used to
describe matrix phase.

2.1 The extended rule of mixture

The mechanical properties of CNT reinforced composite
plate including longitudinal (£);), transversely -elastic
moduli (£7,) and shear modulus (G1,) can be obtained based
on the extended rule of mixture as following form (Gibson
1994)

E,=nV o Eonr V0 Ey s (2a)
o Ven Vu (2b)
E, E,o 2M

I = —VC’W +V_M’ (2¢)
G, Gu G

Via :V(;vr Viexr TV Vs s (2d)

vy =B, E,, (2e)

P :VCNT Povr +VM Pu > (29

where 7; (i = 1, 2, 3) and v are the efficiency parameters and
Poisson’s ratio, respectively.

2.2 Displacement fields

In this study, to compare the accuracy of various shear
deformation plate theories, six theories are selected.
According to this, displacement fields which are predicted
by four theories can be expressed as following form
(Ghorbanpour Arani and Haghparast 2016)

ow (x,y,t)
ox

V(x,y,z,r)=v<x,y,r)—z%y’y’”w(zm,(x,m 3)

U(st’:Zsf):u(an/J)—Z +l//(Z)¢\ (xayat)s

W (x,y,z,t)=w(x,y.,t),

in which u, v and w present the displacement components of
composite plate along the x, y and z directions, respectively.
Also, ¢, and ¢, are the rotation of middle surface in the x
and y directions, respectively. It should be mentioned that
by description of y(z), the four type of theories can be
specified. Classical plate theory (CPT), first order shear
deformation theory (FSDT), third order shear deformation
theory (TSDT) and sinusoidal shear deformation theory
(SSDT) can be introduced as y(z) = 0, z, z — 4z°/3h* and

h . (ﬂzj .
—sin| — |, respectively.
V4 h

According to higher order shear deformation theory
(HSDT), displacement fields can be written as

U(xvyvzat) :u(xayvt)+Z¢x(x5y5t)+f(z)[¢x(x7y7t)+W)a

V(23220 = W .0+ 26, (x.0.0) +f<z)[¢,,(x,y,r) +Wj @
y

W(x,y,z,t) =w(x, y,t),

where f(z) :ﬁsin(%} Also, the displacement fields are
Vid

expressed based on new FSDT as (Yang ef al. 2013)

U(x,y,z,t):u(x,y,t)—z aﬂﬁ(x,y,t),
X
V(x,y,z,t):v(x,y,t)—zaiH(x,y,t), ®)
Y
w (x,y,z,t):w (x,y,t),

where 6 is an unknown displacement function of the middle
of plate.

2.3 Kinematics and constitutive equations

The linear relations between the strain and displacement
fields can be obtained by

ou ou  or

Ox oy Ox
ol O U U O -V A
. oy Tl 2|0z ox
R B oV ow

Oz 6_Z+g

in which, ¢ and y describe normal and shear strains,
respectively. Substituting Egs. (3)-(5) in Eq. (6), kinematics
equations are determined and it should be noted that ¢, will
be calculated equal to zero for six theories. Therefore, the
constitutive equations can be written as follows
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Gxx Qll QIZ 0 gxx
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Ty 0 0 O Yy (7
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Tyz ‘ 0 Q55 Vxz
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o and 7 are normal and shear stresses, respectively and
0Oy (i, j = 1, 2 and 44, 55, 66) indicate the terms of
engineering constants. Also, K, is the shear correction
factor. For FSDT, K = 5/6, and for the other five theories,
K,=1.

2.4 Two dimensional moving of composite plate

The composite plate moving along the x and y directions
with constant speed C, and C,, respectively. The velocity
vector of plate can be obtained based on continuum
mechanics as following relation (Marynowski and Grabski
2013)

Dr o e
t ot X, ®)

(i=x,y,zand V_=C_, v, =Cy, V. =0)

in which 7=U+C0)i +(V+C,t)j+W k present the
displacement vector. Thus, the velocity vector (V) can be
written by Eq. (8)

V:[aa_U+C +C, (’;—U+C) %]j

it X

ov ov ov ow ow ow |~ ®
+ —+C +C,—+C — J+ —+C —+C, — |k.
ot ox Oy o T ox Oy

2.5 Visco-Pasternak foundation

In order to simulate normal load, the simplest way is the
use of Winkler type of elastic foundation. But, visco-
Pasternak type of elastic foundation is one of the most
comprehensive model that is able to consider both normal
and transverse shear loads. Moreover, it takes into account
the effects of damping loads on the system. In this research,
the bottom surface of composite plate continuously rests on
a visco-Pasternak foundation. So, based on this model, the
force applied to the plate can be written as (Ghorbanpour
Arani et al. 2016)

2 2
F =KwW +Cd o _Kgx aVVZ _ng aVVz > (10)
ot ox oy

where K, and C,; represent Winkler and damping
coefficients. Also, K, and K, are shear foundation
parameters in x and y directions.

2.6 Hamilton’s principle

The equations of motion are obtained based on
Hamilton’s principle. The analytical form of Hamilton’s
principle can be expressed as follows

51‘[:5T(U-1<—2)dt=0, (11)

in which, U, K and X are strain energy, kinetic energy and
external work, respectively, and each terms can be
expressed according to the following relations
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ézza(jj%F-W dzdA). (12¢)

By substituting Egs. (7), (9) and (10) into Egs. (12a),
(12b) and (12c), respectively, and subsequent results into
Eq. (11), the governing equations of motion can be derived.

By setting the coefficients of du, dv, dw, d¢, and ¢, to
zero, separately, the governing equations of motion based
on CPT, FSDT, TSDT and SSDT can be obtained as follows
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~(13d)

(13e)

By putting the coefficients of du, ov, dw and 66 to zero,
separately, the governing equations of motion based on

NFSDT can be calculated as follows
(13d)
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Also, by setting the coefficients of Ju, Jv, dw, d¢, and
d¢, to zero, separately, the governing equations of motion
based on HSDT can be determined as follows
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It should be noted that all the parameters which are
expressed in Egs. (13)-(15) are defined in Appendix A.

3. Solution approach

The Navier’s type solution is selected to solve the
equations of motion of simply-supported composite
plate.Based on this procedure, the displacement variables
are assumed as functions which satisfy at least the different
geometric boundary conditions. It should be noted that the
simply supported boundary condition is selected at x = {0,
a} and y = {0, b}. According to above explanations, the
functions of displacement variables can be considered as
follows (Wang et al. 2000)

u(x,y,t)= ZZU cos[

n=lm=1

v(x,y,t)= ZZVW sm[

n=1m=l1

)S nﬂ-y ei(umnl ,
b

cos I’lﬂ'y ei(um,,t’
b

w (x > ,t) = Zszn Sil’l(m;[x jsin(%jeimwt ,
n=lm=1

L& mx nry \ ; (16)
¢,\' (x sV 7t) = Z ¢xmn COS[ jSin [TJ e‘ ! s

n=lm=1 a

N M
3= 33, s P o 222 e,
a

n=lm=l1

N M
H(X,y 5t) = Zz¢vmn Sin(mﬂ.x Jsln(nibry jeiwm”z’
) a

where m and n present half axial and transverse wave
numbers, respectively and w,,, is the natural frequency of
composite plate.

Therefore, final relations can be obtained as a following
matrices form

[P ]5><5 {U"’” an Wmn ¢xnm ¢ymn }T = {O} P}
for CPT, FSDT, TSDT, SSDT and HSDT

a7

R (U, V.. W, 6, ={0}. torNrsDT (I8

The elements of matrices P and R in above relations can
be determined by substituting Eq. (16) into Egs. (13)-(15)
for six theories, separately.

4. Numerical results and discussion

In this section, effects of various parameters such as
distribution and volume fraction of CNTs, moving speed in
x and y directions, orthotropic pattern of viscoelastic
foundation, aspect ratio and thickness on the vibration
characteristics of moving CNTRC plate are discussed in
details. Poly methyl methacrylate, referred to as PMMA, is
selected for the matrix of CNTRC plate inside CNTs fibers.
The effective material properties of PMMA and CNTs are
presented in Table 1.

It should be noted that #; = 0.149, 7, = 0.934 for the
case of VCNT— 0.11, #; = 0.150, #, = 0.941 for the case of
VCNT = 0.14, and #; = 0.149, 5, = 1.381 for the case of
V*CNT = 0.17. Moreover, it’s assumed that 7, = #; and G,
G135 = Gy according to Zhu et al. (2012). It should be
mentioned that following dimensionless parameters are
defined to obtain dimensionless results

Table 1 Mechanical properties of PMMA and SWCNT with 10
(Wang and Shen 2012)

CNT CNT
Ell D

CNT CNT CNT
E22 GIZ

pP Pm O Em
(Kg/m®*) (GPa) (GPa) (GPa) (Kg/m®) (GPa)

1400 600 10 019 172 1190 03 25
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The comparison between six plate theories is performed
in Fig. 2. This figure shows the real part of dimensionless
frequency versus length to thickness ratio. It can be seen
that dimensionless frequencies decrease with increasing
length to thickness ratio. As can be observed, the difference
between the results of various theories is more prominent in
low length to thickness ratio. In addition, it can be
concluded that for low a/h, the results of CPT, NFSDT and
HSDT is incredible. Moreover, it is evident that the results
of TSDT are close to SSDT and these theories are more
reliable than others. Based on the results of this figure,
TSDT is selected to obtain the effect of various parameters

(19)

on vibration characteristics of moving composite plate.

In another attempt, the comparison between six shear
deformation plate theories is performed in Tables 2-3. Table
2 presents dimensionless natural frequencies of CNTRC
plate (with zero moving speed) for different types of
distribution and volume fraction of CNTs which are
obtained by six shear deformation plate theories. It can be
found that the in different types of distribution and volume
fraction of CNTs, the results of HSDT and SSDT is more
reliable than other plate theories. Note that we assume that
the UD-CNTRC and FG-CNTRC plates have the same
overall mass fraction wcyr of the carbon nanotube for the
purpose of comparisons. It can be observed that the volume
fraction of the CNT has so much influence on the real part
of dimensionless frequencies of the plates. It is noticeable
that the dimensionless frequencies of FG-X CNTRC plates
are larger than deflections of UD-CNTRC plates while
those of FG-O CNTRC plate are smaller through these four
types of plates with the same mass fraction of the CNT.
This is because that the form of distribution of
reinforcements can affect the stiffness of plates and it is
thus expected that the desired stiffness can be achieved by
adjusting the distribution of CNTs along the thickness
direction of plates. It is concluded that reinforcements
distributed close to top and bottom are more efficient than
those distributed nearby the mid-plane for increasing the
stiffness of plates.

Table 3 shows the influences of moving speed in both x
and y directions on the real part of dimensionless
frequencies of nanocomposite plate. This table approves
that with increasing C, and C*y, the frequencies of
composite plate decreases, while the reduction percent is
lower for the moving plate in x direction. This is due to the
fact that adding CNTs along x direction leads to increase
stability of moving plate and consequently the frequencies
increase.

The influences of moving speed in both x and y
directions are demonstrated in Fig. 3. The left figure is
related to real part of dimensionless frequency versus
dimensionless moving speed in x direction when the

Table 2 Dimensionless frequencies of composite plate reinforced by CNTs which are obtained by various shear deformation theories

(@a=10h,T=300K, C;=0, C,=0)

CPT FSDT TSDT HSDT SSDT NESDT

UD 0.3482 0.2855 0.2790 03043 0.2792 03075

. FG-X 0.3986 0.2989 0.2931 0.3001 0.2937 0.3406
Vewr= 0.1 FG-O 0.2892 0.2621 0.2554 0.3109 0.2551 0.2645
FG-V 03112 0.2722 0.2674 03100 0.2675 0.2812

UD 03618 0.3076 0.3014 03392 03015 03237

. FG-X 0.4104 0.3229 03172 0.3345 03176 03571
Vowr=0.14 FG-O 0.3060 0.2824 0.2764 0.3466 0.2762 0.2819
FG-V 0.3272 0.2933 0.2888 0.3454 0.2889 0.2982

UD 03642 03114 0.3053 0.3457 03054 0.3265

. FG-X 0.4126 03270 03213 0.3407 03218 0.3601
Var=0.17 FG-O 0.3085 0.2859 0.2799 03535 0.2797 0.2846
FG-V 03292 0.2966 0.2922 03522 0.2923 03007
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Table 3 The influence of moving speed on dimensionless frequencies of composite plate reinforced by CNTs which are obtained by
various shear deformation theories (¢ = 10 2, T=300 K, V' cyr = 0.17, FG-X distribution)

CPT FSDT TSDT HSDT SSDT NFSDT
C,=0 0.4022 0.2971 0.3005 03104 03010 0.3457

o C,=0.01 0.3972 0.2904 0.2938 0.3040 0.2944 0.3400

: Cy=0.02 0.3820 0.2692 0.2729 0.2838 0.2735 0.3221
C,=0.03 0.3553 0.2297 0.2340 0.2466 0.2347 0.2898

€= 0.3972 0.2904 0.2938 0.3040 0.2944 0.3400

¢ 002 C,=0.01 0.3922 0.2835 0.2870 0.2974 0.2876 0.3341
' Cy=0.02 0.3768 0.2618 0.2656 0.2768 0.2662 0.3159
C,=0.03 0.3497 0.2209 0.2254 0.2385 0.2261 0.2829

C,= 0.3820 0.2692 0.2729 0.2838 0.2735 0.3221

. C,=0.01 03768 0.2618 0.2656 0.2768 0.2662 0.3159
Cem00d C,=0.02 0.3608 0.2381 0.2423 0.2545 0.2429 0.2966
C,=0.03 03323 0.1923 0.1974 02123 0.1982 0.2612

velocity in y direction is zero. Also, in the absence of c.,
the effect of moving speed in y direction on vibration
frequencies of moving plate is illustrated in the right side of
Fig. 3. As can be seen, the critical speed of composite plate
moving along the x direction is higher than when it moves
along the y direction. It’s due to the fact that mechanical
properties of CNTRC plates are much higher in the
longitudinal direction (in x axis) than in the transverse
direction (in y axis) since CNTs only align in x direction.
Therefore, the stability and consequently the critical speed
increase when the moving plate reinforced by CNT along
the x direction. Moreover, Fig. 3 demonstrates the effect of
distribution of CNTs on vibration frequencies of composite
plate. It can be concluded that the highest and lowest
frequencies are related to FG-X and FG-O distributions,
respectively, due to reinforcements distributed close to top
and bottom are more efficient than those distributed near
the mid-plane for increasing the stiffness of CNTRC plates.
The influences of CNT distribution on dimensionless
frequencies versus aspect ratio of CNTRC plate are
demonstrated in Fig. 4. This figure approved that increasing
aspect ratio of composite plate leads to increase frequencies

0.35 0.35

1 03f-—e_

{0250

4 02

Dimensionless frequency (Q)
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it
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\
|
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|
al
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0.1 012 O 0.01 0.02 0.03 0.04 0.
c, c

05 0.06 0.07

Fig. 3 The influences of CNT distribution on the real part
of dimensionless frequency versus dimensionless
moving speed

of moving system. In addition, the effect of CNTs
distribution is more significant at square plate. Also, it can
be found that the frequencies of composite plate which is
reinforced by CNTs in FG-X distribution are more than
others.

The influences of volume fractions of composite plate
on dimensionless frequencies versus dimensionless moving
speed ratio are demonstrated in Fig. 5. This figure approved
that increasing moving speed ratio leads to decrease
frequencies of moving system. In addition, the effect of
CNTs reinforcement is more significant at in high moving
speed ratio. Also, it can be found that the frequencies of
composite plate reinforced by 0.17 volume fractions of
CNTs are close to 0.14. So, in this study ¥ ey = 0.17 is
selected for the composite plate. It should be noted that
designers could meet their purposes by selecting the
suitable percent of fiber in composite structures.

As mentioned ago, SWCNTs is selected as a reinforce-
ment of face sheets of sandwich plate. The mechanical
properties of CNTs at different temperatures are adopted

0.75
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Fig. 4 The influences of CNT distribution on the real part
of dimensionless frequency versus aspect ratio of
composite plate
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from Wang and Shen (2012). Fig. 6 presents the effect of
temperature on vibration frequencies of moving sandwich
plate. As can be seen, increasing temperature leads to
increase the frequencies of moving composite plate. So by
considering appropriate temperature, the stability of moving
structures can be controlled and optimized to design and use
this kind of structures.

Figs. 7 and 8 illustrate the three-dimensional plot of
simultaneous effects of (K*W, CZ) and (Kz,x, K;,y) on the
dimensionless frequency of composite plate, respectively.
Fig. 7 shows that the stability of CNTRC plate decreases
with increasing damping coefficient of elastic medium and
decreasing Winkler constant. Also, Fig. 8 demonstrates that
increasing both K, and Ky, leads to increase stability of
CNTRC plate, while the influence of K, is more effective
than K*gx. So, the optimum values of foundation parameters
can be selected to improve the stability of CNTRC plate by
using the results of recent two figures.

The influences of moving speed in x and y directions,
simultaneously, is shown in Fig. 9. As can be seen, the
variation of dimensionless frequencies with increasing C’; is
more evident than C.. It can be concluded that due to
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Fig. 7 Three-dimensional plot of dimensionless frequency
variation versus Pasternak shear constant in ¢ and
n directions

o
©
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o
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o Dimensionless frequency (Q)

Fig. 8 Three-dimensional plot of dimensionless frequency
variation versus Winkler constant and damping
constant

o
o w
w o

Dimensionless frequency Q)
%

o
oNn

Fig. 9 Three-dimensional plot of dimensionless frequency
variation versus moving speed in x and y directions

existence of CNTs reinforcement align in x direction, the
mechanical properties of CNTRC plates are much higher in
the longitudinal direction (in x axis) than in the transverse
direction (in y axis) and consequently the slop of curve
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associated with moving speed in x direction is lower than
other case.

5. Conclusions

Based on various types of shear deformation theories,
vibration analysis of composite plate moving in two
directions was developed for the first time. Orthotropic
visco-Pasternak foundation was developed to consider the
influences of orthotropy angle, damping coefficient, normal
and shear modulus. Considering simply supported boundary
conditions, the motion equations were obtained using
Hamilton’s principle and solved by analytical solution. It
was found that vibrating behavior of moving CNTRC plate
was strongly dependent on moving speed, so that, with
increasing moving speed, system stability decreases and
became susceptible to buckling. In addition, the stability of
FGCNTRC plate can be improved, considerably, by
changing the distribution of CNTs. Moreover, orthotropic
visco-Pasternak foundation plays an important role on the
stability of axially moving SLGS, so that, varying the shear
modulus of orthotropic elastic medium cause to change the
intensity and the trend of orthotropy angle. The results of
this study is hoped to be used in optimum design of
aerospace and military equipment.
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Appendix A

All the parameters which are defined in Egs. (13)-(15) can be
written as follows:
Strain energy parameters:

4, = [ (02" )dz, (A1)
B, = J (0,T(z)" )z, (A-2)
', (dT@)Y
Cu _J/Z[Q‘f( i ] ]dz’ (A3)
D, = j (@, (7)) ez, (A-4)

Kinetic energy parameters:

hi2

I, = 7 J 2 pdz, (A-5)

I - j( P2 )iz (A-6)
I,= hhf z(p(zZ)dz, (A-7)
I, = Iz( pT(z))dz, (A-8)
I, - j( p2T(2))dz, (A-9)
I, = hhj/:( p.(T)) )z it

v(z) CPT,FSDT,TSDT,SSDT
where I'(z)=40 NFSDT
f(z) HSDT
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