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1. Introduction 

 

Progressive collapse is a disastrous phenomenon in 
which the failure of some key structural members leads to 
failure of other members; this in turn leads to the partial or 
even entire collapse of the structure (ASCE 2010, Rezvani 
et al. 2015, and Zhao et al. 2017). Progressive collapse first 
drew the attention of researchers in 1968 when a gas 
explosion occurred in a panel-type apartment tower at 
Ronan Point. In 2001, two jetliners crashed into the World 
Trade Center (WTC) towers at high speed, and the 
subsequent progressive collapse caused a large number of 
casualties and huge economic losses (Usmani et al. 2003). 
In studies based on research from 1968, many results have 
been obtained (Jiang and Chen 2012, Li and Hao 2013, and 
Malla et al. 2011). Applicable structural design codes have 
specified some essential requirements for structural 
integrity and collapse resistance (ASCE 2010 and EN 
2010). In addition, a few design guidelines for structures to 
resist progressive collapse have been published, such as the 
General Service Administration (GSA 2013) and Unified 
Facility Criteria (UFC 2013). 

So far, most research in this field has focused on the 
frame system. Little attention has been paid to long-span 
spatial steel structures, which are widely employed in large-
space public buildings (Fulop and Ivanyi 2004, Thai and 
Kim 2011, and Zhang et al. 2008). Although long-span 
spatial grid structures are characterised by a high degree of 
static indeterminacy, the sudden failure of key members 
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may lead to catastrophic progressive collapse, and catast-
rophic events involving such structures are common 
occurrence (Piroglu and Ozakgul 2016, Biegus and Rykaluk 
2009, and Kamari et al. 2015). For example, the steel truss 
of Sultan Mizan Zainal Abidin Stadium in Malaysia 
collapsed in 2009, the long-span steel roof of Twente 
Stadium in Holland was destroyed in 2011, and the steel 
roof of Itaquerao Stadium in Brazil collapsed during the 
construction process in 2014. For this reason, more research 
than ever should be focused on the progressive collapse of 
spatial structures. However, the present analysis methods 
for the progressive collapse of long-span spatial grid 
structures are the same as those in frame structures. This 
results in inevitable singular errors because long-span steel 
structures have some unique structural characteristics, such 
as long cantilevers and greater influence of the construction 
effect. Only by using the correct analysis method can the 
progressive collapse resistance capacity of structures be 
understood and appropriate protective measures be taken 
(Cai et al. 2012 and Liu 2013). 

A review of the literature related to this topic clearly 
showed that the progressive collapse behaviour of long-
span spatial grid structures has not received adequate 
attention among scholars in the past. Therefore, the aim of 
this study was to investigate analysis methods for the 
progressive collapse of long-span spatial grid structures. For 
this purpose, a direct design procedure known as the 
alternate load path method (Zhang et al. 2014, and 
Gerasimidis and Sideri 2016) was intensively studied, and 
new practical analysis methods were developed. The 
proposed methods were validated through engineering case 
analyses. All these methods were utilised in a computer 
simulation of the main stadium for the Universiade Sports 
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Center and compared with the design results. The proposed 
analytical methods were found to provide accurate and 
reliable models for the progressive collapse of long-span 
spatial grid structures. 

 
 

2. Evaluation method of important members 
 

Based on the research conducted during the 1970s, the 
alternate load path method has been recommended as a 
simplified analysis technique for investigating the potential 
progressive collapse of a structural design because it 
focuses on the expansion of local failures instead of the 
kinds of accidents. Since then, this method has been 
integrated into the provisions defined by the GSA (2013) 
and UFC (2013). One of the key tasks of the alternate load 
path method is to determine an important member. Agarwal 
et al. (2001) proposed a method based on stiffness to 
calculate the importance indices of structural components. 
Pandey and Barai (1997) presented a method based on 
sensitivity to measure structural redundancy. Zhang and Liu 
(2007) constructed a network of energy transfer for 
structural members and joints based on the energy transfer 
in frame structures under various loading conditions. Huang 
et al. (2013) provided a simplified evaluation method of 
structural robustness. Cai et al. (2012) discussed the 
importance of structural components through concept 
analysis and simplified sensitivity analysis. 

As described in the previous section, the above methods 
for the evaluation of members to be removed are suitable 
for frame structures. For long-span spatial grid structures, 
the failure member is often confirmed from the experience 
of engineers or an analysis of every member. However, 
even with modern computational power, such computer 
simulations are still extremely time-consuming and 
resource-heavy. In addition, there is no uniform standard for 
identifying important members, which leads to different 
indicators and evaluation results. In practice, an important 
member should be consistent for the same analysis object 
with different methods. Therefore, a simple and convenient 
numerical approach for evaluating the importance of 
members needs to be developed. 

 

2.1 Primary scope of the important member 
 

The failure of members in long-span spatial grid 
structures mainly involves the buckling failure of 
compression members and strength failure. It is commonly 
acknowledged that a member with a large stress ratio is of 
primary importance regarding strength control. For 
compression members, different initial geometric imperfec-
tions are first obtained through eigenvalue buckling 
analysis. The magnitude of the initial imperfection is l/300, 
where l is the span of the structure (JGJ 7-2010). Because 
the critical load of the lowest-order imperfection mode is 
not always the smallest for complex long-span spatial 
structures and the probability of occurrence decreases with 
an increasing buckling mode order, the structural nonlinear 
buckling state can be described by applying the first 10 
eigenvalue buckling modes in the model. On the one hand, 
ordering the eigenvalue buckling modes from low to high 
reflects the ordering of the stability load capacities for 

 
 

structural members from weak to strong. On the other hand, 
the structural nonlinear buckling states may not agree with 
the initial geometric imperfections due to strong structural 
nonlinearity. Thus, the nonlinear buckling states and first 10 
eigenvalue buckling modes are used together to determine 
the large response area that important members are chosen 
from. The rationality of this method is illustrated through an 
axial compression member with hinged ends, as shown in 
Fig. 1. 

The elastic buckling load is solved with the Rayleigh–
Ritz method (Chen 2013). The deflection of a compression 
member can be assumed to be 

 

lxy  sin  (1)
 

Then, the potential energy of the structure is 
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where 
P is the axial load, l is the span of the member and υ is 

the displacement at mid-span. E is the elastic modulus of 
the material. I is the moment of inertia for an unimpaired 
member. Here, I1 and I2 are the moments of inertia for the 
end section and mid-span section, respectively. Based on 
the principle of stationary potential energy, i.e., P ≠ 0 and υ 
≠ 0, the buckling load Pcr is 
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From Eq. (3), the elastic buckling load for the three 
kinds of sections can be obtained as 
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This result shows that the load capacity of a member 
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impaired in the large response area clearly decreases more 
than that in a small response area, even though the impaired 
ranges are identical. The mid-span area of the member is 
more important than the end area of the member. Therefore, 
it is feasible to determine the members of primary 
importance by buckling analysis. 

 

2.2 Multiple-response evaluation 
 

Compared with wind loads and seismic action, the 
vertical load always plays an important role in the design 
load for long-span spatial grid structures. In addition, fire 
and collision are infrequent. Therefore, a feasible approach 
is to analyse the response of the remaining structure under a 
vertical load and use this to describe the importance of 
members. 

The response of a structure includes the response of 
members (e.g., stress ratio of the member and node 
displacement) and the total response (e.g., load capacity, 
strain energy, and natural frequency). For the former, the 
remaining members with a large response can reflect the 
importance of the removed member. It is assumed that the 
response of members is a random variable obeying an 
approximately normal distribution because long-span 
spatial grid structures have many members. Then, the 
overall mean value μ and standard difference σ are 
estimated based on the response samples of members under 
normal service conditions and when a member is removed, 
respectively. Thus, calculating the 0.05-upper quantile η is 
easy under both conditions 
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  oko

r
k    (8)

 

where 
ηi is the response of member i and n is the number of 

members under normal service conditions or when member 
k has been removed. ηo and ηk are the 0.05-upper quantiles 
under the normal service condition and when member k has 
been removed. αr

k is the importance coefficient of member k 
based on the structural response r. If the increased response 
is detrimental to the structure, Eq. (8) returns a negative 
value. Conversely, Eq. (8) returns a positive value for the 
opposite case. 

For the overall response, the importance coefficient of 
member k is equal to the sensitivity index of removing 
member k 

  oko
r
k    (9)

 

where 
γo and γk are the overall responses under the normal 

service condition and when member k is removed, 
respectively. 

At present, several evaluation methods for important 
elements have been implemented, such as those based on 
the stiffness, strength, energy, sensitivity, and concept. 

 
 

However, these conventional methods only consider a 
single response of structures in progressive collapse 
analysis, and this may ignore some important elements 
because each response can only reflect some structural 
characteristics. For this reason, it is necessary to evaluate 
the importance of members according to multiple structural 
responses. 

Different structural responses will clearly lead to 
different importance coefficients. In order to consider 
various structural responses, the maximum value is used as 
the final importance coefficient of the member. Because the 
order of magnitude for each importance coefficient may be 
different, standardisation is needed. 
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Here, 
αr

k,s is the standardised importance coefficient, t is the 
number of primary important members, αF

k is the final 
importance coefficient, and m is the number of structural 
responses. 

In this paper, the above method is called the multiple-
response evaluation method based on the primary scope 
and the basic analysis procedure is proposed in Fig. 2. The 
results of this method can include all adverse conditions and 
correctly reflect the true important member. 

 

2.3 Verification 
 

In order to validate the proposed method, two simple 
examples are illustrated here. 

 

2.3.1 First case: Square pyramid grid structure 
A square pyramid grid structure with four hinge 

supports constituted of units of quadrangular pyramids was 
considered. The dimensions of the architectural plane were 
15 m × 15 m with a height of 1.5 m, as shown in Fig. 3. The 
sections of the members were circular. The upper chords, 
lower chords, and web members had dimensions of Φ68 
mm × 6 mm, Φ63.5 mm × 4.5 mm, and Φ50 mm × 2.5 mm, 
respectively. 

First, eigenvalue buckling analysis was performed by 
applying unit vertical concentrated loads on the nodes of the 

Fig. 2 Basic analysis procedure of the evaluation method of 
important members 
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upper chords. Because of the symmetry of the structure, 
some buckling modes were repeated (such as the first 4 
buckling modes). In addition, the first and ninth buckling 
modes (Fig. 4) could represent the rest of the first 10 

eigenvalue buckling modes by the distributions of the 
buckled members. The structural nonlinear buckling states 
were obtained by applying these two imperfections in the 
model individually, as shown in Fig. 5. 

This analysis showed that the web members connected 
to the hinge supports had a larger response. These members 
were selected as the preliminary important members for the 
multiple response analysis. Therefore, members 1 and 2 
were selected as preliminary important members considering 
the symmetry of the structure, and member 3 was used to 
verify the correctness of the proposed method. Because the 
structural nonlinear buckling states in Fig. 5 are in 
accordance with the initial geometric imperfections, there 
was no need to add an important member. Moreover, 
members 4 and 5, which had large stress ratios, were 
selected as preliminary important members, and member 6, 
which had a small stress ratio, is selected for comparison. 
Fig. 3 shows how the members were numbered. 

Then, the multiple-response analysis was performed by 
using the above preliminary important members. The results 
were standardised and are as shown in Fig. 6. 

Based on the obtained results, the importance 
coefficients of members 1, 2, 4, and 5 were greater than 
those of the comparison members 3 and 6. Moreover, there 
was a great difference between the results of the strain 
energy and load capacity. Therefore, it is possible to ignore 
some important elements by using single-response analysis. 
Members 1, 2, and 4 were chosen as the final important 
members of the square pyramid grid structure. Fig. 7 
presents the comparisons of importance coefficients 
between this paper and Cai et al. (2012). Based on the 
results for two different methods, the comparable calculated 
values were nearly identical and member 1 was chosen as 
the important member because of the stress of members. 
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(a) Axonometric drawing (b) Three-view drawing

Fig. 3 Square pyramid grid structure 

 
(a) First buckling mode (b) Ninth buckling mode

Fig. 4 Typical buckling modes of the square pyramid 
grid structure 

 

(a) First buckling mode 
is applied 

(b) Ninth buckling mode 
is applied 

Fig. 5 Displacement contour of the limit state for the 
square pyramid grid structure 

Fig. 6 Results of importance coefficients 

Fig. 7 Comparison of importance coefficients 

Fig. 8 Kiewitt8 single-layer reticulated dome 
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Therefore, the computational results in this paper matched 
well with the sensitivity analysis method based on concept 
(Cai et al. 2012). However, note that the upper chords near 
the support are not the important members with the 
proposed method, and Cai et al. (2012) did not compare the 
importance between members. Based on the above studies, 
the multiple-response evaluation method based on the 
primary scope is a feasible approach to evaluating the 
importance of members because of its accuracy and speed. 

 

2.3.2 Second case: Single-layer reticulated dome 
Fig. 8 shows the Kiewitt8 single-layer reticulated dome 

used for analysis. The span of the structure was 40 m, and 
the ratio of the rise to span was 1/5. The main members and 
members in the circumferential direction had dimensions of 
Φ121 mm × 3.5 mm, and the section of the diagonal 
members had dimensions of Φ114 mm × 3 mm. All of the 
connection nodes were rigid, and equivalent vertical loads 
were applied to each connection node. 

The important members were chosen from one in 
sixteen structures because of symmetry. First, the initial 
geometric imperfection was determined by eigenvalue 
buckling analysis. Because the distributions of the buckled 
members in the overall buckling mode could include that in 
the local buckling modes, the first buckling mode (Fig. 9) 
could represent the rest of the first 10 eigenvalue buckling 
modes. The structural nonlinear buckling states were 
obtained by applying this imperfection in the model, as 
shown in Fig. 10. 

From this analysis, members 3–6 were selected as 
preliminary important members based on the most 
representative first buckling mode. Members 7–9 also 
buckled because of nonlinearity (Fig. 10). Members 1 and 
2, which had a large stress ratio, were also selected as 
preliminary important members, and members 10 and 11 
were selected as comparison. Fig. 8 shows how the 

 
 

 
 

 

 
 

 
 

members were numbered. 
Then, the multiple-response analysis was performed 

based on the above preliminary important members. The 
results were standardised and are as shown in Fig. 11. 

These results show that the importance coefficients of 
members 1–9 were greater than those of the comparison 
members. Moreover, members 5 and 8 can be ignored 
simply by using single-response analysis. Therefore, the 
multiple-response evaluation method based on the primary 
scope can be used to evaluate the final importance of 
members because of its accuracy and speed. Members 1–3, 
5, 6, and 8 were chosen as the final important members of 
the Kiewitt8 single-layer reticulated dome. Fig. 12 presents 
the comparisons of importance coefficients between this 
paper and Xu et al. (2016). Based on the results for two 
different methods, the comparable calculated values were 
nearly identical and members 2 and 6 were chosen as the 
important members. Therefore, the computational results in 
this paper matched well with the reference Xu et al. (2016). 
However, Members 3, 5 and 8 were ignored because of 
neglecting the response of load capacity in the above-
mentioned reference. But as similar with this paper, Zhao et 
al. (2017) selected this type of main member as the 
important member. In addition, note that member 1 was the 
important member with the proposed method, and the 
method of Xu et al. (2016) was not comprehensive. 
Therefore, the multiple-response evaluation method based 
on the primary scope can provide an efficient and accurate 
way for evaluating the importance of members. 

 
 

3. Analysis method of progressive collapse 
 

Before the important member selected by the multiple-

 

Fig. 9 First characteristic buckling mode 

Fig. 10 Displacement contour of the limit state for the 
structure 

Fig. 11 Results of importance coefficients 

Fig. 12 Comparison of importance coefficients 
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response evaluation method based on the primary scope is 
removed, the structure maintains the state of initial 
equilibrium. In order to correctly evaluate the progressive 
collapse behaviour of the structure, the state of initial 
equilibrium should be considered. At present, theoretical 
analysis, finite element analysis, and experimental research 
on the progressive collapse of long-span spatial grid 
structures are based on the design conditions and frame 
structure. However, it is broadly accepted that different 
construction procedures lead to different internal force and 
deformation distributions, and there is a great difference in 
mechanical behaviour between a one-time load on the 
design model and the step-by-step construction process for 
long-span spatial grid structures. Therefore, the progressive 
collapse behaviour of long-span spatial grid structures 
needs to be analysed by considering the construction effect. 

 

3.1 Equivalent load unloading method 
considering the construction effect 

 

The element birth and death of node rectification 
algorithm developed by Tian and Hao (2015) is suitable for 
the construction simulation of long-span spatial grid 
structures. Based on this method, the equivalent load 
unloading method considering the construction effect is 
proposed here. The basic principles of this proposed method 
are as follows: 

 

(1) The static internal force Pi of important member i 
for every construction stage and the final internal 
force P0 after construction are given by using the 
method called element birth and death of node 
rectification. 

(2) The important member is removed, while is Pi 
applied on the remaining structure in reverse. That 
means that the failure of the important member is 
equivalent to the unloading process over time of 
the final internal force P0. 

 

Fig. 13 illustrates the time–history curve of the 
equivalent load. The common equivalent load unloading 
method is shown by the dashed line, which indicates that 
the final internal force of the important member is PD under 
a one-time loading. The polygonal line 0–3 represents the 
change in internal force during the construction process, 
and the horizontal line 3–4 is the time of stability before the 
important member is removed. According to this curve, the 
dynamic response of the structure is divided into three 

 
 

stages. First, forced vibration of the structure is produced 
because of the time-varying construction load and 
equivalent load (0 ≤ t < t0). Then, the important member is 
removed (t0 ≤ t < t0 + tp). After that, the remaining structure 
stays in the stage of free vibration (t ≥ t0 + tp). 

In order to validate the nonlinear dynamic analysis 
method, a single degree of freedom example is illustrated in 
this paper, as shown in Fig. 14. The process of free 
vibration was simulated by the support was removed 
immediately. In order to simplify the calculation, the 
damping ratio and the plastic property of the material were 
not considered. The basic equation of the particle was then 
obtained as follow 

 
   1cos/  tKFtΔ   (12)

 

where 
F is the vertical load of the particle. K and ω are the 

stiffness and circular frequency, respectively. 
The computational results by the equivalent load 

unloading method were compared with the theoretical data, 
as shown in Fig. 15. From this analysis, it is observed that 
the computational results matched well with the theoretical 
data. Therefore, the numerical analysis in this paper can 
obtain reliable results. 

 
3.2 Verification 
 
In order to validate the proposed method, two simple 

examples are presented: a hexagonal star-type grid structure 
(span: 12.0 m, rise: 1.0 m) and extended hexagonal star-
type grid structure (span: 17.5 m, rise: 2.2 m), as shown in 
Fig. 16. All members had a section of Φ102 mm × 3.5 mm, 
and a vertical concentrated load of 9 kN was applied to each 
node. The stress and deformation of the two structures when 
members 1 and 4 were each removed were analysed by 
using the conventional analysis algorithm (i.e., equivalent 
load unloading method) and proposed algorithm (equivalent 
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Fig. 13 Time–history curve of the equivalent load 

Fig. 14 Single degree of freedom model 

Fig. 15 Dynamic analysis results 
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load unloading method considering the construction effect). 
To obtain the correct results, the parameter tp was set to 0.01 
s, which is feasible for considering geometric nonlinearity 
in progressive collapse analysis. Table 1 compares the 
results for the above two algorithms. The members are 
numbered as shown in Fig. 16. To consider the construction 
effect, the temporary supports were set up at the outer ring 
nodes and top of the two structures, as shown in Fig. 17. 
Construction areas A and B were installed in the clockwise 
direction at the same time. Then, the temporary supports 
were dismantled after installation was completed. 

Compared with the conventional method, the maximum 
stress of the structure obtained with the equivalent load 
unloading method considering the construction effect 
increased by approximately 50% and even quadrupled. 
Consequently, the improved method was verified to be 
more reliable because the actual initial state and 
construction effect must be considered. 

 
 

 
 

4. Engineering application 
 
4.1 Project profile 
 
The roof of the main stadium for the Universiade Sports 

Center has a single-layer folded-plane latticed shell 
structure system. The structural system comprises twenty 
units with similar shapes, and the dimensions of the 
architectural plane are 274 m × 289 m, as shown in Fig. 18. 
The sections of the main members are circular, and the 
diameters are from 700 to 1400 mm. The materials of the 
main members are Q390 and Q420. 

 
4.2 Evaluation of important members 
 
The multiple-response evaluation method based on the 

primary scope was applied to the structure to determine the 
distribution of important members. These important 
members were chosen from a quarter of the structure 
because of symmetry. Because the first and third buckling 
modes (Fig. 19) could represent the rest of the first 10 
eigenvalue buckling modes by the distributions of the 

 
 

Table 1 Analysis results 

Structural form 

Member 1 is removed Member 4 is removed 

f 
/Hz 

ΔA 
/mm 

σ○2  
/(N/mm2)

σ○3  
/(N/mm2)

f 
/Hz 

ΔB 
/mm 

σ○5  
/(N/mm2) 

σ○6  
/(N/mm2)

Hexagonal star-type 
rid structure 

Y 15.99 13.19 185.26 85.02 18.76 14.78 140.63 138.74

N 16.11 15.17 90.36 60.48 18.93 14.49 90.43 32.98 

Extended hexagonal 
star-type grid structure 

Y 13.41 17.37 134.91 123.08 20.28 5.46 49.90 84.29 

N 13.19 13.10 93.59 53.38 20.46 6.90 56.80 33.75 
 

* Note: Y represents the equivalent load unloading method considering the construction effect; 
N represents the equivalent load unloading method 

(a) Hexagonal star-type 
grid structure 

(b) Extended hexagonal star-
type grid structure

Fig. 16 Member numbers 

 

(a) Hexagonal star-type grid 
structure 

(b) Extended hexagonal star-
type grid structure

Fig. 17 Partition of structural units 

Fig. 18 Structural system 

 
(a) First buckling mode (b) Third buckling mode 

Fig. 19 Typical buckling modes of the structure 
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buckled members, the structural nonlinear buckling states 
were obtained by applying these two imperfections to the 
model individually, as shown in Fig. 20. Members 1–6 were 
selected as the preliminary important members based on 
Fig. 19. No important members needed to be added because 
the nonlinear buckling states were in accordance with the 
initial imperfections. Note that, although the cantilever 
members of the inner ring were liable to buckle, the 
deformation and balance mode clearly would not change 
because the above members would deform by bending. 
Hence, these members would not buckling. Members 7–12, 
which had a larger stress ratio, were also chosen as 
preliminary important members. Fig. 18 shows how the 
members were numbered. 

Then the multiple-response analysis was performed 
based on the above preliminary important members. The 
results were standardised and are as shown in Fig. 21. 

Based on this analysis, members 8–11 were chosen as 
the final important members for a quarter of the structure. 
Fig. 22 presents the comparisons of importance coefficients 
between this paper and Zhang et al. (2011). The results 
indicated that the important members obtained with this 
proposed method were nearly identical to that in the design 
of the practical project (Zhang et al. 2011) when only 
considering buckling analysis (the importance coefficients 
of members 4-6 were greater than those of the members 1-
3). Moreover, the important members obtained with this 
proposed method are more comprehensive and accurate. 
Because all of unfavourable responses are included, the 
multiple-response evaluation method based on the primary 
scope is a feasible approach to evaluating the importance of 
members of the main stadium for the Universiade Sports 
Center. 

 

4.3 Progressive collapse analysis 
 

As an application of the equivalent load unloading 

 
 

 
 

method considering the construction effect, the progressive 
collapse behaviour of the main stadium was estimated based 
on the important members obtained from the multiple-
response evaluation method based on the primary scope. 
The mechanical behaviour of the structure was analysed 
when members 8, 9, 10, and 11 were individually removed. 
The analysis with the proposed method considered the dead 
loads as well as live loads (DL+0.25LL). To obtain the 
correct results, the parameter tp was set to 0.01s, which is 
less than 1/10 of the inherent period of remaining structure 
and is feasible for considering geometric nonlinearity in 
progressive collapse analysis. Fig. 23 plots the stress 
distributions of the structure when the maximum stress 
reached its peak value. 

The results of the proposed method showed that the 
structure stayed in the elastic condition when members 9–
11 were individually removed. When member 8 was 
removed, the edges of individual members entered the 
plastic state, but few exceeded the yield stress. Three ring 
beams (i.e., bottom of the shoulder, bottom of the crown, 
and inner ring (Tian and Hao 2015)) connect the whole 
structure and clearly prevent collapse. In addition, vibration 
was induced in part of the structure. The maximum vertical 
displacements when members 8, 9, 10, and 11were each 
removed were 1667, 1036, 1122, and 924 mm, respectively. 
The displacement–span ratios were 1/173, 1/279, 1/258, and 
1/313 respectively. Thus, the roof of the main stadium for 

 

(a) First buckling mode is 
applied 

(b) Third buckling mode is 
applied 

Fig. 20 Displacement contour of the limit state for the 
structure 

Fig. 21 Results of importance coefficients 

Fig. 22 Comparison of importance coefficients 

 
(a) Member 8 is removed (b) Member 9 is removed 

 

 

 

(c) Member 10 is removed 
 

(d) The member 11 is 
removed 

Fig. 23 Stress distribution of the structure 
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the Universiade Sports Center was demonstrated to have 
good resistance against progressive collapse. This 
conclusion was also proposed in the reference Zhang et al. 
(2011). 

Based on these results, the proposed method can assess 
the progressive collapse resistance capacity of long-span 
spatial grid structures reliably with high computational 
efficiency. 

 
 

5. Conclusions 
 

A direct design procedure known as the alternate load 
path method was intensively studied, and new practical 
analysis methods were developed. These proposed methods 
were validated through engineering case analyses, and all of 
these methods were utilised in the computer simulation of 
the main stadium for the Universiade Sports Center. The 
following conclusions were drawn: 

 

(1) The multiple-response evaluation method based on 
the primary scope can include all adverse 
conditions and correctly reflect the true important 
members. It is suitable for evaluating the important 
members of long-span spatial grid structures. 

(2) The equivalent load unloading method considering 
the construction effect can assess the progressive 
collapse resistance capacity of long-span spatial 
grid structures reliably and rationally because it 
considers the actual initial state. 

(3) Based on the results for the proposed methods, the 
roof of the main stadium for the Universiade 
Sports Center has good resistance against 
progressive collapse. 
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