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1. Introduction 

 
Functionally graded materials play an increasing 

important role in engineering, aerospace, nuclear energy, 
electronics, optics, energy conservation, etc. (Bohidar et al. 
2014, Akbas 2015, Atmane et al. 2015, Bennai et al. 2015, 
Darlimaz 2015, Uslu Uysal and Kremzer 2015, Ahouel et 
al. 2016, Bedia and Bousahla 2016, Benferhat et al. 2016, 
Bounouara et al. 2016, Galeban et al. 2016, Parvanova et 
al. 2013, 2014, Uysal 2016). One of the basic advantages of 
functionally graded materials is that they are designed to 
make use of their natural or engineering functionalities in 
order to meet the requirements of specific material 
properties for different parts of a member. 

The fracture mechanics study of functionally graded 
materials is very important for the design of devices and 
structures. The engineering practice indicates that fracture 
usually is the critical failure mode for functionally graded 
structures. Crack initiation and growth may drastically 
reduce the strength, stiffness and stability of structure (Uslu 
Uysal and Güven 2016) and may lead to lose of the 
structural capacity and functionality. It is clear that 
understanding of fracture behavior is vital for further 
development of functionally graded materials technology. 
Therefore, fracture of graded materials continues to attract 
the interest of researchers, which is reflected by the 
significant number of papers published in this field (Pei and 
Asaro 1997, Tilbrook et al. 2005, Carpinteri and Pugno 
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2006, Upadhyay and Simha 2007, Zhang et al. 2013). 

Fracture behavior of materials with continuously graded 
microstructure has been studied by Pei and Assaro (1997). 
Fracture has been analyzed in terms of the stress intensity 
factors. A semi-infinite crack in an isotropic strip of a 
functionally graded material subjected to edge loading has 
been investigated by using methods of linear-elastic fracture 
mechanics. The solution derived has been extended to an 
orthotropic functionally graded strip. The effect of 
orthotropy on the stress intensity factors has been discussed. 

Studies of cracks in functionally graded composite 
materials have been reviewed by Tilbrook et al. (2005). The 
influence of spatial variation of mechanical properties on 
the fracture behavior has been analyzed by applying linear-
elastic fracture mechanics. Results of stress intensity factor 
calculations for cracks parallel to gradient direction have 
been presented. Crack propagation perpendicular to 
gradient has also been considered. Publications have also 
been reviewed in the field of fatigue fracture behavior.              

Stress intensity factor analytical predictions in 
functionally graded materials have been reported by 
Carpinteri and Pugno (2006). Fracture behavior of linear-
elastic plates in tension and beams under three-point 
bending has been investigated. Simple analytical laws have 
been derived that are useful in engineering applications 
evaluating the strength of structures composed by 
functionally graded materials containing re-entrant corners. 

Stress intensity factor evaluation of a cracked 
functionally graded linear-elastic beam subjected to three-
point bending has been performed by Upadhyay and Simha 
(2007). For this purpose, an equivalent beam of variable 
height has been suggested. The compliance approach has 
been applied. It has been shown that the equivalent beam 
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concept can be successfully extended to carry-out 
engineering design analyses of fracture in beams composed 
of functionally graded materials. 

It can be concluded that fracture analyses of functionally 
graded beams have been carried-out usually assuming 
linear-elastic material behavior. However, in reality, the 
stress-strain relation may be non-linear. Therefore, the 
present paper reports a theoretical study of delamination 
fracture in the functionally graded ELS beam configuration 
with taking into account the material non-linearity. The 
fracture behavior was analyzed by applying the J-integral 
approach. The effect of material gradient and crack location 
on the non-linear fracture was evaluated. The analysis 
developed holds for non-linear elastic material behavior. 
However, the analysis is applicable also for elastic-plastic 
behavior, if the external load magnitude increases only, i.e., 
if the beam considered undergoes active deformation 
(Lubliner 2006, Chakrabarty 2006). It should be mentioned 
that, in principle, the fracture can be studied by finite 
element models (Kaman and Cetisli 2012, Uslu Uysal 2017) 
or by analytical methods. In the present paper, the non-
linear delamination fracture is studied by analytical 
methods since the analytical solutions are very convenient 
for parametric investigations of fracture in functionally 
graded beams which exhibit non-linear behavior of 
material. 

 
 

2. Fracture study with taking into account 
the material non-linearity 
 
The ELS functionally graded beam under consideration 

is shown schematically in Fig. 1. It was assumed that the 
material is functionally graded transversely to the beam. 
There is a delamination crack of length a (it should be noted 
that the present study was motivated also by the fact that 
functionally graded materials can be built up layer by layer 
(Bohidar et al. 2014), which is a premise for appearance of 
delamination cracks between layers). The crack is located 
arbitrary along the beam height (Fig. 1), i.e., the ELS 
configuration is asymmetrical (the lower and upper crack 
arm thicknesses are h1 and h2, respectively). The right-hand 
end of beam is clamped. One ransverse force, F, is applied 
at the beam free end. The beam cross-section is a rectangle 
of width, b, and height, 2h. 

The non-linear fracture behavior was analyzed by using 
the J-integral approach for functionally graded materials 

 
 
(Anlas et al. 2000, Rajabi et al. 2016). The J-integral was 
written as 
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where Γ is a contour of integration going from the lower 
crack face to the upper crack face in the counter clockwise 
direction, u0 is the strain energy density, α is the angle 
between the outwards normal vector to the contour of 
integration and the crack direction, px and py are the 
components of stress vector, u and v are the components of 
displacement vector with respect to the crack tip coordinate 
system xy (x is directed along the crack), ds is a differential 
element along the contour, A is the area enclosed by that 
contour, q is a weight function with a value of unity at the 
crack tip, zero along the contour and arbitrary elsewhere. It 
should be specified that the partial derivative ∂u0 / ∂x exists 
only if the material property is an explicit function of x 
(Anlas et al. 2000). 

The J-integral was solved by using an integration 
contour, Γ, that consists of the ELS beam cross-sections 
ahead and behind the crack tip as illustrated in Fig. 1. The 
integration contour has three segments (A1, A2, and B). The 
J-integral solution was obtained by summation 

 

,
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where JA1

, JA2
 and JB are the values in segments A1, A2 and 

 
 

Fig. 1 The ELS beam configuration 

Fig. 2 Non-linear stress-strain curve 
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B, respectively. Integration contour segments A1 and A2 are 
defined by the cross-sections of lower and upper crack arm 
behind the crack tip. Segment B is defined by the beam 
cross-section ahead of the crack tip (Fig. 1). 

It was assumed that the mechanical response of 
functionally graded ELS beam configuration can be 
described by a power-law stress-strain relation (Petrov 
2014) 

,1mH   (3)
 

where σ is the stress, ε is the strain, H and m1 are material 
properties. The tensile and compressive behaviors are 
identical as shown in Fig. 2. The present analysis was based 
on the small strain assumption (it should be noted that this 
assumption has been frequently used in fracture analyses of 
functionally graded materials (Pei and Asaro 1997, 
Carpinteri and Pugno 2006, Upadhyay and Simha 2007)). 
Besides, it was assumed that the value of H varies linearly 
along the beam height from H0 in the upper edge to H1 in 
the lower edge of beam (i.e., the material is functionally 
graded along the ELS beam height). Thus, H was written as 
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where the z3‒axis originates from the beam cross-section 
centre and is directed downwards. 

The curvature of lower and upper crack arm in the 
cross-section behind the crack tip is needed in order to 
obtain the J-integral solutions in segments A1 and A2. The 
fact that the curvatures of crack arms in the ELS beam are 
equal was used to determine the curvature. It was written 

 
,21    (5)

 
where, κ1 and κ2 are the curvatures of lower and upper crack 
arm, respectively. 

The crack arm curvature was determined in the 
following way. First, the equations of equilibrium of lower 
crack arm cross-section were written as 
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where N1 and M1 are the axial force and bending moment in 
the lower crack arm behind the crack tip, respectively 
(obviously, N1 = 0). 

It was assumed that the Bernoulli’s hypothesis for plane 
sections is applicable, since the span to height ratio for the 
beam considered is large. (It should be mentioned that the 
Bernoulli’s hypothesis for plane sections has been widely 
applied when analyzing fracture in functionally graded 
beams (Pei and Asaro 1997, Carpinteri and Pugno 2006, 

Upadhyay and Simha 2007). Thus, the strain, ε, was written 
as 

),(
1111 nzz    (8)

 
where z1n1

 is the neutral axis coordinate (the neutral axis 
shifts from the centroid, since the material is functionally 
graded along the beam height). 

The variation of H along the lower crack arm cross-
section height was expressed as (refer to Eq. (4)) 
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is the value of H in the upper edge of the lower crack arm. 
After substitution of Eqs. (3), (8) and (9) in Eqs. (6) and 

(7) and solving the integrals, we obtained 
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It is obvious that at m1 = 1 the non-linear stress-strain 
relation Eq. (3) transforms into the Hooke’s law. This means 
that at m1 = 1 Eq. (12) should transform in the formula for 
curvature of linear-elastic beam. Indeed, by substitution of 
m1 = 1 and H1 = H0 = E (E is the modulus of elasticity) in 
Eq. (12), we obtained 
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which is the known formula for the curvature of linear-
elastic homogeneous beams. 

The neutral axis coordinate, z1n1
, can be obtained from 

(11). For this purpose, (11) should be solved with respect to 
z1n1

 by using the MatLab computer program. Then z1n1
 can 

be substituted in Eq. (12). In this way, the number of 
unknowns in Eq. (12) can be reduced to two (M1 and κ1). 
By considering the equilibrium of upper crack arm, two 
equations identical with Eqs. (11) and (12) were written 
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where z2n2

 is the neutral axis coordinate of upper crack arm 
cross-section, H0 and HL

0 are the values of H in the upper 
and lower edge of upper crack arm, respectively (HL

0 is 
determined by Eq. (10)). It should be noted that dependence 
Eq. (5) was taken into account in Eq. (15). Also, in Eq. (15), 
the bending moment, M2, in the cross-section of upper crack 
arm behind the crack tip was replaced with M ‒ M1, where 
M is crack tip cross-sectional bending moment in the ELS 
beam (Fig. 1). The neutral axis coordinate, z2n2

, can be 
obtained from Eq. (14) by using the MatLab computer 
program and substituted in Eq. (15). In this way, the number 
of unknowns in (15) can be reduced to two (M1 and κ1). 
Then, by combining Eqs. (12) and (15), the unknowns M1 
and κ1 were determined as 
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After that, the bending moment in the upper crack arm 
can be calculated as 

 

.12 MMM   (20)
 

It should be noted that after substitution of m1 = 1 and 
H1 = H0 = E in Eqs. (12) and (15) the curvature, κ1, and 
bending moments, M1 and M2, were obtained from Eqs. 
(16), (17) and (20) as 
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Non-linear study of mode II delamination fracture in functionally graded beams 

Eqs. (21), (22) and (23) coincide with the known 
formulae for curvature and bending moments in combined 
linear-elastic homogeneous beams. 

The solution of J-integral in segment A1 of the 
integration contour (Fig. 1) was obtained in the following 
way. The components of J-integral were written as 

 

,1m
x Hp      

,0yp
 

   ,1cos     ,1dzds   
(24)

 

where the coordinate, z1, varies in the interval [‒h1/2, h1/2]. 
Fig. 3 illustrates the distribution of stresses in segment A1. 
Partial derivative, ∂u0 / ∂x, in the J-integral Eq. (1) was 
written as 

,00 
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u
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since the strain energy density does not depend explicitly on 
x (the material property H is not a function of x, because the 
material is functionally graded transversally to the beam 
only (refer to Eq. (4)). 

Partial derivative, ∂u / ∂x, in Eq. (1) was obtained as 
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where κ1 and z1n1 were found from Eqs. (11), (12), (14) and 
(17) (the coordinate, z1, is shown in Fig. 3). 

The strain energy density, u0, is equal to the area OPQ 
enclosed by the stress-strain curve (Fig. 4). Thus 
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By substitution of Eq. (3) in Eq. (27), it was obtained 
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After substitution of Eqs. (8), (9), (24), (25), (26) and 
(28) in Eq. (1), the J-integral solution in segment A1 was 
found as 
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The solution of J-integral in segment A2 of the 

integration contour (Fig. 1) was found again by Eq. (29). 
For this purpose, h1 and z1n1

 were replaced with h2 and z2n2
, 

respectively. Besides, HL
0 and H1 were replaced with H0 and 

HL
0, respectively (HL

0 was determined by Eq. (10)). Thus, the 
solution was written as 
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where z2n2

 was found from Eq. (14). 
The J-integral components in segment B of the 

integration contour (Fig. 1) were written as 
 

,1m
x Hp       ,0yp  (31)

 
     ,1cos       ,3dzds   (32)

 

          ,00 
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    ).(

3333 nzz    (33)

 
Eqs. (11) and (12) were used to obtain the ELS beam 

curvature, κ3, and neutral axis coordinate, z3n3
, in the cross-

section ahead of the crack tip. For this purpose, M1, h1, κ1, 
z1n1

 and HL
0 were replaced with M, 2h, κ3, z3n3

 and H0, 
respectively. Eq. (11) can be solved with respect to z3n3

 by 
using the MatLab computer program. Then, z3n3

 can be 
substituted in Eq. (12). After that, the curvature, κ3, was 
determined from Eq. (12) as 

 

,
1

1

3

mM











  (34)

267



 
Victor I. Rizov 

where 
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The partial derivative was found as 
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The J-integral solution in segment B of the integration 
contour was obtained after substitution of Eqs. (4), (28), 
(31), (32), (33) and (36) in Eq. (1) 
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The J-integral final non-linear solution was found by 
substitution of Eqs. (29), (30) and (37) in Eq. (2). The 
formula obtained is not reported here, because it is 
cumbersome. 

It should be noted that by substitution of m1 = 1, H1 = H0 
= E and h1 = h2 = h in Eqs. (29), (30), (37) and (2), we 
found 

,
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M
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which coincides with the formula for strain energy release 

rate, when the crack is located in the mid-plane of linear-
elastic homogeneous ELS beam (Szekrenyes 2012). 

The J-integral non-linear solution derived was verified 
by analyzing the strain energy release rate, G, in the 
functionally graded ELS beam with taking into account the 
non-linear material behavior. For this purpose, a small crack 
length increase, Δa, was given (the external loading was 
kept constant). The strain energy release rate associated 
with Δa was written as 
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where ΔWext and ΔU are the changes of external work and 
strain energy, respectively. The crack area increase was 
expressed as 

.abAa   (40)
 

The change of external work was obtained as 
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where ΔU* is the change of the complimentary strain 
energy. By combining of Eqs. (39) and (41), we derived 
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where 
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In Eq. (43), U*
b and U*

a are the complimentary strain 
energies before and after the increase of crack, respectively. 
By substitution of Eqs. (40) and (43) in Eq. (42), we 
obtained 
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The complimentary strain energy before the increase of 
crack was calculated as 
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where the complimentary strain energy density, u*
0, in Eq. 

(45) is equal to the area OQR that supplements the area 
OPQ enclosed by the stress-strain curve to a rectangle (Fig. 
4). Therefore, the complimentary strain energy density was 
written as 

,0
*
0 uu   (46)

 

where the strain energy density, u0, was found by Eq. (28). 
The complimentary strain energy after the increase of 

crack was written as 
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where 
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are the complimentary strain energies in the lower and in 
upper crack arm, respectively. By combining of Eqs. (44), 
(45), (47), (48) and (49), we derived 
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Finally, by substitution of Eqs. (3), (4), (8), (9), (10) and 
(28) in Eq. (50), we obtained the formula for strain energy 
release rate that is exact match of the J-integral non-linear 
solution. This fact is a verification of the non-linear fracture 
analysis of functionally graded ELS beam configuration 
developed in the present paper. 

 
 

3. Parametric analyses 
 

Parametric analyses were performed in order to evaluate 
effects of material gradient, H1/H0 (refer to Eq. (4)) and 
material non-linearity on the fracture behavior of 
functionally graded ELS beam configuration. For this 
purpose, calculations were carried-out by using the J-
integral non-linear solution obtained in the present paper. In 
these calculations, it was assumed that F = 15 N, b = 0.02 
m, h = 0.003 m, a = 0.09 m and m1 = 0.7. It should be 
specified that H0 was kept constant in the calculations. 
Thus, H1 was varied in order to achieve various H1/H0 
ratios. The J-integral values generated by the calculations 
were presented in non-dimensional form by using the 
formula JN = J/(H0b)). The results of these calculations were 
shown in Fig. 5 where the J-integral value was plotted 
against H1/H0 ratio for h1/2h = 0.5. The diagrams in Fig. 5 
indicate that the J-integral value decreases with increasing 
H1/H0 ratio. This finding was attributed to increase of the 
beam bending stiffness. In order to evaluate the influence of 
non-linear material behavior on the fracture, the J-integral 
values calculated assuming linear-elastic material behavior 
were plotted also in Fig. 5 for comparison (the J-integral 
linear-elastic solution was derived by substituting of m1 = 1 
in the non-linear solution). It can be observed in Fig. 5 that 
material non-linearity leads to increase of the J-integral 
value. Therefore, the non-linear material behavior has to be 
considered in fracture mechanics based safety design of 
functionally graded structural members. 

 

 

Fig. 4 Strain energy density, u0, and complimentary 
strain energy density, u*

0 

 

Fig. 5 The J-integral value (in non-dimensional form) plotted against H1/H0 ratio for h1/2h = 0.5 
(curve 1 – linear-elastic material behavior, curve 2 – non-linear material behavior) 
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Influence of the crack position along the beam height on 

the non-linear fracture was analyzed too (the crack position 
was characterized by h1/2h ratio (refer to Fig. 1)). The 
variation of J-integral value as a function h1/2h ratio for 
material gradient of H1/H0 = 0.5, 1 and 2 is shown in Fig. 6. 
The curves in Fig. 6 indicate that that the J-integral value is 
maximal when the crack is positioned near the mid-plane of 
ELS beam. The maximum of J-integral is exactly at h1/2h = 
0.5, when H1/H0 = 1, i.e., when the beam is homogeneous. 

 
 

4. Conclusions 
 
Mode II delamination fracture in the ELS functionally 

graded beam configuration was analyzed theoretically with 
taking into account the non-linear material behavior. For 
this purpose, the J-integral approach was applied. An 
analytical solution of the J-integral was derived assuming 
that the material is functionally graded transversally to the 
beam, i.e., along the beam height. Equations were obtained 
for crack arms curvature that was used in the J-integral 
solution. It was assumed that the ELS functionally graded 
beam mechanical response can be modeled analytically by 
using a power-law stress-strain relation (linear variation 
was assumed of the coefficient in the power-law stress-
strain relation along the beam height). The non-linear 
solution derived is valid for a delamination crack located 
arbitrary along the beam height. In order to verify the J-
integral non-linear solution, the strain energy release rate 
was analyzed with considering the material non-linearity. 
The influence of material gradient on the fracture behavior 
was evaluated. The analysis revealed that the J-integral 
value decreases with increasing H1/H0 ratio (H0 and H1 are 
the values of coefficient in the power-law stress-strain 
relation in the upper and lower edge of beam, respectively 
(refer to Eq. (4))). Concerning the influence of material 
non-linearity on the fracture behavior, the results of study 

 
 
indicate that the J-integral value increases when the 
material non-linearity is taken into account. This fact 
indicates that the non-linear material behavior has to be 
considered in fracture mechanics based safety deign of 
functionally graded structural members. The effect of crack 
position on the fracture was investigated too. It was found 
that the J-integral has highest value when the crack is 
positioned near the beam mid-plane. The analysis presented 
here is very suitable for parametric investigations, because 
the solution derived captures the essential of non-linear 
fracture. The analytical approach developed in the present 
paper can be used for optimization of functionally graded 
beam structures with respect to the fracture performance. 
The present study contributes also for a better 
understanding of delamination fracture under mode II crack 
loading conditions in functionally graded beam structures 
with material non-linearity. 
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was analyzed with considering the material non-linearity. 
The influence of material gradient on the fracture behavior 
was evaluated. The analysis revealed that the J-integral 
value decreases with increasing H1/H0 ratio (H0 and H1 are 
the values of coefficient in the power-law stress-strain 
relation in the upper and lower edge of beam, respectively 
(refer to Eq. (4))). Concerning the influence of material 
non-linearity on the fracture behavior, the results of study 
indicate that the J-integral value increases when the 
material non-linearity is taken into account. This fact 
indicates that the non-linear material behavior has to be 
considered in fracture mechanics based safety deign of 
functionally graded structural members. The effect of crack 
position on the fracture was investigated too. It was found 
that the J-integral has highest value when the crack is 
positioned near the beam mid-plane. The analysis presented 
here is very suitable for parametric investigations, because 
the solution derived captures the essential of non-linear 
fracture. The analytical approach developed in the present 
paper can be used for optimization of functionally graded 
beam structures with respect to the fracture performance. 
The present study contributes also for a better 
understanding of delamination fracture under mode II crack 
loading conditions in functionally graded beam structures 
with material non-linearity. 
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