
Steel and Composite Structures, Vol . 23, No. 1 (2017) 41-51 
DOI: https://doi.org/10.12989/scs.2017.23.1.041 

Copyright © 2017 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 

 
The composite materials are widely used in civil, 

aerospace, automobile and other engineering fields due to 
their advantage of high stiffness and strength to weight 
ratio. Laminated composite structures are weak in shear due 
to their low shear modulus compared to extensional rigidity. 
Therefore, the main attention is given in modeling the shear 
deformation these types of laminated structures in a refined 
manner to accurately predict the deflection, stress and other 
responses. Temperature and moisture concentration are the 
two important factors which also adversely affect the 
strength of laminated composite plates. With the increase of 
temperature and moisture concentrations, the elastic 
modules and the strength of composite laminate will 
decrease and sometimes it may be the predominant cause of 
failure of composite structures. 

The analysis of laminated composite structures is more 
complex in comparison with conventional single-layer 
structures due to the exhibition of comparatively low value 
of transverse shear modulus and varying material properties 
across the thickness of laminates. In view of this situation, 
various two-dimensional theories, which are simpler and 
more efficient, compared to 3D elasticity solutions 
(Tungikar and Rao 1994, Savoia and Reddy 1995, Shankara 
and Iyengar 1996, Bhaskar et al. 1996) have been proposed 
to study the behaviors of laminates. It is well known that the 
thermal stresses computed directly from stress-strain and 
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strain-displacement matrices in finite element analysis with 
simple first-order shear deformation theory shows large 
errors (Ojalovo 1974, Pittr and Hartl 1980). The results of 
Lo et al. (1977a) have shown subtle discrepancies in the 
thermal stress analysis of laminated composite plates using 
C0 element based on higher-order shear deformation theory 
for not using consistent and variationally correct 
formulations (Prathap and Naganarayana 1990, Rama 
Mohan et al. 1994, Prathap and Naganarayana 1995). These 
errors can be completely removed by consistently 
reconstituting the thermal strains in the finite element 
formulation, temperature field used for thermal stress 
analysis must have the same consistency as the element 
strain fields and if element stresses are computed at gauss 
points, the thermal stresses must also be based on these 
gauss points (Prathap and Naganarayana 1990, 1995, Rama 
Mohan et al. 1994). This strategy evolved from the under-
standing that the unreliable stress predictions originate from 
the mismatch between the usual element strain and initial 
(e.g., hygrothermal) strain. One can show that this is due to 
the lack of consistency of their respective interpolations 
within the element. 

Naganarayana et al. (1995) showed that stress resultant 
field computed from strain fields in a displacement-type 
finite element description of domain with sectional 
rigidities shows extraneous oscillations. This condition 
arises from the fact that stress resultant fields were of higher 
interpolation order than the strain fields. Hence higher 
degree stress resultant terms did not participate in the 
stiffness matrix calculations. In order to remove the 
oscillations, a consistent stress resultant field must be 
derived before stress resultant calculations are performed. 
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Naganarayana et al. (1997) demonstrated that consistent 
formulations give the variationally correct solutions for all 
types of problem. 

Rolfes et al. (1998) has presented analytical solution 
based on the first order shear deformation theory for the 
evaluation of the transverse thermal stresses in laminated 
plates. Ali et al. (1999) employed displacement based 
higher-order theory for any combination of mechanical and 
thermal loading in case of symmetric laminates. Makhecha 
et al. (2001) employed new displacement based higher-
order theory for dynamic analysis of laminated composite 
plates subjected to thermal/mechanical loading. Patel et al. 
(2002) studied the static and dynamic characteristic of thick 
laminates exposed to hygrothermal environment using a 
realistic higher-order theory. Khare et al. (2003) developed 
closed form solution based on higher-order shear 
deformation theory for the thermo-mechanical analysis of 
simply supported doubly curved cross-ply laminated shell. 
Kapuria and Achary (2004) presented a new zigzag theory 
based on zigzag third-order variation of in-plane displace-
ments for laminated plates subjected to thermal loading. 
Matsunaga (2004) evaluated interlaminar stresses and 
displacements in cross-ply multilayered composite and 
sandwich plates subjected to thermal loadings using two-
dimensional global higher-order deformation theory. Wang 
et al. (2005) studied the response of dynamic interlaminar 
stresses in laminated composite plates with piezoelectric 
layers using an analytical approach based on the layer wise 
theories. 

Wu and Chen (2006) presented global-local higher order 
shear deformation theory which satisfies the free surface 
conditions and the geometric and stress continuity 
conditions at interfaces for angle ply laminated plates. Wu 
et al. (2007) proposed global-local higher order model 
considering transverse normal deformation to predict the 
thermal response of laminated plates subjected to actual 
temperature field. These models give good results for 
deflection as well as stresses but some unknown parameters 
are used in the formulations which have no physical 
meaning and should be avoided in a practical analysis. 
Bahrami and Nosier (2007) developed elasticity formulation 
for the displacement field of a long generally stacked 
laminate subjected to hygrothermal loads. Oh and Cho 
(2007) presented a higher order zigzag shell theory to 
predict the mechanical, thermal and electric response of 
smart laminates. Kant et al. (2008) proposed a semi 
analytical model based on solution of a two-point boundary 
value problem through the thickness of the plate for thermo-
mechanical stress analysis. Brischetto and Carrera (2010) 
considered a fully coupled thermo-mechanical analysis of 
one-layered and multilayered isotropic and composite 
plates. Lo et al. (2010) studied the response of laminated 
composite plates due to variation in temperature and 
moisture concentrations based on global-local higher-order 
shear deformation theory. Singh and Chakrabarti studied the 
hygrothermal analysis of laminated composite plates by 
using efficient higher order shear deformation theory. In the 
present formulation, the plate model has been implemented 
with a computationally efficient C0 finite element developed 
by using consistent strain field. But C1 continuities are 

required in the transverse displacement functions as the first 
and second derivatives are involved in the computation of 
the strain components. Brischetto (2012) analyzed the 
bending of multilayered composite plates under hygro-
thermal loading conditions. Refined two-dimensional 
models are used to evaluate these effects. Such loads can be 
determined via a priori linear or constant moisture content 
and temperature profiles through the thickness of the plate. 
Topal (2013) studied the response of a new extended 
layerwise optimization method for thermal buckling load 
optimization of laminated composite plates. Brischetto 
(2013) proposed the refined two-dimensional models for the 
static hygrothermoleastic analysis of multilayered compo-
site and sandwich shells. The design objective is the 
maximization of the critical thermal buckling of the 
laminated plates. Kaci et al. (2014) studied the nonlinear 
cylindrical bending of an exponential functionally graded 
plate (simply called E-FG) with variable thickness. The 
plate is subjected to uniform pressure loading and his 
geometric nonlinearity is introduced in the strain-
displacement equations based on Von-Karman assumptions. 
Hadji et al. (2014) developed higher order shear defor-
mation theory static and free vibration analysis of 
functionally graded beams. Nguyen et al. (2015) presented 
refined higher-order shear deformation theory for bending, 
vibration and buckling analysis of functionally graded 
sandwich plates. It contains only four unknowns, accounts 
for a hyperbolic distribution of transverse shear stress and 
satisfies the traction free boundary conditions. Ebrahimi and 
Habibi (2016) utilized the finite element method to predict 
the deflection and vibration characteristics of rectangular 
plates made of saturated porous functionally graded 
materials (PFGM) within the framework of the third order 
shear deformation plate theory. Material properties of 
PFGM plate are supposed to vary continuously along the 
thickness direction according to the power-law form and the 
porous plate is assumed of the form where pores are 
saturated with fluid. 

Pandit et al. (2008) developed a C0 FE model for the 
analysis of soft core sandwich laminates with unknown 
nodal parameters, which have physical meaning. Pandit et 
al. (2008) used quadratic variation of transverse displace-
ment across the soft core while it is considered constant for 
the top and bottom face sheets. But the application of this 
model is limited to sandwich plates with single core only. 
Moreover, for composite and sandwich laminates (without 
very soft core) there is hardly any variation of transverse 
displacement across the thickness. In the present paper an 
improved C0 FE model has been developed based on an 
efficient higher order zigzag theory to study the static 
response of laminated composite plates exposed to 
hygrothermal environment. In this model the transverse 
displacement has been considered constant across the 
thickness which simplifies the formulation and reduces the 
number of nodal unknowns. This also helps to increase the 
range of applicability of the proposed FE model to different 
problems of laminated and sandwich plates. In this model 
the first derivatives of transverse displacement have been 
treated as independent variables to overcome the problem of 
C1 continuity associated with the plate theory. The C0 
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continuity of the present element has been compensated in 
stiffness matrix by using penalty parameter approach. Stress 
oscillations observed in the displacement based finite 
element is eliminated by consistently reconstituting the 
thermal strains in the finite element formulation (Prathap 
and Naganarayana 1990, 1995, Rama Mohan et al. 1994). 
Special steps were introduced following the field consistent 
approach (e.g., sampling at gauss points) to compensate this 
problem. A nine noded C0 continuous isoparametric element 
is used to model the proposed theory. 

 
 

2. Formulation 
 
The in-plane displacement fields are taken as below 
 

𝑢𝑢α = 𝑢𝑢0
𝛼𝛼 + � 𝑆𝑆𝑘𝑘𝛼𝛼

𝑛𝑛𝑢𝑢−1

𝑘𝑘=0

(𝑍𝑍 − 𝑍𝑍𝑘𝑘)𝐻𝐻(𝑍𝑍 − 𝑍𝑍𝑘𝑘) 

       + � 𝑇𝑇𝑘𝑘𝛼𝛼

𝑛𝑛𝑛𝑛−1

𝑘𝑘=0

(𝑍𝑍 − 𝜌𝜌𝑘𝑘)𝐻𝐻(−𝑍𝑍 + 𝜌𝜌𝑘𝑘) + 𝜉𝜉𝛼𝛼𝑍𝑍2 + 𝜑𝜑𝛼𝛼𝑍𝑍3 

(1) 

 
where 𝑢𝑢𝛼𝛼0  denotes the in-plane displacement of any point 
on mid surface, nu and nl represent number of upper and 
lower layers respectively, 𝑆𝑆𝛼𝛼𝑘𝑘 , 𝑇𝑇𝛼𝛼𝑘𝑘  are the slopes of k-th 
layer corresponding to upper and lower layers respectively, 
𝜉𝜉𝛼𝛼 ,  𝜑𝜑𝛼𝛼  are the higher order unknown terms, 𝐻𝐻(𝑍𝑍 −
𝑍𝑍𝑘𝑘), (𝑍𝑍 − 𝜌𝜌𝑘𝑘) are unit step functions and the subscript α 
represents the co-ordinate directions [α = 1, 2, i.e., x, y in 
this case respectively and 

 

𝑢𝑢3 = 𝑤𝑤(𝑥𝑥,𝑦𝑦) (2) 
 
The stress –strain relationship of a lamina, say kth lamina 

having any fiber orientation with respect to structural axes 
system (x-y-z) may be expressed as 

 
𝜎𝜎 =  �𝑄𝑄𝑘𝑘�{𝜀𝜀} (3) 

 
The rigidity matrix 𝑄𝑄𝑘𝑘  can be evaluated by material 

properties and fibre orientation following usual techniques 
for laminated composites. 

Now by utilizing the transverse shear stress free 
boundary condition at the top and bottom of the plate, 
𝜎𝜎3𝛼𝛼|𝑧𝑧=±ℎ/2 = 0  the components 𝜉𝜉𝛼𝛼 and 𝜑𝜑𝛼𝛼 could be 
expressed as 

 

𝛷𝛷𝛼𝛼 =  −
4

3ℎ2 �𝑤𝑤,𝛼𝛼 +
1
2

( � 𝑆𝑆𝛼𝛼𝐾𝐾 + �𝑇𝑇𝛼𝛼𝑘𝑘
𝑛𝑛𝑛𝑛−1

𝑘𝑘=0

𝑛𝑛𝑢𝑢−1

𝑘𝑘=0

� (4) 

 

and 
 

𝜉𝜉𝛼𝛼 = −
1
2
�� 𝑆𝑆𝛼𝛼𝑘𝑘
𝑛𝑛𝑢𝑢−1

𝑘𝑘=0

− � 𝑇𝑇𝛼𝛼𝑘𝑘
𝑛𝑛𝑛𝑛−1

𝑘𝑘=0

� (5) 

 
Similarly by imposing the transverse shear stress 

continuity conditions at the layer interfaces the following 
expressions for 𝑆𝑆𝛼𝛼  and 𝑇𝑇𝛼𝛼  are obtained as below 

 
𝑆𝑆𝛼𝛼𝑘𝑘 = 𝑎𝑎𝛼𝛼γ𝑘𝑘�𝑤𝑤,γ + 𝛹𝛹γ � + 𝑏𝑏𝛼𝛼γ

𝑘𝑘  𝑤𝑤,γ (6) 

 

𝑇𝑇𝛼𝛼𝑘𝑘 = 𝑐𝑐𝛼𝛼γ𝑘𝑘�𝑤𝑤,γ + 𝛹𝛹γ � + 𝑑𝑑𝛼𝛼γ
𝑘𝑘  𝑤𝑤,γ (7) 

 
where 𝑎𝑎𝛼𝛼𝛼𝛼𝑘𝑘 , 𝑏𝑏𝛼𝛼𝛼𝛼𝑘𝑘 , 𝑐𝑐𝛼𝛼𝛼𝛼𝑘𝑘 , 𝑑𝑑𝛼𝛼𝛼𝛼𝑘𝑘  are constants depending on 
material and geometric properties of individual layers, 𝑤𝑤,γ 
is the derivatives of transverse displacement while 𝛼𝛼 = 1, 2 
and 𝑆𝑆𝛼𝛼0 = Ψα  is the rotation of normal at the mid surface 
about co-ordinate directions [α = 1, 2, i.e., x, y in this case ]. 

By using Eqs. (2)-(6) the strain vector can be evaluated 
by 

{𝜀𝜀}5×1 = [𝐻𝐻]5×17{𝜀𝜀}17×1 (8) 
 
{𝜀𝜀} is the strain field vector and {𝜀𝜀} is the strain vector 

at the reference plane (i.e., at the mid plane) where the [𝐻𝐻] 
matrix consists of terms containing z and some term related 
to material properties. 

In order to avoid the difficulties associated with C1 

continuity the derivatives of w with respect to x and y are 
expressed as follows 

 

𝑤𝑤,1 =
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

 = 𝑤𝑤1   and   𝑤𝑤,2 =
𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦

= 𝑤𝑤2 (9) 
 

which helps to define all the variables as C0 continuous. 
 

{𝜀𝜀}𝑇𝑇

=

⎩
⎪
⎨

⎪
⎧𝜕𝜕𝑢𝑢1

0

𝜕𝜕𝑥𝑥
  
𝜕𝜕𝑢𝑢2

0

𝜕𝜕𝑦𝑦
  
𝜕𝜕𝑢𝑢2

0

𝜕𝜕𝑥𝑥
+  
𝜕𝜕𝑢𝑢1

0

𝜕𝜕𝑦𝑦
  
𝜕𝜕𝑤𝑤1

𝜕𝜕𝑥𝑥
  
𝜕𝜕w2

𝜕𝜕𝑦𝑦
  
𝜕𝜕w2

𝜕𝜕𝑥𝑥
  
𝜕𝜕w1

𝜕𝜕𝑦𝑦
  
𝜕𝜕𝛹𝛹1

𝜕𝜕𝑥𝑥
  
𝜕𝜕𝛹𝛹2

𝜕𝜕𝑦𝑦
 

𝜕𝜕𝛹𝛹2 

𝜕𝜕𝑥𝑥
  
𝜕𝜕𝛹𝛹1

𝜕𝜕𝑦𝑦
  𝛹𝛹1  𝛹𝛹2  

𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

  
𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦

  𝑤𝑤1  𝑤𝑤2                                     
⎭
⎪
⎬

⎪
⎫

 (10) 

 

The strain displacement relation may be written as 
below 

{𝜀𝜀} =  [𝐵𝐵]{𝛿𝛿} (11) 
 

here [𝐵𝐵] is the strain-displacement matrix and {𝛿𝛿} is the 
element nodal unknown vector. 

Thermal strain due to temperature change is be given by 
 

{𝜀𝜀𝑡𝑡ℎ} =  

⎩
⎪
⎨

⎪
⎧
𝛼𝛼𝑥𝑥∆𝑇𝑇
𝛼𝛼𝑦𝑦∆𝑇𝑇
𝛼𝛼𝑥𝑥𝑦𝑦∆𝑇𝑇
𝛼𝛼𝑥𝑥𝑧𝑧
𝛼𝛼𝑦𝑦𝑧𝑧 ⎭

⎪
⎬

⎪
⎫

 (12a) 

 
in which ∆𝑇𝑇  is the change of temperature/moisture 
concentration with respect to reference temperature concen-
tration, 𝛼𝛼𝑥𝑥 , 𝛼𝛼𝑦𝑦 , 𝛼𝛼𝑥𝑥𝑦𝑦  are the thermal expansion coefficients 
in the structural axis (x-y-z) system 

Moisture (i.e., hygro) strain due to moisture change is be 
given by 

{𝜀𝜀𝑚𝑚 } =  

⎩
⎪
⎨

⎪
⎧
𝛽𝛽𝑥𝑥∆𝑀𝑀
𝛽𝛽𝑦𝑦∆𝑀𝑀
𝛽𝛽𝑥𝑥𝑦𝑦∆𝑀𝑀
𝛼𝛼𝑥𝑥𝑧𝑧
𝛼𝛼𝑦𝑦𝑧𝑧 ⎭

⎪
⎬

⎪
⎫

 (12b) 

 
in which ∆𝑀𝑀 is the change of moisture concentration with 
respect to reference moisture concentration, 𝛽𝛽𝑥𝑥 , 𝛽𝛽𝑦𝑦 , 𝛽𝛽𝑥𝑥𝑦𝑦  are 
the moisture expansion coefficients in the structural axis (x-
y-z) system 

Therefore, the net strain may be written as 
 

{𝜀𝜀𝑛𝑛} =  {𝜀𝜀} − {𝜀𝜀𝑡𝑡ℎ} (13a) 
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{𝜀𝜀𝑛𝑛} =  {𝜀𝜀} − {𝜀𝜀𝑚𝑚 } (13b) 
 

in which {𝜀𝜀𝑛𝑛} is the total strain and {𝜀𝜀𝑡𝑡ℎ} is the thermal 
strain/{𝜀𝜀𝑚𝑚 } is the moisture strain respectively. 

For the present study, a nine noded C0 continuous 
isoparametric element shown in Fig. 2 with seven 
unknowns (i.e., u1, u2, w, Ψ1, Ψ2, w1, w2) are used to develop 
the proposed finite element model. The generalized 
displacements included in the present theory can be 
expressed as follows 

 

𝑢𝑢1 =  �𝑁𝑁𝑖𝑖𝑢𝑢𝑖𝑖 ,
9

𝑖𝑖=1

     𝑢𝑢2 =  �𝑁𝑁𝑖𝑖𝑣𝑣𝑖𝑖

9

𝑖𝑖=1

, 

𝑤𝑤  =  �𝑁𝑁𝑖𝑖

9

𝑖𝑖=1

𝑤𝑤𝑖𝑖 ,     Ψ1 = �𝑁𝑁𝑖𝑖

9

𝑖𝑖=1

𝛹𝛹1𝑖𝑖 , 

Ψ2  = �𝑁𝑁𝑖𝑖𝛹𝛹2𝑖𝑖

9

𝑖𝑖=1

, 

𝑤𝑤1 = �𝑁𝑁𝑖𝑖

9

𝑖𝑖=1

𝑤𝑤1𝑖𝑖 ,     𝑤𝑤2 = �𝑁𝑁𝑖𝑖

9

𝑖𝑖=1

𝑤𝑤2𝑖𝑖  

(14) 

 
where Ni are the shape functions for the nine noded 
isoparametric element. 

By applying virtual work method 
 

[𝑘𝑘]{𝛿𝛿} = {𝑃𝑃} (15) 
 

where [k] is the element stiffness matrix and {P} is the 
element nodal load vector as written below 

 

[𝑘𝑘] = �[𝐵𝐵]𝑇𝑇 [𝐷𝐷][𝐵𝐵]𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 (16) 
 

where [𝐵𝐵] is the strain displacement matrix and [𝐷𝐷] is the 
rigidity matrix respectively. 

 

{𝑃𝑃} = �[𝑁𝑁]𝑇𝑇 𝑞𝑞𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 (17) 
 

where [𝑁𝑁]  is the shape functions matrix and q is the 
intensity of transverse load respectively. 

Thermal loading may be obtained as below 
 

{𝐹𝐹} = �[𝐵𝐵]𝑇𝑇[𝐻𝐻]𝑇𝑇{𝐹𝐹𝑁𝑁}𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦 (18) 
 

where {𝐹𝐹𝑁𝑁}𝑇𝑇= �𝑁𝑁𝑥𝑥𝑁𝑁 ,𝑁𝑁𝑦𝑦𝑁𝑁 ,𝑁𝑁𝑥𝑥𝑦𝑦 𝑁𝑁 , etc −−−� and {𝐹𝐹} is the 
thermal load respectively. 

And 
 

�𝑁𝑁𝑥𝑥𝑁𝑁 ,𝑁𝑁𝑥𝑥𝑁𝑁 ,𝑁𝑁𝑥𝑥𝑦𝑦 𝑁𝑁�
𝑇𝑇 = � � �𝑄𝑄𝑖𝑖𝑖𝑖 �𝑘𝑘

𝑧𝑧𝑘𝑘

𝑧𝑧𝑘𝑘−1

𝑛𝑛

𝑘𝑘

{𝜀𝜀𝑡𝑡ℎ}𝑑𝑑𝑧𝑧 (19) 

 
here i, j = 1, 2, 6 and {𝜀𝜀𝑡𝑡ℎ} is the thermal strain components. 

It can be observed that the total strain field is always 
interpolated to a lower order when compared to the thermal 
strain fields. Hence thermal strain fields should be 
consistently reconstituted to the order of in-plane normal 
strain field to get accurate strains and stresses over the 
element domain. Therefore, this is accordingly taken care to 

make them field consistent (Noor and Burton 1992). 
The following thermal cases are considered: 
Case 1 (a): Temperature uniform across the depth 
 

�
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝜀𝜀𝑥𝑥𝑦𝑦

� = �
𝛼𝛼𝑥𝑥
𝛼𝛼𝑦𝑦
𝛼𝛼𝑥𝑥𝑦𝑦

� .∆𝑇𝑇 (20a) 

 

�
𝛼𝛼𝑥𝑥
𝛼𝛼𝑦𝑦
𝛼𝛼𝑥𝑥𝑦𝑦

� = �
𝑐𝑐2 𝑠𝑠2 −2𝑐𝑐𝑠𝑠
𝑠𝑠2 𝑐𝑐2 2𝑐𝑐𝑠𝑠
𝑐𝑐𝑠𝑠 −𝑐𝑐𝑠𝑠 𝑐𝑐2 − 𝑠𝑠2

� [𝑄𝑄]k �
𝛼𝛼1
𝛼𝛼2
𝛼𝛼12

� k  (20b) 

 
where 𝛼𝛼1, 𝛼𝛼2, 𝛼𝛼12  are thermal expansion coefficient in the 
material axis system and 𝑐𝑐 = cosθ, 𝑠𝑠 = sinθ and θ is the 
angle between principal material axis and structural axis 
system. 

In this case, ∆𝑇𝑇 = 𝑇𝑇, therefore, thermal force 
 

{𝐹𝐹} = �[𝐵𝐵]𝑇𝑇[𝐻𝐻]𝑇𝑇 �
𝛼𝛼𝑥𝑥
𝛼𝛼𝑦𝑦
𝛼𝛼𝑥𝑥𝑦𝑦

� .𝑇𝑇𝑑𝑑𝑣𝑣 (21) 

 
Case 1 (b): Moisture uniform across the depth 
 

�
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝜀𝜀𝑥𝑥𝑦𝑦

� = �
𝛽𝛽𝑥𝑥
𝛽𝛽𝑦𝑦
𝛽𝛽𝑥𝑥𝑦𝑦

� .∆𝑇𝑇 (22a) 

 

�
𝛽𝛽𝑥𝑥
𝛽𝛽𝑦𝑦
𝛽𝛽𝑥𝑥𝑦𝑦

� = �
𝑐𝑐2 𝑠𝑠2 −2𝑐𝑐𝑠𝑠
𝑠𝑠2 𝑐𝑐2 2𝑐𝑐𝑠𝑠
𝑐𝑐𝑠𝑠 −𝑐𝑐𝑠𝑠 𝑐𝑐2 − 𝑠𝑠2

� [𝑄𝑄]k �
𝛽𝛽1
𝛽𝛽2
𝛽𝛽12

� k  (22b) 

 
where 𝛽𝛽1, 𝛽𝛽2, 𝛽𝛽12 are moisture expansion coefficient in the 
material axis system and 𝑐𝑐 = cosθ, 𝑠𝑠 = sinθ and θ is the 
angle between principal material axis and structural axis 
system. 

In this case, ∆𝑀𝑀 = 𝑀𝑀, therefore, Hygro(moisture) force 
 

{𝐹𝐹} = �[𝐵𝐵]𝑇𝑇[𝐻𝐻]𝑇𝑇 �
𝛽𝛽𝑥𝑥
𝛽𝛽𝑦𝑦
𝛽𝛽𝑥𝑥𝑦𝑦

� .𝑀𝑀𝑑𝑑𝑣𝑣 (23) 

 
Case 2(a): Temperature varying across the depth, 

therefore, thermal force 
 

{𝐹𝐹} = �[𝐵𝐵]𝑇𝑇[𝐻𝐻]𝑇𝑇 �
𝛼𝛼𝑥𝑥
𝛼𝛼𝑦𝑦
𝛼𝛼𝑥𝑥𝑦𝑦

�. 

[1/2(𝑇𝑇𝑈𝑈 + 𝑇𝑇𝐿𝐿 + 𝑧𝑧/ℎ(𝑇𝑇𝑈𝑈 − 𝑇𝑇𝐿𝐿)].𝑑𝑑𝑣𝑣 

(24a) 

 
where, 𝑇𝑇𝑈𝑈  = Temperature at top surface 

𝑇𝑇𝐿𝐿 = Temperature at bottom surface 
 
Case 2(b): Moisture varying across the depth, therefore, 

Moisture force 
 

{𝐹𝐹} = �[𝐵𝐵]𝑇𝑇[𝐻𝐻]𝑇𝑇 �
𝛽𝛽𝑥𝑥
𝛽𝛽𝑦𝑦
𝛽𝛽𝑥𝑥𝑦𝑦

�. 

     [1/2(𝑀𝑀𝑈𝑈 + 𝑀𝑀𝐿𝐿 + 𝑧𝑧/ℎ(𝑀𝑀𝑈𝑈 −𝑀𝑀𝐿𝐿)].𝑑𝑑𝑣𝑣 

(24b) 

 
where, 𝑀𝑀𝑈𝑈  = Moisture at top surface 

𝑀𝑀𝐿𝐿  = Moisture at bottom surface 
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Once the element stiffness matrix and the element load 
vector are formed, the corresponding global matrices can 
also be formed by following a standard assembly operation. 
After incorporation of suitable boundary conditions, the 
problem of linear simultaneous equations is solved to get 
the nodal unknowns and therefore the stresses at different 
locations. 

 
 

3. Results and discussion 
 
In order to demonstrate the accuracy of the present C0 

finite element model, a numerical code has been developed 
in FORTRAN language. A number of numerical examples 
with different temperature/moisture variations have been 
solved considering different features such as boundary 
conditions, ply orientations, thickness ratio and aspect ratio. 
The results obtained by using the proposed FE model is first 
validated with some published results and then many new 
results are also generated. The convergence of the proposed 
FE results is also studied in the first example. 

 
3.1 Cross-ply (00/900/00) composite plate 

simply supported at all the edges 
 
In this example static response of laminated square 

composite plate has been analyzed subjected to equal rise 
and fall of temperature respectively at the top and bottom 
surface of the plate (to ensure pure bending) with sinusoidal 
in-plane variations. The material properties of individual 
layers are given by: E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 
0.2E2, ν12 = ν13 = 0.25, α2/α1 = 1125. 

 
T = TU SIN (πX/a)SIN (Πx/b) (for Upper layer) 

T = TL SIN (πX/a)SIN (Πx/b) (for lower layer) 
 
Where TU = Temperature of upper layer 
 

TL = Temperature of lower layer 
a = length of plate 
b = width of plate 

 
The deflection and stresses are presented in terms of 

following non-dimensional parameters:𝑤𝑤 = 𝑤𝑤
ℎ𝛼𝛼1𝑇𝑇0𝑆𝑆2, (𝑢𝑢, 𝑣𝑣) 

= (𝑢𝑢 ,𝑣𝑣)
ℎ𝛼𝛼1𝑇𝑇0𝑆𝑆

, �𝜎𝜎𝑖𝑖 , 𝜏𝜏𝑖𝑖𝑖𝑖 � =
�𝜎𝜎𝑖𝑖 ,𝜏𝜏𝑖𝑖𝑖𝑖 �

𝐸𝐸1𝛼𝛼1𝑇𝑇0
. 

 
3.1.1 Transverse deflections and in-plane stresses 

for simply supported cross ply (00/900/00) 
square laminate 

This problem is solved to assess the performance of the 
proposed C0 plate element with the same temperature 
loadings mentioned above. The thickness ratio (a/h) is taken 
100 where a is the planar dimension of the plate in x-
direction and h is the overall thickness of the plate. The 
convergence of the non-dimensional transverse deflection 
and in-plane stresses obtained by using the proposed 
element is shown in Table 1. The transverse deflection and 
the in-plane normal stresses are calculated at the midpoint 
(x = a/2 and y = a/2) of the plate while for in-plane shear it 
is calculated at the corner of the plate (x = 0 and y = 0) at 

 
 

 
 

thickness, z = ± h/2. It is found that with refining meshes 
(16 × 16, full plate) the present finite element results closely 
match with the results of 3D elasticity solution of Bhaskar 
et al. (1996). 

 
3.1.2 In-plane and transverse displacements for 

simply supported cross-ply (00/900/00) square 
laminate 

The effect of thickness ratio (a/h) has been studied in 
 

Table 1 Non-dimensional transverse deflections and in-plane 
stresses for simply supported cross ply (00/900/00) 
square laminate (a/h = 100) 

References 𝑤𝑤�  𝜎𝜎𝑋𝑋  𝜎𝜎𝑦𝑦  𝜏𝜏𝑥𝑥𝑦𝑦  

Present (4×41) 10.03 950.90 1067.13 53.84 
Present (6×6) 10.21 972.69 1064.49 51.71 
Present (8×8) 10.21 971.46 1064.05 50.97 

Present (12×12) 10.21 967.80 1064.15 50.49 
Present (16×16) 10.20 965.09 1064.31 50.27 
Bhaskar (1996) 10.26 965.40 1065.00 50.53 

 

1 Mesh division 

Table 2 Non-dimensional in-plane and transverse displacements 
for simply supported cross-ply (00/900/00) square laminate 

Thickness ratio (a/h) References 𝑢𝑢 𝑣𝑣 𝑤𝑤 

100 
Present(16×16) 16.08 16.00 10.20 
Bhaskar (1996) 16.00 16.17 10.26 

50 
Present(16×16) 16.34 16.27 10.37 
Bhaskar (1996) 16.02 16.71 10.50 

20 
Present(16×16) 17.98 17.90 11.41 
Bhaskar (1996) 16.17 20.34 12.12 

10 
Present(16×16) 22.98 22.90 14.57 
Bhaskar (1996) 16.60 31.92 17.37 
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the present problem considering very thin to moderately 
thick plates with the same temperature loading. The non-
dimensional in-plane displacements 𝑢𝑢 (at x = 0, y = a/2) 
and 𝑣𝑣  (at x = a/2, y = 0); and the non-dimensional 
transverse deflection, 𝑤𝑤 (at x = a/2, y = a/2) at thickness, z 
= ± h/2 are calculated by using the present FE model and 
the results are as shown in Table 2. The variation of non-
dimensional transverse-displacement (𝑤𝑤 ) with different 
thickness ratio (a/h) has been plotted in Fig. 1. The results 
of the 3D elasticity solution Bhaskar et al. (1996) are also 
plotted on the same figure. It is observed that the present 
results are quite close to the results of 3D elasticity solution 
of Bhaskar et al. (1996) for higher thickness ratio (a/h = 
100) where as for lower thickness ratio, there are slight 
variations between the results. 

 
3.1.3 In-plane and transverse stresses for simply 

supported (00/900/00) square laminate 
In the present problem the effect of thickness ratio has 

 
 
been studied on the values of non-dimensional in-plane 
stresses and transverse shear stresses considering very thin 
to moderately thick plates. In-plane normal stresses are 
calculated at the midpoint (x = a/2 and y = a/2), in-plane 
shear stress is calculated at the corner of the plate (x = 0 
and y = 0) while out of plane shear stresses, 𝜏𝜏𝑥𝑥𝑧𝑧  at (0, a/2) 
and 𝜏𝜏𝑦𝑦𝑧𝑧  at (a/2, 0) at thickness, z = ± h/6. The correspon-
ding results are presented in Table 3 along with the other 
results. The present finite element results are very close to 
results of 3D elasticity solution of Bhaskar et al. (1996). 

The non-dimensional in-plane shear stress (𝜏𝜏𝑥𝑥𝑦𝑦 ) has 
been plotted in Fig. 2. The results of the 3D elasticity 
solution of Bhaskar et al. (1996) are also plotted on the 
same figures. The comparison between the results clearly 
indicates that the present results are very close to the results 
of 3D elasticity solution of Bhaskar et al. (1996). 

 
3.2 Cross-ply (00/900) composite plate 

simply supported at all the edges 
 
In this section, the example of a two layered cross ply 

(00/900) square composite plate with equal thickness of the 
 

Table 3 Non-dimensional stresses for simply supported (00/900/00) square laminate 

Thickness ratio (a/h) References 𝜎𝜎𝑋𝑋  𝜎𝜎𝑦𝑦  𝜏𝜏𝑥𝑥𝑦𝑦  𝜏𝜏𝑥𝑥𝑧𝑧  𝜏𝜏𝑦𝑦𝑧𝑧  

10000 Present (16×16) 312.80 1127.32 0.09 0.02 0.06 
1000 Present (16×16) 1501.45 875.47 27.85 0.23 0.42 

100 
Present (16×16) 965.09 1064.31 50.27 6.48 6.31 
Bhaskar (1996) 965.40 1065.00 50.53 7.07 7.08 

50 
Present (16×16) 967.59 1062.00 51.14 12.89 12.50 
Bhaskar (1996) 967.5 1063.00 51.41 14.07 14.13 

20 
Present (16×16) 971.45 1052.06 56.49 31.16 30.40 

Kant (2008) 982.00 1051.24 57.48 - - 
Bhaskar (1996) 982.00 1051.00 57.35 33.98 34.76 

10 
Present (16×16) 978.01 1018.41 73.25 55.67 55.99 

Kant (2008) 1026.3 1014.36 76.29 - - 
Bhaskar (1996) 1026 1014.00 76.29 60.54 66.01 
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Fig. 2 Variation of non dimensional in-plane stress (𝜏𝜏𝑥𝑥𝑦𝑦 ) 

the cross-ply (00/900/00) laminated square plate 
with different thickness ratio 

Table 4 In-plane displacements and Transverse displacement of 
two layered (00/900) simply supported square laminate 

Thickness 
ratio (a/h) References u v w 

100 
Present (16×16) 0.1714 0.1054 5.9427 

Brischetto and 
Carrera (2010) 0.1747 - 5.9448 

50 
Present (16×16) 0.0852 0.05354 1.4850 

Brischetto and 
Carrera (2010) 0.0882 - 1.4857 

10 
Present (16×16) 0.0144 0.0127 0.0586 

Brischetto and 
Carrera (2010) 0.0225 - 0.0587 

5 
Present (16×16) 0.0045 0.0137 0.0141 

Brischetto and 
Carrera (2010) 0.0171 - 0.0141 
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individual layers subjected to imposed temperature, θt = 1.0 
K at the top and θb = 0.0 K. at the bottom surfaces of the 
plate with sinusoidal in–plane variations has been consi-
dered. The material properties of individual layers are given 
by 

E1 = 172.72 GPa,   E2 = E3 = 6.909 GPa, 

G12 = G13 = 3.45 GPa,   G23 = 1.38 GPa,   ν12 = 0.25 
 
Results of maximum in-plane displacements (u, v in 

mm) and transverse displacement (w in mm) are presented 
in Table 4 for various thickness ratios. The present results of 
in-plane displacement (u) and transverse displacement (w) 
match closely with the results of Brischetto and Carrera 
(2010). 

 
3.3 Effect of aspect ratio, number of plies 

and their orientations 
 
In this section the effect of aspect ratio, number of plies 

and their orientations is studied on non-dimensional 
deflection, 𝑤𝑤for simply supported laminated plate (thick-
ness ratios, a/h = 100, 10 and 5) subjected to same tempera-
ture variation as taken in the previous section. The material 
properties are as given below. 

 
 E1 /E2 = 25   G12/ E2 = 0.5   G23/ E2 = 0.2   ν12 = 0.25 

G12 = G13   and   ν12 = ν13, α2 = 3α1 
 
The non-dimensional (𝑤𝑤) displacements obtained by 
 

 

 
 
using the proposed FE model are presented in Table 5 with 
those obtained by Prathap and Naganarayana (1995) and by 
using the standard software MSC/NASTRAN (1995). The 
results obtained by the proposed FE model are quite close to 
the above results Prathap and Naganarayana (1995). Some 
new results are also generated. 

 
3.4 Effect of different boundary conditions 
 
The influence of different boundary conditions on non-

dimensional transverse displacement and in-plane stresses is 
investigated in the present section. The plate is considered 
simply supported (S) along the edges parallel to the y axis 
while the other edges have simply supported (S), clamped 
(C) or free (F) boundary conditions. The notation SSCF, for 
example refers to the simply supported boundary conditions 
of the two edges parallel to the y- axis and the clamped and 
free conditions for the two edges parallel to the x- axis. In 
this example, non-dimensional transverse displacement and 
in-plane stresses of square laminated composite plate has 
been analyzed subjected to equal rise and fall of 
temperature at the top and bottom surfaces of the plate with 
sinusoidal in-plane variations. The material properties used 
are as given below. 

 

E1 / E2 = 40   G12 / E2 = 0.6   G23 / E2 = 0.5   ν12 = 0.25 

G12 = G13   and   ν12 = ν13,   α2 = 1125α1 
 
The deflection and stresses are presented in terms of 

following non-dimensional parameters 
 
 

Table 5 Non-dimensional transverse displacement (𝑤𝑤) of simply supported rectangular laminate for different aspect ratio (a/b) 

a/h References 
00/900/00 00/900 

a/b = 1 a/b = 1.5 a/b = 2 a/b = 1 a/b = 1.5 a/b = 2 

100 
Present(16×16) 1.0282 0.8764 0.6477 1.1382 0.5129 0.2690 

GPrathap (1995) 1.0249 0.8802 0.6566 1.1434 - - 
Nastran (1995) 1.0028 0.8346 0.6108 1.1374 - - 

10 Present(16×16) 1.0510 0.8536 0.5978 1.1424 0.5465 0.2794 
5 Present(16×16) 1.0866 0.8201 0.5486 1.1244 0.5622 0.2875 

 

* 𝑤𝑤 = 10ℎ𝑤𝑤/𝛼𝛼1𝑇𝑇0𝛼𝛼2 

Table 6 Non-dimensional transverse displacements and in-plane stresses for square laminate (00/900/00/900) under 
different boundary conditions 

Thickness ratio References Boundary conditions 𝑤𝑤 𝜎𝜎𝑥𝑥  𝜎𝜎𝑦𝑦  𝜏𝜏𝑥𝑥𝑦𝑦  

100 

Present (16×16) SSSS 8.6920 237.5057 271.2219 14.7584 
Present (16×16) SSCC 3.2899 2.3138 277.7459 2.1941 
Present (16×16) SSFF 8.9194 45.3909 271.5353 53.1604 
Present (16×16) SSSC 5.2387 90.2320 259.3216 10.6455 
Present (16×16) SSSF 8.8427 240.5614 271.0575 14.8050 

10 

Present (16×16) SSSS 8.926 20.3705 26.5258 1.3031 
Present (16×16) SSCC 4.207 6.3735 27.2672 0.1290 
Present (16×16) SSFF 9.220 21.2635 26.5537 0.4342 
Present (16×16) SSSC 6.105 11.952 26.9187 1.1155 
Present (16×16) SSSF 9. 098 20.8932 26.5432 1.3160 
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𝑤𝑤 =
𝑤𝑤

ℎ𝛼𝛼1𝑇𝑇0𝑆𝑆2 , (𝜎𝜎𝑖𝑖 , 𝜏𝜏𝑖𝑖𝑖𝑖 ) =
(𝜎𝜎𝑖𝑖 , 𝜏𝜏𝑖𝑖𝑖𝑖 )
𝐸𝐸1𝛼𝛼1𝑇𝑇0

 

 
The four layer anti-symmetric (00/900/00/900) cross-ply 

square laminate is analyzed with thickness ratios, (S = a/h) 
100 and 10. In-plane normal stresses are calculated at the 
midpoint (x = a/2 and y = a/2), in-plane shear stress is 
calculated at the corner of the plate (x = 0 and y = 0) at 
thickness, z = ± h/2. The results of non dimensional trans-
verse displacement and in-plane stresses are presented in 
Table 6 under different boundary conditions, which are new 
results. 

 
3.5 Response of laminated composite square plate 

(00/900/00/900) considering changes of material 
properties due to temperature and 
moisture variations 

 
In previous studies, material properties of composite 

laminates are assumed to be independent of temperature/ 
moisture. However the elastic modulus of laminates in 
general is reduced with the elevated/increased temperature/ 
moisture. The change in material properties (Makhecha et 
al. 2001) due to change in temperature/ and moisture are 
shown in Tables 7 and 8 respectively. This example will 
illustrate the effect of changes in material properties due to 
change in temperatures/moisture on different structural 
responses. 

In the first example, uniform rise of temperature ∆𝑇𝑇 at 
the top and bottom of the plate with in-plane sinusoidal 
variations is considered. The transverse displacement and 
in-plane stresses are presented in terms of following non-
dimensional parameters 

 

�𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦� =
𝜎𝜎𝑥𝑥 ,𝜎𝜎𝑦𝑦
𝛼𝛼0𝑇𝑇0𝐸𝐸0

, 𝑤𝑤 = (𝑤𝑤)/(𝛼𝛼0𝑇𝑇0) 

 
Where E0 = 1 GPa T0 = 300 K, α0 = 10-6 K-1 
Distribution of non-dimensional transverse displacement 

(𝑤𝑤) at the middle surface of a simply supported laminated 

 
 

 
 

composite square plate (00/900/00/900) subjected to (∆𝑇𝑇 = 
350 K) temperature with thickness ratio (a/h = 20) is plotted 
in Fig. 3. 

In the second case, uniform rise of moisture concen-
tration ∆𝐶𝐶 at the top and bottom of the plate with in-plane 
sinusoidal variations is applied. The non-dimen-sional 
transverse displacement is presented in the same manner as 
mentioned above. 

Distribution of non-dimensional transverse displacement 
(𝑤𝑤) at the middle surface of a simply supported eight layer 
laminated (00/900)4 composite square plate subjected to 
moisture concentration, ∆𝐶𝐶 = 1.25% with thickness ratio 
(a/h = 10) is plotted as shown in Fig. 4. 

All the above results are plotted above are new and are 
observed to follow the expected trend. 

 
3.6 Buckling analysis of simply supported 

cross-ply laminated (00/900/00) composite plate 
 
This problem is solved to assess the performance of the 

Table 7 Material properties at different temperatures G13 = G12, 
G23 = 0.5 G12, ν12 = 0.3, α1 = -0.3×10-6 and α2 = 28.1×10-6 

Elastic moduli 
(GPa) 

Temperatures T(K) 
300 325 350 375 400 425 

E1 130 130 130 130 130 130 
E2 9.5 8.5 8.0 7.5 7.0 6.75 
G12 6.0 6.0 5.5 5.0 4.75 4.5 

 

Table 8 Material properties at different moisture concentrations 
G13 = G12, G23 = 0.5 G12, ν12 = 0.3, β1 = 0, and β2 = 0.44 

Elastic moduli 
(GPa) 

Moisture concentrations C (%) 
0 0.25 0.5 0.75 1.0 1.25 1.5 

E1 130 130 130 130 130 130 130 
E2 9.5 9.25 9.0 8.75 8.5 8.5 8.5 
G12 6.0 6.0 6.0 6.0 6.0 6.0 6.0 

 

 
Fig. 3 Distribution of non-dimensional transverse 

displacement (𝑤𝑤) at the middle surface of 
laminated plate under uniform temperature 
(00/900/00/900, a/h = 20, ∆𝑇𝑇 = 350 K) 

 
Fig. 4 Distribution of transverse displacement (𝑤𝑤) at 

the middle surface of laminated plate of eight 
layer under uniform moisture ([00/900)4, a/h = 10, 
∆𝐶𝐶 = 1.25%) 
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present C0 FE model based on higher order zigzag theory in 
predicting the buckling behavior of a simply supported 
cross ply laminate subjected to uniform temperature rise in 
the x-y plane as well as through the thickness. The critical 
temperature (λcr) obtained for different thickness ratio (a/h) 
is shown in Table 9 by using the present FE model based on 
HZT. The present finite element results are observed to be 
very close to the results of 3D elasticity solution given by 
Noor and Burton (1992) as compared to the results of 
Matsunaga (2005) obtained by using a global higher order 
theory (Table 9). It is observed that critical buckling 
temperature increases with the decrease in thickness ratio. 
The corresponding material properties for the orthotropic 
plate are as follows 

 
3.7 Vibration analysis of 10 layers simply 

supported angle-ply laminated 
composite square plates 

 
This problem has been solved for a 10 layer angle-ply (θ 

= 150) laminated composite plate with uniform temperature 
rise in the x-y plane as well as through the thickness. 
Normalized natural frequencies and critical temperatures 
obtained for different thickness ratio (a/h) using the present 
FE model based on different theories are shown in Table 9. 
The present results are in good agreement with the results 
obtained by Matsuanaga (2007). It is observed that results 
 
 

obtained using present FE model based on HZT gives better 
results compared to results obtained by using HSDT. It is 
also observed that natural frequency increases with the 
decrease of thickness ratio (a/h). This trend is found in all 
subsequent examples in case of thermal vibration. The 
corresponding material properties for the composite plate 
are as follows 

 
E1 / E2 = 15,  G12 = G13 = 0.5E2,  G23 = 0.3356E2, 

ν12 = 0.3,  ν23 = 0.49,  α1 / α0 = 0.015,  α2/α0 = 1.0,  ρ = 1; 
 
The normalized critical temperature is defined as 

follows: λcr = α0 T where T is the critical temperature, α0 is 
the normalization factor which is taken as 10-6. 

Normalized frequency is defined as follows Ω =

ωℎ�ρ 𝐸𝐸2
�  where ω  is the natural frequency, ρ  is the 

density. The above normalization has been followed in the 
subsequent section. 
 
 
4. Conclusions 

 
In the present study, the static, buckling and vibration 

response of laminated composite plates exposed to 
hygrothermal environment is studied using an efficient C0 
finite element model developed based on efficient higher 
order zigzag theory. The proposed model overcomes the 
problem of C1 continuity associated with the presence of 
first derivatives of transverse displacement in the 
formulation by treating them as independent variables 
through C0 FE implementation and the number of nodal 
unknowns is lesser than the previous studies. Thus, the 
present FE model formulates a simple but accurate 
approach for the solution of different problems on 
laminated composite plates subjected to hygrothermal 
loadings. In order to remove the inconsistency between total 
strain and thermal strain special steps were introduced. 
Numerical results of static responses for different problems 
show that the proposed FE model for laminated composite 
 
 

Table 9 Normalized Critical buckling Temperature (𝜆𝜆𝑐𝑐𝑐𝑐 ) for a 
simply supported square composite plate (00/900/00) for 
different thickness ratio (a/h) 

a/h 
References 

Present Matsunaga(2005) Noor and Burton (1992) 
100 0.9945×10-3 0.9961×10-3 0.9960×10-3 
20 0.2290×10-1 0.2297×10-1 0.2300×10-1 
10 0.7417×10-1 0.7442×10-1 0.7467×10-1 
5 0.1743 0.1752 0.1763 
4 0.2126 0.2133 0.2148 

 

Table 10 Normalized natural frequency and critical temperature of a 10 layer angle-ply [θ/- θ/.../- θ]10 square plate 
for different thickness ratio (a/h) 

a/h Theory 
Ω 

Theory 
𝜆𝜆𝑐𝑐𝑐𝑐  

Present (12×121) Matsunaga (2007) Present (12×121) Matsunaga (2007) 

100 
HZT 0.1336×10-2 

0.1328×10-2 
HZT 0.1123×10-2 

0.1161×10-1 
HSDT 0.1335-2 HSDT 0.1123-2 

50 
HZT 0.5306×10-2 

0.5286×10-2 
HZT 0.4419×10-2 

0.4600×10-2 
HSDT 0.5301-2 HSDT 0.4431-2 

20 
HZT 0.3208×10-1 

0.3302×10-1 
HZT 0.2533×10-1 

0.2700×10-1 
HSDT 0.3227-1 HSDT 0.2571-1 

10 
HZT 0.1163 

0.1163 
HZT 0.7894×10-1 

0.8899 
HSDT 0.1185+0 HSDT 0.8251-1 

5 
HZT 0.3588 

0.3592 
HZT 0.1745 

0.2124 
HSDT 0.3610 HSDT 0.1923 

 

1 Mesh division 
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plates is capable in predicting results nearly close to the 
three dimensional elasticity solutions. The proposed FE 
model may, therefore, be recommended for wide use to 
generate further results for future research in the field. 
 
 
References 
 
Ali, J.S.M., Bhaskar, K. and Varadan, T.K. (1999), “A new theory 

for accurate thermal/mechanical flexural analysis of symmetric 
laminated plates”, Compos. Struct., 45(3), 227-232. 

Bahrami, A. and Nosier, A. (2007), “Interlaminar hygrothermal 
stresses in laminated shells”, Int. J. Solids Struct., 44(25-26), 
8119-8142. 

Bhaskar, K., Varadan, T.K. and Ali, J.S.M. (1996), “Thermoelastic 
solutions for orthotropic and anisotropic composite laminates”, 
Compos.: Part B, 27(5), 415-420. 

Brischetto, S. (2012), “hygrothermal loading effects in bending 
analysis of multilayered composite plates”, Comput. Model. 
Eng. Sci., 88(5), 367-418. 

Brischetto, S. (2013), “Hygrothermoelastic analysis of multi-
layered composite and sandwich shells”, J. Sandw. Struct. 
Mater., 15(2), 168-202. 

Brischetto, S. and Carrera, E. (2010), “Coupled thermo-mecha-
nical analysis of one-layered and multilayered plates”, Compos. 
Struct., 92(8), 1793-1812. 

Ebrahimi, F. and Habibi, S. (2016), “Deflection and vibration 
analysis of higher-order shear deformable compositionally 
graded porous plate”, Steel Compos. Struct., Int. J., 20(1), 205-
2225. 

Hadji, L., Daouadji, T., Tounsi, A. and Bedia, E. (2014), “A higher 
order shear deformation theory for static and free vibration of 
FGM beam”, Steel Compos. Struct., Int. J., 16(5), 507-519. 

Kaci, A., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2014), 
“Nonlinear cylindrical bending analysis of E-FGM plates with 
variable thickness”, Steel Compos. Struct., Int. J., 16(4), 339-
356. 

Kant, T., Pandhari, S.S. and Desai, Y.M. (2008), “An efficient semi 
analytical model for composite and sandwich plates subjected to 
thermal load”, J. Therm. Stress., 31(1), 77-103. 

Kapuria, S. and Achary, G.G.S. (2004), “An efficient higher-order 
zigzag theory for laminated plates subjected to thermal 
loading”, Int. J. Solids and Struct., 41(16-17), 4661-4684. 

Khare, R.K., Kant, T. and Garg, A.K. (2003), “Closed-form 
thermo-mechanical solutions of higher-order theories of cross-
ply laminated shallow shells”, Compos. Struct., 59(3), 313-340. 

Matsunaga, H. (2004), “A comparison between 2-D single layer 
and 3-D layerwise theories for computing interlaminar stresses 
of laminated composite and sandwich plates subjected to 
thermal loadings”, Compos. Struct., 64(2), 161-177. 

Nguyen, K.T., Thai, T.H. and Vo,  T.P. (2015), “A refined higher-
order shear deformation theory for bending, vibration and 
buckling analysis of functionally graded sandwich plates”, Steel 
Compos. Struct., Int. J., 18(1), 91-120. 

Lo, K.H., Christensen, R.M. and Wu, E.M. (1977a), “A high-order 
theory of plate deformation, Part 1: Homogeneous plates”, 
ASME J. Appl. Mech., 44(4), 663-668. 

Lo, K.H., Christensen, R.M. and Wu, E.M. (1977b), “A high-order 
theory of plate deformation, Part 2: Laminated plates”, ASME J. 
Appl. Mech., 44(4), 669-676. 

Lo, S.H., Wu, Z., Cheung, Y.K. and Chen, W. (2010), 
“Hygrothermal effects on multilayered composite plates using a 
refined higher-order theory”, Compos. Struct., 92(3), 633-646. 

Makhecha, D.P., Ganapathi, M. and Patel, B.P. (2001), “Dynamic 
analysis of laminated composite plates subjected to thermal/ 
mechanical loads using an accurate theory”, Compos. Struct., 
51(3), 221-236. 

Matsunaga, H. (2005), “Thermal buckling of cross-ply laminated 
composite and sandwich plates according to a global higher-
order deformation theory”, Compos. Struct., 68(4), 439-454. 

Matsunaga, H. (2007), “Free vibration and stability of angle-ply 
laminated composite and sandwich plates under thermal 
loading”, Compos. Struct., 77(2), 249-262. 

Naganarayana, B.P., Rama Mohan, P. and Prathap, G. (1995), 
“Quadrileteral C0 laminated plate elements based on higher 
order transverse deformation theory”, Int. J. Eng. Anal. Des., 2, 
157-178. 

Naganarayana, B.P., Rama Mohan, P. and Prathap, G. (1997), 
“Accurate thermal stress predictions using C0 continuous 
higher-order shear deformable elements”, Comput. Methods 
Appl. Mech. Eng., 144(1-2), 61-75. 

Noor, A.K. and Burton, W.S. (1992), “Three-dimensional solutions 
for the thermal buckling and sensitivity derivatives of 
temperature–sensitive multilayered angle-ply plates”, Transact. 
ASME, J. Appl. Mech., 59(4), 848-856. 

Oh, J.H. and Cho, M.H. (2007), “Higher order zigzag 
theoryforsmart composite shell sunder mechanical–thermo-
electric loading”, Int. J. Solids Struct., 44(1), 100-127. 

Ojalvo, I.V. (1974), “Improved thermal stress determination by 
finite element methods”, J. AIAA, 12(8), 1131-1132. 

Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2008), “An improved 
higher order zigzag theory for the static analysis of laminated 
sandwich plate with soft core”, Finite. Elem. Anal. Des., 44(9-
10), 602-610. 

Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), “Hygro-
thermal effects on the structural behaviour of thick composite 
laminates using higher-order theory”, Compos. Struct., 56(1), 
25-34. 

Pittr, J. and Hartl, H. (1980), “Improved stress evaluation under 
thermal load for simple finite element”, Int. J. Numer. Meth. 
Eng., 15(10), 1507-1515. 

Prathap, G. and Naganarayana, B.P. (1990), “Consistent force 
resultant distributions in displacement elements with varying 
sectional properties”, Int. J. Numer. Meths. Eng., 29(4), 775-
783. 

Prathap, G. and Naganarayana, B.P. (1995), “Consistent thermal 
stress evaluation in finite elements”, Comput. Struct., 54(3), 
415-426. 

Rama Mohan, P., Naganarayana, B.P. and Prathap, G. (1994), 
“Consistent and variationally correct finite elements for higher 
order laminated plate theory”, Composite Struct., 29(3-4), 445-
456. 

Rolfes, R., Noor, A.K. and Sparr, H. (1998), “Evaluation of 
tranverse thermal stresses in composite plates based on first-
order shear deformation theory”, Comput. Methods Appl. Mech. 
Eng., 167, 355-368. 

Savoia, M. and Reddy, J.N. (1995), “Three-dimensional thermal 
analysis of laminated composite plates”, Int. J. Solids Struct., 
32(5), 593-608. 

Shankara, C. and Iyengar, N. (1996), “A C0 element for the free 
vibration analysis of laminated composite plates”, J. Sound Vib., 
191(5), 721-738. 

Singh, S.K. and Chakrabarti, A. (2011), “Hygrothermal analysis of 
laminated composite plates by using efficient higher order shear 
deformation theory”, J. Solid Mech., 3(1), 85-95. 

Topal, U. (2013), “Application of a new extended layerwise 
approach to thermal buckling load optimization of laminated 
composite plates”, Steel Compos. Struct., Int. J., 14(3), 283-293. 

Tungikar, V.B. and Rao, K.M. (1994), “Three-dimensional exact 
solution of thermal stresses in rectangular composite laminate”, 
Compos. Struct., 27(4), 419-430. 

Wang, X., Dong, K. and Wang, X.Y. (2005), “Hygrothermal effect 
on dynamic interlaminar stresses in laminated plates with 
piezoelectric actuators”, Compos. Struct., 71(2), 220-228. 

50



 
Hygrothermal analysis of laminated composites using C0 FE model based on higher order zigzag theory 

Wu, Z. and Chen, W. (2006), “An efficient higher-order theory and 
finite element for laminated plates subjected to thermal 
loading”, Compos. Struct., 73(1), 99-109. 

Wu, Z., Cheng, Y.K., Lo, S.H. and Chen, W. (2007), “Thermal 
stress analysis of laminated plates using actual temperature 
field”, Int. J. Mech. Sci., 49(11), 1276-1288. 

 
 
CC 
 
 

51




